1
|
Bilgin SN, Kononowicz TW. Temporal error monitoring: Monitoring of internal clock or just motor noise? Conscious Cogn 2025; 130:103849. [PMID: 40132462 DOI: 10.1016/j.concog.2025.103849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 01/20/2025] [Accepted: 03/11/2025] [Indexed: 03/27/2025]
Abstract
Understanding how humans monitor and evaluate temporal errors is crucial for uncovering the mechanisms of metacognitive processes, linking the fields of time perception and metacognition. In a typical paradigm, participants self-generate a time interval and subsequently can accurately evaluate its error. The implicit assumption in the field has been that participants monitor temporal representations. Even though temporal error monitoring has been replicated numerous times, it remains unclear what kind of information participants monitor when assessing the just-generated interval. Here, we assessed two scenarios in which participants could monitor sources of variability in temporal error monitoring: the internal representation of duration (Clock Hypothesis) or just motor signal (Motor Hypothesis). We assessed temporal error monitoring by inducing different levels of motor signal in motor timing, with the expectation that these levels of motor execution would influence temporal error monitoring outcomes. The motor signal was manipulated by instructing participants to either use button presses or joystick movements to produce time intervals, allowing us to evaluate and report how different levels of motor execution signal affect temporal error monitoring. According to the Clock Hypothesis, the additional motor signal should impair the accuracy of temporal error monitoring. Conversely, the Motor Hypothesis posits that additional induced signal should enhance the accuracy of temporal error monitoring. In line with the Clock Hypothesis, error monitoring performance was enhanced in a condition with a lower motor signal. These results show that humans evaluate their errors based on an informationally rich representation of internal duration, supporting metacognitive abilities in temporal error monitoring. Public significance: Temporal error monitoring emerged from the fields of interval timing, decision-making, and metacognition, positing that humans evaluate the sign and magnitude of their temporal errors. Here, we critically test whether participants assess their timing representations as such and whether they are aware of the correctness of these evaluations.
Collapse
Affiliation(s)
- Sena N Bilgin
- Institute of Psychology, Polish Academy of Sciences, Ul. Jaracza 1, 00-378, Poland
| | - Tadeusz W Kononowicz
- Institute of Psychology, Polish Academy of Sciences, Ul. Jaracza 1, 00-378, Poland; Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay (NeuroPSI), 91400 Saclay, France.
| |
Collapse
|
2
|
Runyun ŞL, van Wassenhove V, Balci F. Altered temporal awareness during Covid-19 pandemic. PSYCHOLOGICAL RESEARCH 2024; 88:2335-2345. [PMID: 39034344 DOI: 10.1007/s00426-024-02004-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 07/05/2024] [Indexed: 07/23/2024]
Abstract
Social isolation during the COVID-19 pandemic had profound effects on human well-being. A handful of studies have focused on how time perception was altered during the COVID-19 pandemic, while no study has tested whether temporal metacognition is also affected by the lockdown. We examined the impact of long-term social isolation during the COVID-19 pandemic on the ability to monitor errors in timing performance. We recruited 1232 participants from 12 countries during lockdown, 211 of which were retested "post-pandemic" for within-group comparisons. We also tested a new group of 331 participants during the "post-pandemic" period and compared their data to those of 1232 participants tested during the lockdown (between-group comparison). Participants produced a 3600 ms target interval and assessed the magnitude and direction of their time production error. Both within and between-group comparisons showed reduced metric error monitoring performance during the lockdown, even after controlling for government-imposed stringency indices. A higher level of reported social isolation also predicted reduced temporal error monitoring ability. Participants produced longer duration during lockdown compared to post-lockdown (again controlling for government stringency indices). We reason that these effects may be underlain by altered biological and behavioral rhythms during social isolation experienced during the COVID-19 pandemic. Understanding these effects is crucial for a more complete characterization of the cognitive consequences of long-term social isolation.
