1
|
Tzakis N, Ethier-Gagnon M, Epp T, Holahan MR. Assessment of cFos labeling in the hippocampus and anterior cingulate cortex following recent and remote re-exposure to an unreinforced open field in preadolescent and postadolescent rats. Behav Brain Res 2025; 476:115284. [PMID: 39393683 DOI: 10.1016/j.bbr.2024.115284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/26/2024] [Accepted: 10/03/2024] [Indexed: 10/13/2024]
Abstract
Spatial tasks are often goal-directed or reward-facilitated confounding the assessment of "pure" recent and remote spatial memories. The current work re-exposed preadolescent and postadolescent male rats to a non-reinforced, free exploration task to investigate cFos patterns within the hippocampus and anterior cingulate cortex (ACC) associated with recent and remote periods. Male rats were exposed to an open field task for one, 30 min session on postnatal day (P) 20, 25, or 50 and re-exposed for 30 min at either a recent (24 hours) or remote (3 weeks) timepoint. Distance traveled in the open field was measured as well as cFos labeling. In the P20 age group, there was elevated exploration at the 24-hour and 3-week tests compared to training and compared to the other age groups. In the hippocampus CA1, cFos levels were higher after the remote test than the recent test in the P20 group but higher after the recent test than remote test in the P25 and P50 groups. cFos labeling in the ACC was higher in all remote-tested groups compared to the recent-tested groups across all ages. In the P20, the 24-hour test was associated with less CA1 activity than the other age groups supporting the hypothesis that the hippocampus is not fully developed at this time point. In the P20 group, the remote representation of this task did not seem to be complete as there continued to be CA1 activity along with ACC activity following the remote test associated with elevated exploration. These results indicate the utility of unreinforced spatial navigation tasks for exploring systems consolidation processes over the lifespan and show that a fully developed hippocampus is required for optimal systems consolidation.
Collapse
Affiliation(s)
- Nikolaos Tzakis
- Department of Neuroscience, Carleton University, Ottawa, ON K1S 5B6, Canada
| | | | - Tanisse Epp
- Department of Neuroscience, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Matthew R Holahan
- Department of Neuroscience, Carleton University, Ottawa, ON K1S 5B6, Canada.
| |
Collapse
|
2
|
Higa GSV, Viana FJC, Francis-Oliveira J, Cruvinel E, Franchin TS, Marcourakis T, Ulrich H, De Pasquale R. Serotonergic neuromodulation of synaptic plasticity. Neuropharmacology 2024; 257:110036. [PMID: 38876308 DOI: 10.1016/j.neuropharm.2024.110036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/15/2024] [Accepted: 06/11/2024] [Indexed: 06/16/2024]
Abstract
Synaptic plasticity constitutes a fundamental process in the reorganization of neural networks that underlie memory, cognition, emotional responses, and behavioral planning. At the core of this phenomenon lie Hebbian mechanisms, wherein frequent synaptic stimulation induces long-term potentiation (LTP), while less activation leads to long-term depression (LTD). The synaptic reorganization of neuronal networks is regulated by serotonin (5-HT), a neuromodulator capable of modify synaptic plasticity to appropriately respond to mental and behavioral states, such as alertness, attention, concentration, motivation, and mood. Lately, understanding the serotonergic Neuromodulation of synaptic plasticity has become imperative for unraveling its impact on cognitive, emotional, and behavioral functions. Through a comparative analysis across three main forebrain structures-the hippocampus, amygdala, and prefrontal cortex, this review discusses the actions of 5-HT on synaptic plasticity, offering insights into its role as a neuromodulator involved in emotional and cognitive functions. By distinguishing between plastic and metaplastic effects, we provide a comprehensive overview about the mechanisms of 5-HT neuromodulation of synaptic plasticity and associated functions across different brain regions.
