1
|
Higa GSV, Viana FJC, Francis-Oliveira J, Cruvinel E, Franchin TS, Marcourakis T, Ulrich H, De Pasquale R. Serotonergic neuromodulation of synaptic plasticity. Neuropharmacology 2024; 257:110036. [PMID: 38876308 DOI: 10.1016/j.neuropharm.2024.110036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/15/2024] [Accepted: 06/11/2024] [Indexed: 06/16/2024]
Abstract
Synaptic plasticity constitutes a fundamental process in the reorganization of neural networks that underlie memory, cognition, emotional responses, and behavioral planning. At the core of this phenomenon lie Hebbian mechanisms, wherein frequent synaptic stimulation induces long-term potentiation (LTP), while less activation leads to long-term depression (LTD). The synaptic reorganization of neuronal networks is regulated by serotonin (5-HT), a neuromodulator capable of modify synaptic plasticity to appropriately respond to mental and behavioral states, such as alertness, attention, concentration, motivation, and mood. Lately, understanding the serotonergic Neuromodulation of synaptic plasticity has become imperative for unraveling its impact on cognitive, emotional, and behavioral functions. Through a comparative analysis across three main forebrain structures-the hippocampus, amygdala, and prefrontal cortex, this review discusses the actions of 5-HT on synaptic plasticity, offering insights into its role as a neuromodulator involved in emotional and cognitive functions. By distinguishing between plastic and metaplastic effects, we provide a comprehensive overview about the mechanisms of 5-HT neuromodulation of synaptic plasticity and associated functions across different brain regions.
Collapse
Affiliation(s)
- Guilherme Shigueto Vilar Higa
- Laboratório de Neurofisiologia, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, Butantã, São Paulo, SP, 05508-000, Brazil; Departamento de Bioquímica, Instituto de Química (USP), Butantã, São Paulo, SP, 05508-900, Brazil
| | - Felipe José Costa Viana
- Laboratório de Neurofisiologia, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, Butantã, São Paulo, SP, 05508-000, Brazil
| | - José Francis-Oliveira
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Emily Cruvinel
- Laboratório de Neurofisiologia, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, Butantã, São Paulo, SP, 05508-000, Brazil
| | - Thainá Soares Franchin
- Laboratório de Neurofisiologia, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, Butantã, São Paulo, SP, 05508-000, Brazil
| | - Tania Marcourakis
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, Butantã, São Paulo, SP, 05508-000, Brazil
| | - Henning Ulrich
- Departamento de Bioquímica, Instituto de Química (USP), Butantã, São Paulo, SP, 05508-900, Brazil
| | - Roberto De Pasquale
- Laboratório de Neurofisiologia, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, Butantã, São Paulo, SP, 05508-000, Brazil.
| |
Collapse
|
2
|
Chen QY, Wan J, Ma Y, Zhuo M. The Pathway-Selective Dependence of Nitric Oxide for Long-Term Potentiation in the Anterior Cingulate Cortex of Adult Mice. Biomedicines 2024; 12:1072. [PMID: 38791034 PMCID: PMC11118802 DOI: 10.3390/biomedicines12051072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/04/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
Nitric oxide (NO) is a key diffusible messenger in the mammalian brain. It has been proposed that NO may diffuse in retrograde into presynaptic terminals, contributing to the induction of hippocampal long-term potentiation (LTP). Here, we present novel evidence that NO is selectively required for the synaptic potentiation of the interhemispheric projection in the anterior cingulate cortex (ACC). Unilateral low-frequency stimulation (LFS) induced a short-term synaptic potentiation on the contralateral ACC through the corpus callosum (CC). The use of the antagonists of the NMDA receptor (NMDAR), or the inhibitor of the L-type voltage-dependent Ca2+ channels (L-VDCCs), blocked the induction of this ACC-ACC potentiation. In addition, the inhibitor of NO synthase, or inhibitors for its downstream signaling pathway, also blocked this ACC-ACC potentiation. However, the application of the NOS inhibitor blocked neither the local electric stimulation-induced LTP nor the stimulation-induced recruitment of silent responses. Our results present strong evidence for the pathway-selective roles of NO in the LTP of the ACC.