Collapse
Affiliation(s)
- Şerife Leman Runyun
- Department of Psychology, Koç University, Istanbul, Turkey
- Department of Psychology, Northeastern University, 360 Huntington Ave, 125 NI, Boston, MA, 02115, USA
| | - Virginie van Wassenhove
- Cognitive Neuroimaging Unit, CEA, INSERM, CNRS, Université Paris-Saclay, NeuroSpin, Gif/Yvette, 91191, France
| | - Fuat Balci
- Department of Psychology, Koç University, Istanbul, Turkey.
- Department of Biological Sciences, University of Manitoba, 50 Sifton Road, Winnipeg, MB, R3T 2M5, Canada.
| |
Collapse
|
3
|
Öztel T, Balcı F. Metric error monitoring as a component of metacognitive processing. Eur J Neurosci 2024; 59:807-821. [PMID: 37941152 DOI: 10.1111/ejn.16182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 09/12/2023] [Accepted: 10/16/2023] [Indexed: 11/10/2023]
Abstract
Metacognitive processing constitutes one of the contemporary target domains in consciousness research. Error monitoring (the ability to correctly report one's own errors without feedback) is considered one of the functional outcomes of metacognitive processing. Error monitoring is traditionally investigated as part of categorical decisions where choice accuracy is a binary construct (choice is either correct or incorrect). However, recent studies revealed that this ability is characterized by metric features (i.e., direction and magnitude) in temporal, spatial, and numerical domains. Here, we discuss methodological approaches to investigating metric error monitoring in both humans and non-human animals and review their findings. The potential neural substrates of metric error monitoring measures are also discussed. This new scope of metacognitive processing can help improve our current understanding of conscious processing from a new perspective. Thus, by summarizing and discussing the perspectives, findings, and common applications in the metric error monitoring literature, this paper aims to provide a guideline for future research.
Collapse
Affiliation(s)
- Tutku Öztel
- Psychology Department, Koç University, Istanbul, Turkey
| | - Fuat Balcı
- Psychology Department, Koç University, Istanbul, Turkey
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
4
|
Bader F, Wiener M. Neuroimaging Signatures of Metacognitive Improvement in Sensorimotor Timing. J Neurosci 2024; 44:e1789222023. [PMID: 38129131 PMCID: PMC10904090 DOI: 10.1523/jneurosci.1789-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 11/03/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023] Open
Abstract
Error monitoring is an essential human ability underlying learning and metacognition. In the time domain, humans possess a remarkable ability to learn and adapt to temporal intervals, yet the neural mechanisms underlying this are not clear. Recently, we demonstrated that humans improve sensorimotor time estimates when given the chance to incorporate previous trial feedback ( Bader and Wiener, 2021), suggesting that humans are metacognitively aware of their own timing errors. To test the neural basis of this metacognitive ability, human participants of both sexes underwent fMRI while they performed a visual temporal reproduction task with randomized supra-second intervals (1.5-6 s). Crucially, each trial was repeated following feedback, allowing a "re-do" to learn from the successes or errors in the initial trial. Behaviorally, we replicated our previous finding of improved re-do trial performance despite temporally uninformative (i.e., early or late) feedback. For neuroimaging, we observed a dissociation between estimating and reproducing time intervals. Estimation engaged the default mode network (DMN), including the superior frontal gyri, precuneus, and posterior cingulate, whereas reproduction activated regions associated traditionally with the "timing network" (TN), including the supplementary motor area (SMA), precentral gyrus, and right supramarginal gyrus. Notably, greater and more extensive DMN involvement was observed in re-do trials, whereas for the TN, it was more constrained. Task-based connectivity between these networks demonstrated higher inter-network correlation primarily when estimating initial trials, while re-do trial communication was higher during reproduction. Overall, these results suggest that the DMN and TN jointly mediate subjective self-awareness to improve timing performance.