Collapse
Affiliation(s)
- Guilherme Shigueto Vilar Higa
- Laboratório de Neurofisiologia, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, Butantã, São Paulo, SP, 05508-000, Brazil; Departamento de Bioquímica, Instituto de Química (USP), Butantã, São Paulo, SP, 05508-900, Brazil
| | - Felipe José Costa Viana
- Laboratório de Neurofisiologia, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, Butantã, São Paulo, SP, 05508-000, Brazil
| | - José Francis-Oliveira
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Emily Cruvinel
- Laboratório de Neurofisiologia, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, Butantã, São Paulo, SP, 05508-000, Brazil
| | - Thainá Soares Franchin
- Laboratório de Neurofisiologia, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, Butantã, São Paulo, SP, 05508-000, Brazil
| | - Tania Marcourakis
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, Butantã, São Paulo, SP, 05508-000, Brazil
| | - Henning Ulrich
- Departamento de Bioquímica, Instituto de Química (USP), Butantã, São Paulo, SP, 05508-900, Brazil
| | - Roberto De Pasquale
- Laboratório de Neurofisiologia, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, Butantã, São Paulo, SP, 05508-000, Brazil.
| |
Collapse
|
3
|
Leitch B. Parvalbumin Interneuron Dysfunction in Neurological Disorders: Focus on Epilepsy and Alzheimer's Disease. Int J Mol Sci 2024; 25:5549. [PMID: 38791587 PMCID: PMC11122153 DOI: 10.3390/ijms25105549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/11/2024] [Accepted: 05/16/2024] [Indexed: 05/26/2024] Open
Abstract
Parvalbumin expressing (PV+) GABAergic interneurons are fast spiking neurons that provide powerful but relatively short-lived inhibition to principal excitatory cells in the brain. They play a vital role in feedforward and feedback synaptic inhibition, preventing run away excitation in neural networks. Hence, their dysfunction can lead to hyperexcitability and increased susceptibility to seizures. PV+ interneurons are also key players in generating gamma oscillations, which are synchronized neural oscillations associated with various cognitive functions. PV+ interneuron are particularly vulnerable to aging and their degeneration has been associated with cognitive decline and memory impairment in dementia and Alzheimer's disease (AD). Overall, dysfunction of PV+ interneurons disrupts the normal excitatory/inhibitory balance within specific neurocircuits in the brain and thus has been linked to a wide range of neurodevelopmental and neuropsychiatric disorders. This review focuses on the role of dysfunctional PV+ inhibitory interneurons in the generation of epileptic seizures and cognitive impairment and their potential as targets in the design of future therapeutic strategies to treat these disorders. Recent research using cutting-edge optogenetic and chemogenetic technologies has demonstrated that they can be selectively manipulated to control seizures and restore the balance of neural activity in the brains of animal models. This suggests that PV+ interneurons could be important targets in developing future treatments for patients with epilepsy and comorbid disorders, such as AD, where seizures and cognitive decline are directly linked to specific PV+ interneuron deficits.
Collapse
Affiliation(s)
- Beulah Leitch
- Department of Anatomy, School of Biomedical Sciences, Brain Health Research Centre, University of Otago, Dunedin 9016, New Zealand
| |
Collapse
|
4
|
Premachandran H, Wilkin J, Arruda-Carvalho M. Minimizing Variability in Developmental Fear Studies in Mice: Toward Improved Replicability in the Field. Curr Protoc 2024; 4:e1040. [PMID: 38713136 DOI: 10.1002/cpz1.1040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
In rodents, the first weeks of postnatal life feature remarkable changes in fear memory acquisition, retention, extinction, and discrimination. Early development is also marked by profound changes in brain circuits underlying fear memory processing, with heightened sensitivity to environmental influences and stress, providing a powerful model to study the intersection between brain structure, function, and the impacts of stress. Nevertheless, difficulties related to breeding and housing young rodents, preweaning manipulations, and potential increased variability within that population pose considerable challenges to developmental fear research. Here we discuss several factors that may promote variability in studies examining fear conditioning in young rodents and provide recommendations to increase replicability. We focus primarily on experimental conditions, design, and analysis of rodent fear data, with an emphasis on mouse studies. The convergence of anatomical, synaptic, physiological, and behavioral changes during early life may increase variability, but careful practice and transparency in reporting may improve rigor and consensus in the field. © 2024 The Authors. Current Protocols published by Wiley Periodicals LLC.