Collapse
Affiliation(s)
- Qi-Yu Chen
- CAS Key Laboratory of Brain Connectome and Manipulation, Interdisciplinary Center for Brain Information, Chinese Academy of Sciences Shenzhen Institute of Advanced Technology, Shenzhen 518055, China
- Zhuomin International Institute for Brain Research, Qingdao 266000, China
| | - Jinjin Wan
- Zhuomin International Institute for Brain Research, Qingdao 266000, China
- Oujiang Laboratory, Wenzhou Medical University, Wenzhou 325027, China
| | - Yujie Ma
- Zhuomin International Institute for Brain Research, Qingdao 266000, China
- Oujiang Laboratory, Wenzhou Medical University, Wenzhou 325027, China
| | - Min Zhuo
- Zhuomin International Institute for Brain Research, Qingdao 266000, China
- Oujiang Laboratory, Wenzhou Medical University, Wenzhou 325027, China
- Department of Physiology, Faculty of Medicine, University of Toronto, Medical Science Building, Room #3342, 1 King’s College Circle, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
3
|
Nasarudeen R, Singh A, Rana ZS, Punnakkal P. Epileptiform activity induced metaplasticity impairs bidirectional plasticity in the hippocampal CA1 synapses via GluN2B NMDA receptors. Exp Brain Res 2022; 240:3339-3349. [DOI: 10.1007/s00221-022-06486-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 10/10/2022] [Indexed: 11/09/2022]
|
4
|
Pigeon S, Lonergan M, Rotondo O, Pitman RK, Brunet A. Impairing memory reconsolidation with propranolol in healthy and clinical samples: a meta-analysis. J Psychiatry Neurosci 2022; 47:E109-E122. [PMID: 35361699 PMCID: PMC8979654 DOI: 10.1503/jpn.210057] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 11/16/2021] [Accepted: 12/05/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Reconsolidation impairment using propranolol is a novel intervention for mental disorders with an emotional memory at their core. In this systematic review and meta-analysis, we examined the evidence for this intervention in healthy and clinical adult samples. METHODS We searched 8 databases for randomized, double-blind studies that involved at least 1 propranolol group and 1 placebo group. We conducted a meta-analysis of 14 studies (n = 478) in healthy adults and 12 studies in clinical samples (n = 446). RESULTS Compared to placebo, reconsolidation impairment under propranolol resulted in reduced recall of aversive material and cue-elicited conditioned emotional responses in healthy adults, as evidenced by an effect size (Hedges g) of -0.51 (p = 0.002, 2-tailed). Moreover, compared to placebo, reconsolidation impairment under propranolol alleviated psychiatric symptoms and reduced cue-elicited reactivity in clinical samples with posttraumatic stress disorder, addiction or phobia (g = -0.42, p = 0.010). LIMITATIONS Methodological differences between studies posed an obstacle for identifying sources of heterogeneity. CONCLUSION Reconsolidation impairment is a robust, well-replicated phenomenon in humans. Its clinical use is promising and deserves further controlled investigation.