Collapse
Affiliation(s)
- Farah Bader
- Department of Psychology, George Mason University, Fairfax, Virginia, 22030
| | - Martin Wiener
- Department of Psychology, George Mason University, Fairfax, Virginia, 22030
| |
Collapse
|
5
|
Li L, Hou C, Peng C, Chen Y. Encoding, working memory, or decision: how feedback modulates time perception. Cereb Cortex 2023; 33:10355-10366. [PMID: 37522300 DOI: 10.1093/cercor/bhad287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/10/2023] [Indexed: 08/01/2023] Open
Abstract
The hypothesis that individuals can accurately represent temporal information within approximately 3 s is the premise of several theoretical models and empirical studies in the field of temporal processing. The significance of accurately representing time within 3 s and the universality of the overestimation contrast dramatically. To clarify whether this overestimation arises from an inability to accurately represent time or a response bias, we systematically examined whether feedback reduces overestimation at the 3 temporal processing stages of timing (encoding), working memory, and decisions proposed by the scalar timing model. Participants reproduced the time interval between 2 circles with or without feedback, while the electroencephalogram (EEG) was synchronously recorded. Behavioral results showed that feedback shortened reproduced times and significantly minimized overestimation. EEG results showed that feedback significantly decreased the amplitude of contingent negative variation (CNV) in the decision stage but did not modulate the CNV amplitude in the encoding stage or the P2-P3b amplitudes in the working memory stage. These results suggest that overestimation arises from response bias when individuals convert an accurate representation of time into behavior. Our study provides electrophysiological evidence to support the conception that short intervals under approximately 3 s can be accurately represented as "temporal gestalt."
Collapse
Affiliation(s)
- Langyu Li
- Key Laboratory of Cognition and Personality (Ministry of Education), Faculty of Psychology, Time Psychology Research Center, Center of Studies for Psychology and Social Development, Southwest University, Chongqing 400715, China
| | - Chunna Hou
- Key Laboratory of Cognition and Personality (Ministry of Education), Faculty of Psychology, Time Psychology Research Center, Center of Studies for Psychology and Social Development, Southwest University, Chongqing 400715, China
| | - Chunhua Peng
- Chongqing Key Laboratory of Emotion and Mental Health, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Youguo Chen
- Key Laboratory of Cognition and Personality (Ministry of Education), Faculty of Psychology, Time Psychology Research Center, Center of Studies for Psychology and Social Development, Southwest University, Chongqing 400715, China
| |
Collapse
|
6
|
Öztel T, Balcı F. Humans can monitor trial-based but not global timing errors: Evidence for relative judgements in temporal error monitoring. Q J Exp Psychol (Hove) 2023; 76:2155-2163. [PMID: 36458873 DOI: 10.1177/17470218221145314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Humans can monitor the magnitude and direction of their temporal errors in individual trials. Based on the predictions of our model of temporal error monitoring that rely on a relative comparison of internal clock readings, we predict that participants would monitor their timing errors in individual trials, but not the direction of their global timing errors without external feedback. One study has indeed found that accurate self-monitoring of average timing biases required external feedback with directional information. The current study investigates how different sources of feedback (i.e., internal or external) affect performance in the self-monitoring of average timing bias. Four groups of participants were tested in a temporal reproduction task. Participants in the self-evaluation condition evaluated the direction and size of their time reproduction errors in individual trials. In the accurate feedback condition, participants received explicit trial-based feedback regarding the direction of their error while participants in the partially accurate feedback condition received trial-based feedback according to the accuracy of short-long judgements of another participant in the self-evaluation condition. Participants in the control condition reproduced only the target duration without making any judgements regarding their reproduction performance or receiving any external feedback about it. Results showed that while participants accurately monitor timing errors in individual trials, in none of the experimental conditions were they more accurate than the chance level in terms of evaluating the direction of their average temporal bias. We discuss these results in terms of the temporal error monitoring model introduced by Akdoğan and Balcı. Thus, our findings suggest that external directional feedback does not have any informational value for global temporal bias judgements above and beyond internal self-monitoring.