Collapse
Affiliation(s)
- Hanista Premachandran
- Department of Psychology, University of Toronto Scarborough, Toronto, Ontario, Canada
- These authors contributed equally to this work
| | - Jennifer Wilkin
- Department of Psychology, University of Toronto Scarborough, Toronto, Ontario, Canada
- These authors contributed equally to this work
| | - Maithe Arruda-Carvalho
- Department of Psychology, University of Toronto Scarborough, Toronto, Ontario, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
5
|
Naffaa MM. Significance of the anterior cingulate cortex in neurogenesis plasticity: Connections, functions, and disorders across postnatal and adult stages. Bioessays 2024; 46:e2300160. [PMID: 38135889 DOI: 10.1002/bies.202300160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023]
Abstract
The anterior cingulate cortex (ACC) is a complex and continually evolving brain region that remains a primary focus of research due to its multifaceted functions. Various studies and analyses have significantly advanced our understanding of how the ACC participates in a wide spectrum of memory and cognitive processes. However, despite its strong connections to brain areas associated with hippocampal and olfactory neurogenesis, the functions of the ACC in regulating postnatal and adult neurogenesis in these regions are still insufficiently explored. Investigating the intricate involvement of the ACC in neurogenesis could enhance our comprehension of essential aspects of brain plasticity. This involvement stems from its complex circuitry with other relevant brain regions, thereby exerting both direct and indirect impacts on the neurogenesis process. This review sheds light on the promising significance of the ACC in orchestrating postnatal and adult neurogenesis in conditions related to memory, cognitive behavior, and associated disorders.
Collapse
Affiliation(s)
- Moawiah M Naffaa
- Department of Psychology and Neuroscience, Duke University, Durham, North Carolina, USA
- Department of Cell Biology, Duke University School of Medicine, Durham, North Carolina, USA
| |
Collapse
|
6
|
Alam M, Yadav RK, Minj E, Tiwari A, Mehan S. Exploring Molecular Approaches in Amyotrophic Lateral Sclerosis: Drug Targets from Clinical and Pre-Clinical Findings. Curr Mol Pharmacol 2021; 14:263-280. [PMID: 32342825 DOI: 10.2174/1566524020666200427214356] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 12/24/2019] [Accepted: 12/26/2019] [Indexed: 11/22/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal motor neuron disease (MND) characterized by the death of upper and lower motor neurons (corticospinal tract) in the motor cortex, basal ganglia, brain stem, and spinal cord. The patient experiences the sign and symptoms between 55 to 75 years of age, which include impaired motor movement, difficulty in speaking and swallowing, grip loss, muscle atrophy, spasticity, and sometimes associated with memory and cognitive impairments. Median survival is 3 to 5 years after diagnosis and 5 to 10% of the patients live for more than 10 years. The limited intervention of pharmacologically active compounds, that are used clinically, is majorly associated with the narrow therapeutic index. Pre-clinically established experimental models, where neurotoxin methyl mercury mimics the ALS like behavioural and neurochemical alterations in rodents associated with neuronal mitochondrial dysfunctions and downregulation of adenyl cyclase mediated cAMP/CREB, is the main pathological hallmark for the progression of ALS in central as well in the peripheral nervous system. Despite the considerable investigation into neuroprotection, it still constrains treatment choices to strong care and organization of ALS complications. Therefore, this current review specially targeted the investigation of clinical and pre-clinical features available for ALS to understand the pathogenic mechanisms and to explore the pharmacological interventions associated with the up-regulation of intracellular adenyl cyclase/cAMP/ CREB and activation of mitochondrial-ETC coenzyme-Q10 as a future drug target in the amelioration of ALS mediated motor neuronal dysfunctions.
Collapse
Affiliation(s)
- Mamtaj Alam
- Department of Pharmacology, ISF College of Pharmacy, Moga-142001, Punjab, India
| | - Rajeshwar K Yadav
- Department of Pharmacology, ISF College of Pharmacy, Moga-142001, Punjab, India
| | - Elizabeth Minj
- Department of Pharmacology, ISF College of Pharmacy, Moga-142001, Punjab, India
| | - Aarti Tiwari
- Department of Pharmacology, ISF College of Pharmacy, Moga-142001, Punjab, India
| | - Sidharth Mehan
- Department of Pharmacology, ISF College of Pharmacy, Moga-142001, Punjab, India
| |
Collapse
|
7
|
Klune CB, Jin B, DeNardo LA. Linking mPFC circuit maturation to the developmental regulation of emotional memory and cognitive flexibility. eLife 2021; 10:e64567. [PMID: 33949949 PMCID: PMC8099425 DOI: 10.7554/elife.64567] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 03/28/2021] [Indexed: 12/12/2022] Open
Abstract
The medial prefrontal cortex (mPFC) and its abundant connections with other brain regions play key roles in memory, cognition, decision making, social behaviors, and mood. Dysfunction in mPFC is implicated in psychiatric disorders in which these behaviors go awry. The prolonged maturation of mPFC likely enables complex behaviors to emerge, but also increases their vulnerability to disruption. Many foundational studies have characterized either mPFC synaptic or behavioral development without establishing connections between them. Here, we review this rich body of literature, aligning major events in mPFC development with the maturation of complex behaviors. We focus on emotional memory and cognitive flexibility, and highlight new work linking mPFC circuit disruption to alterations of these behaviors in disease models. We advance new hypotheses about the causal connections between mPFC synaptic development and behavioral maturation and propose research strategies to establish an integrated understanding of neural architecture and behavioral repertoires.
Collapse
Affiliation(s)
- Cassandra B Klune
- Physiology Department, David Geffen School of Medicine, UCLALos AngelesUnited States
- Neuroscience Interdepartmental Graduate Program, UCLALos AngelesUnited States
| | - Benita Jin
- Physiology Department, David Geffen School of Medicine, UCLALos AngelesUnited States
- Molecular, Cellular and Integrative Physiology Graduate Program, UCLALos AngelesUnited States
| | - Laura A DeNardo
- Physiology Department, David Geffen School of Medicine, UCLALos AngelesUnited States
| |
Collapse
|
8
|
An Adolescent Sensitive Period for Threat Responding: Impacts of Stress and Sex. Biol Psychiatry 2021; 89:651-658. [PMID: 33342545 PMCID: PMC7954972 DOI: 10.1016/j.biopsych.2020.10.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 09/30/2020] [Accepted: 10/05/2020] [Indexed: 11/22/2022]
Abstract
Anxiety and fear-related disorders peak in prevalence during adolescence, a window of rapid behavioral development and neural remodeling. However, understanding of the development of threat responding and the underlying neural circuits remains limited. Preclinical models of threat conditioning and extinction have provided an unparalleled glimpse into the developing brain. In this review we discuss mouse and rat studies on the development of threat response regulation, with a focus on the adolescent period. Evidence of nonlinear patterns of threat responding during adolescence and the continued development of the underlying circuitry is highly indicative of an adolescent sensitive period for threat response regulation. While we highlight literature in support of this unique developmental window, we also emphasize the need for causal studies to clarify the parameters defining such a sensitive period. In doing so, we explore how stress and biological sex affect the development and expression of threat response regulation during adolescence and beyond. Ultimately, a deeper understanding of how these factors interact with and affect developmental trajectories of learning and memory will inform treatment and prevention strategies for pediatric anxiety disorders.
Collapse
|
9
|
Pascual M, López‐Hidalgo R, Montagud‐Romero S, Ureña‐Peralta JR, Rodríguez‐Arias M, Guerri C. Role of mTOR-regulated autophagy in spine pruning defects and memory impairments induced by binge-like ethanol treatment in adolescent mice. Brain Pathol 2021; 31:174-188. [PMID: 32876364 PMCID: PMC8018167 DOI: 10.1111/bpa.12896] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/14/2020] [Accepted: 08/24/2020] [Indexed: 12/11/2022] Open
Abstract
Adolescence is a brain maturation developmental period during which remodeling and changes in synaptic plasticity and neural connectivity take place in some brain regions. Different mechanism participates in adolescent brain maturation, including autophagy that plays a role in synaptic development and plasticity. Alcohol is a neurotoxic compound and its abuse in adolescence induces neuroinflammation, synaptic and myelin alterations, neural damage and behavioral impairments. Changes in synaptic plasticity and its regulation by mTOR have also been suggested to play a role in the behavioral dysfunction of binge ethanol drinking in adolescence. Therefore, by considering the critical role of mTOR in both autophagy and synaptic plasticity in the developing brain, the present study aims to evaluate whether binge ethanol treatment in adolescence would induce dysfunctions in synaptic plasticity and cognitive functions and if mTOR inhibition with rapamycin is capable of restoring both effects. Using C57BL/6 adolescent female and male mice (PND30) treated with ethanol (3 g/kg) on two consecutive days at 48-hour intervals over 2 weeks, we show that binge ethanol treatment alters the density and morphology of dendritic spines, effects that are associated with learning and memory impairments and changes in the levels of both transcription factor CREB phosphorylation and miRNAs. Rapamycin administration (3 mg/kg) prior to ethanol administration restores ethanol-induced changes in both plasticity and behavior dysfunctions in adolescent mice. These results support the critical role of mTOR/autophagy dysfunctions in the dendritic spines alterations and cognitive alterations induced by binge alcohol in adolescence.