Collapse
Affiliation(s)
- Tutku Öztel
- Psychology Department, Koç University, Istanbul, Turkey
| | - Fuat Balcı
- Psychology Department, Koç University, Istanbul, Turkey
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
7
|
Sadibolova R, Terhune DB. The temporal context in bayesian models of interval timing: Recent advances and future directions. Behav Neurosci 2022; 136:364-373. [PMID: 35737557 PMCID: PMC9552499 DOI: 10.1037/bne0000513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 02/19/2022] [Accepted: 02/23/2022] [Indexed: 11/11/2022]
Abstract
Sensory perception, motor control, and cognition necessitate reliable timing in the range of milliseconds to seconds, which implies the existence of a highly accurate timing system. Yet, partly owing to the fact that temporal processing is modulated by contextual factors, perceived time is not isomorphic to physical time. Temporal estimates exhibit regression to the mean of an interval distribution (global context) and are also affected by preceding trials (local context). Recent Bayesian models of interval timing have provided important insights regarding these observations, but questions remain as to how exposure to past intervals shapes perceived time. In this article, we provide a brief overview of Bayesian models of interval timing and their contribution to current understanding of context effects. We then proceed to highlight recent developments in the field concerning precision weighting of Bayesian evidence in both healthy timing and disease and the neurophysiological and neurochemical signatures of timing prediction errors. We further aim to bring attention to current outstanding questions for Bayesian models of interval timing, such as the likelihood conceptualization. (PsycInfo Database Record (c) 2022 APA, all rights reserved).
Collapse
|
8
|
De Corte BJ, Farley SJ, Heslin KA, Parker KL, Freeman JH. The dorsal hippocampus' role in context-based timing in rodents. Neurobiol Learn Mem 2022; 194:107673. [PMID: 35985617 DOI: 10.1016/j.nlm.2022.107673] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 08/05/2022] [Accepted: 08/11/2022] [Indexed: 01/13/2023]
Abstract
To act proactively, we must predict when future events will occur. Individuals generate temporal predictions using cues that indicate an event will happen after a certain duration elapses. Neural models of timing focus on how the brain represents these cue-duration associations. However, these models often overlook the fact that situational factors frequently modulate temporal expectations. For example, in realistic environments, the intervals associated with different cues will often covary due to a common underlying cause. According to the 'common cause hypothesis,' observers anticipate this covariance such that, when one cue's interval changes, temporal expectations for other cues shift in the same direction. Furthermore, as conditions will often differ across environments, the same cue can mean different things in different contexts. Therefore, updates to temporal expectations should be context-specific. Behavioral work supports these predictions, yet their underlying neural mechanisms are unclear. Here, we asked whether the dorsal hippocampus mediates context-based timing, given its broad role in context-conditioning. Specifically, we trained rats with either hippocampal or sham lesions that two cues predicted reward after either a short or long duration elapsed (e.g., tone-8 s/light-16 s). Then, we moved rats to a new context and extended the long cue's interval (e.g., light-32 s). This caused rats to respond later to the short cue, despite never being trained to do so. Importantly, when returned to the initial training context, sham rats shifted back toward both cues' original intervals. In contrast, lesion rats continued to respond at the long cue's newer interval. Surprisingly, they still showed contextual modulation for the short cue, responding earlier like shams. These data suggest the hippocampus only mediates context-based timing if a cue is explicitly paired and/or rewarded across distinct contexts. Furthermore, as lesions did not impact timing measures at baseline or acquisition for the long cue's new interval, our data suggests that the hippocampus only modulates timing when context is relevant.
Collapse
Affiliation(s)
- Benjamin J De Corte
- Department of Psychiatry, Columbia University, New York, NY, USA; New York State Psychiatric Institute, New York, NY, USA
| | - Sean J Farley
- Department of Psychological and Brain Sciences, The University of Iowa, Iowa City, IA, USA
| | - Kelsey A Heslin
- Department of Neuroscience and the Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Krystal L Parker
- Department of Psychiatry, The University of Iowa, Iowa City, IA, USA
| | - John H Freeman
- Department of Psychological and Brain Sciences, The University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
9
|
Sannita WG. Time, Consciousness, and the Readiness Potential. J PSYCHOPHYSIOL 2022. [DOI: 10.1027/0269-8803/a000304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Walter G. Sannita
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Mother/child sciences (DINOGMI), University of Genova, Italy
| |
Collapse
|