Collapse
Affiliation(s)
- María Pascual
- Department of Molecular and Cellular Pathology of AlcoholPríncipe Felipe Research CenterValenciaSpain
- Department of PhysiologySchool of Medicine and DentistryUniversity of ValenciaValenciaSpain
| | - Rosa López‐Hidalgo
- Department of Molecular and Cellular Pathology of AlcoholPríncipe Felipe Research CenterValenciaSpain
| | | | - Juan R. Ureña‐Peralta
- Department of Molecular and Cellular Pathology of AlcoholPríncipe Felipe Research CenterValenciaSpain
| | | | - Consuelo Guerri
- Department of Molecular and Cellular Pathology of AlcoholPríncipe Felipe Research CenterValenciaSpain
| |
Collapse
|
10
|
Yan Z, Wang S. Proteoglycans as Therapeutic Targets in Brain Cancer. Front Oncol 2020; 10:1358. [PMID: 32850434 PMCID: PMC7419654 DOI: 10.3389/fonc.2020.01358] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 06/29/2020] [Indexed: 12/18/2022] Open
Abstract
Proteoglycans (PGs) are heavily glycosylated diverse proteins consisting of a "core protein" covalently attached to glycosaminoglycans (GAGs) and present on the cell surface, extracellular matrix, and intracellular milieu. Extracellular proteoglycans play crucial roles in facilitating cell signaling and migration, interacting with growth factor receptors, intracellular enzymes, extracellular ligands, and matrix components, as well as structural proteins and promoting significant tumor-microenvironment interactions in cancerous settings. As a result of their highly regulated expression patterns, recent research has focused on the role of proteoglycans in the development of nervous tissue, such as their effect on neurite outgrowth, participation in the development of precursor cell types, and regulation of cell behaviors. The present review summarizes current progress for the studies of proteoglycan function in brain cancer and explains recent research involving brain glycoproteins as modulators of migration, cell adhesion, glial tumor invasion, and neurite outgrowth. Furthermore, we highlight the correlations between specific proteoglycan alterations and the suggested cancer-associated proteoglycans as novel biomarkers for therapeutic targets.
Collapse
Affiliation(s)
- Zoya Yan
- Horace Greeley High School, Chappaqua, NY, United States
| | - Shanzhi Wang
- Chemistry Department, University of Arkansas at Little Rock, Little Rock, AR, United States
| |
Collapse
|
11
|
Hippocampal and anterior cingulate cortex contribution to the processing of recently-acquired and remotely stored spatial memories in rats trained during preadolescence. Neurobiol Learn Mem 2020; 173:107271. [PMID: 32565407 DOI: 10.1016/j.nlm.2020.107271] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 05/16/2020] [Accepted: 06/15/2020] [Indexed: 11/20/2022]
Abstract
Preadolescent development is characterized by a reorganization of connectivity within and between brain regions that coincides with the emergence of more complex behaviors. The hippocampus is one such region that undergoes extensive preadolescent remodeling and as this process continues, spatial memory functions emerge. The current work investigated whether preadolescent spatial memories persist beyond 24 h and stabilize into the postadolescent period as remote memories supported by cortical networks in the anterior cingulate cortex (ACC). Male Long Evans rats were trained on the Morris water maze at different time frames from postnatal day (P) 18-26 and compared to P50 rats. Testing occurred at either a recent (24 h) or remote (3 weeks) timepoint. Spatial learning was evident in all age groups (P18, P20, P22, P24 and P50) across the 3 training days but only the P22 and P24 groups showed spatial learning that matched the P50 group. In light of this, the only group to show intact remote (3 week) memory was the P50 group. Spaced training in the P18 group did not improve retention at the recent or remote testing intervals. The P18 and P50 groups tested at 24 h showed more CA1 hippocampal c-Fos labeling than groups tested at 3 weeks. The P50 group tested at 3 weeks showed elevated c-Fos labeling in the anterior cingulate (ACC) compared to the P18 group tested at 3 weeks and the P50 group tested at 24 h. Spaced training in the P18 group was associated with elevated c-Fos labeling in the ACC at the 3-week test. Groups trained at P20, 22, and 24 showed more c-Fos labelling in the ACC than in the CA1. Results suggest that while spatial information processing emerges around P18/P20, remote spatial retention and the neural substrates that support retention are not in place until after P26 in rats.
Collapse
|
12
|
Bessières B, Jia M, Travaglia A, Alberini CM. Developmental changes in plasticity, synaptic, glia, and connectivity protein levels in rat basolateral amygdala. ACTA ACUST UNITED AC 2019; 26:436-448. [PMID: 31615855 PMCID: PMC6796789 DOI: 10.1101/lm.049866.119] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 08/09/2019] [Indexed: 01/01/2023]
Abstract
The basolateral complex of amygdala (BLA) processes emotionally arousing aversive and rewarding experiences. The BLA is critical for acquisition and storage of threat-based memories and the modulation of the consolidation of arousing explicit memories, that is, the memories that are encoded and stored by the medial temporal lobe. In addition, in conjunction with the medial prefrontal cortex (mPFC), the BLA plays an important role in fear memory extinction. The BLA develops relatively early in life, but little is known about the molecular changes that accompany its development. Here, we quantified relative basal expression levels of sets of plasticity, synaptic, glia, and connectivity proteins in the rat BLA at various developmental ages: postnatal day 17 (PN17, infants), PN24 (juveniles), and PN80 (young adults). We found that the levels of activation markers of brain plasticity, including phosphorylation of CREB at Ser133, CamKIIα at Thr286, pERK1/pERK2 at Thr202/Tyr204, and GluA1 at Ser831 and Ser845, were significantly higher in infant and juvenile compared with adult brain. In contrast, age increase was accompanied by a significant augmentation in the levels of proteins that mark synaptogenesis and synapse maturation, such as synaptophysin, PSD95, SynCAM, GAD65, GAD67, and GluN2A/GluN2B ratio. Finally, we observed significant age-associated changes in structural markers, including MAP2, MBP, and MAG, suggesting that the structural connectivity of the BLA increases over time. The biological differences in the BLA between developmental ages compared with adulthood suggest the need for caution in extrapolating conclusions based on BLA-related brain plasticity and behavioral studies conducted at different developmental stages.
Collapse
Affiliation(s)
- Benjamin Bessières
- Center for Neural Science, New York University, New York, New York 10003, USA
| | - Margaret Jia
- Center for Neural Science, New York University, New York, New York 10003, USA
| | - Alessio Travaglia
- Center for Neural Science, New York University, New York, New York 10003, USA
| | - Cristina M Alberini
- Center for Neural Science, New York University, New York, New York 10003, USA
| |
Collapse
|
13
|
Zimmermann KS, Richardson R, Baker KD. Maturational Changes in Prefrontal and Amygdala Circuits in Adolescence: Implications for Understanding Fear Inhibition during a Vulnerable Period of Development. Brain Sci 2019; 9:E65. [PMID: 30889864 PMCID: PMC6468701 DOI: 10.3390/brainsci9030065] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 03/13/2019] [Accepted: 03/14/2019] [Indexed: 12/24/2022] Open
Abstract
Anxiety disorders that develop in adolescence represent a significant burden and are particularly challenging to treat, due in no small part to the high occurrence of relapse in this age group following exposure therapy. This pattern of persistent fear is preserved across species; relative to those younger and older, adolescents consistently show poorer extinction, a key process underpinning exposure therapy. This suggests that the neural processes underlying fear extinction are temporarily but profoundly compromised during adolescence. The formation, retrieval, and modification of fear- and extinction-associated memories are regulated by a forebrain network consisting of the prefrontal cortex (PFC), the amygdala, and the hippocampus. These regions undergo robust maturational changes in early life, with unique alterations in structure and function occurring throughout adolescence. In this review, we focus primarily on two of these regions-the PFC and the amygdala-and discuss how changes in plasticity, synaptic transmission, inhibition/excitation, and connectivity (including modulation by hippocampal afferents to the PFC) may contribute to transient deficits in extinction retention. We end with a brief consideration of how exposure to stress during this adolescent window of vulnerability can permanently disrupt neurodevelopment, leading to lasting impairments in pathways of emotional regulation.
Collapse
Affiliation(s)
- Kelsey S Zimmermann
- School of Psychology, University of New South Wales (UNSW), Sydney, NSW 2052, Australia.
| | - Rick Richardson
- School of Psychology, University of New South Wales (UNSW), Sydney, NSW 2052, Australia.
| | - Kathryn D Baker
- School of Psychology, University of New South Wales (UNSW), Sydney, NSW 2052, Australia.
| |
Collapse
|