Collapse
Affiliation(s)
- Sereena Pigeon
- From McGill University, Montréal, Que., Canada (Pigeon, Lonergan, Rotondo, Brunet); the Douglas Mental Health University Institute Research Center, Montréal, Que., Canada (Pigeon, Lonergan, Rotondo, Brunet); the School of Psychology, University of Ottawa, Ottawa, Ont., Canada (Lonergan); and the Department of Psychiatry, Harvard Medical School, Charlestown, Mass., USA (Pitman)
| | - Michelle Lonergan
- From McGill University, Montréal, Que., Canada (Pigeon, Lonergan, Rotondo, Brunet); the Douglas Mental Health University Institute Research Center, Montréal, Que., Canada (Pigeon, Lonergan, Rotondo, Brunet); the School of Psychology, University of Ottawa, Ottawa, Ont., Canada (Lonergan); and the Department of Psychiatry, Harvard Medical School, Charlestown, Mass., USA (Pitman)
| | - Olivia Rotondo
- From McGill University, Montréal, Que., Canada (Pigeon, Lonergan, Rotondo, Brunet); the Douglas Mental Health University Institute Research Center, Montréal, Que., Canada (Pigeon, Lonergan, Rotondo, Brunet); the School of Psychology, University of Ottawa, Ottawa, Ont., Canada (Lonergan); and the Department of Psychiatry, Harvard Medical School, Charlestown, Mass., USA (Pitman)
| | - Roger K Pitman
- From McGill University, Montréal, Que., Canada (Pigeon, Lonergan, Rotondo, Brunet); the Douglas Mental Health University Institute Research Center, Montréal, Que., Canada (Pigeon, Lonergan, Rotondo, Brunet); the School of Psychology, University of Ottawa, Ottawa, Ont., Canada (Lonergan); and the Department of Psychiatry, Harvard Medical School, Charlestown, Mass., USA (Pitman)
| | - Alain Brunet
- From McGill University, Montréal, Que., Canada (Pigeon, Lonergan, Rotondo, Brunet); the Douglas Mental Health University Institute Research Center, Montréal, Que., Canada (Pigeon, Lonergan, Rotondo, Brunet); the School of Psychology, University of Ottawa, Ottawa, Ont., Canada (Lonergan); and the Department of Psychiatry, Harvard Medical School, Charlestown, Mass., USA (Pitman)
| |
Collapse
|
5
|
Ma X, Vuyyuru H, Munsch T, Endres T, Lessmann V, Meis S. ProBDNF Dependence of LTD and Fear Extinction Learning in the Amygdala of Adult Mice. Cereb Cortex 2021; 32:1350-1364. [PMID: 34470044 DOI: 10.1093/cercor/bhab265] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 11/12/2022] Open
Abstract
Neurotrophins are secreted proteins that control survival, differentiation, and synaptic plasticity. While mature neurotrophins regulate these functions via tyrosine kinase signaling (Trk), uncleaved pro-neurotrophins bind preferentially to the p75 neurotrophin receptor (p75NTR) and often exert opposite effects to those of mature neurotrophins. In the amygdala, brain-derived neurotrophic factor (BDNF) enables long-term potentiation as well as fear and fear extinction learning. In the present study, we focused on the impact of mature BDNF and proBDNF signaling on long-term depression (LTD) in the lateral amygdala (LA). Hence, we conducted extracellular field potential recordings in an in vitro slice preparation and recorded LTD in cortical and thalamic afferents to the LA. LTD was unchanged by acute block of BDNF/TrkB signaling. In contrast, LTD was inhibited by blocking p75NTR signaling, by disinhibition of the proteolytic cleavage of proBDNF into mature BDNF, and by preincubation with a function-blocking anti-proBDNF antibody. Since LTD-like processes in the amygdala are supposed to be related to fear extinction learning, we locally inhibited p75NTR signaling in the amygdala during or after fear extinction training, resulting in impaired fear extinction memory. Overall, these results suggest that in the amygdala proBDNF/p75NTR signaling plays a pivotal role in LTD and fear extinction learning.
Collapse
Affiliation(s)
- Xiaoyun Ma
- Institut für Physiologie, Otto-von-Guericke-Universität, D-39120 Magdeburg, Germany
| | - Harish Vuyyuru
- Institut für Physiologie, Otto-von-Guericke-Universität, D-39120 Magdeburg, Germany
| | - Thomas Munsch
- Institut für Physiologie, Otto-von-Guericke-Universität, D-39120 Magdeburg, Germany.,Center for Behavioral Brain Sciences, Universitätsplatz 2, D-39106 Magdeburg, Germany
| | - Thomas Endres
- Institut für Physiologie, Otto-von-Guericke-Universität, D-39120 Magdeburg, Germany
| | - Volkmar Lessmann
- Institut für Physiologie, Otto-von-Guericke-Universität, D-39120 Magdeburg, Germany.,Center for Behavioral Brain Sciences, Universitätsplatz 2, D-39106 Magdeburg, Germany
| | - Susanne Meis
- Institut für Physiologie, Otto-von-Guericke-Universität, D-39120 Magdeburg, Germany.,Center for Behavioral Brain Sciences, Universitätsplatz 2, D-39106 Magdeburg, Germany
| |
Collapse
|
6
|
Kokhan VS, Mariasina S, Pikalov VA, Abaimov DA, Somasundaram SG, Kirkland CE, Aliev G. Neurokinin-1 receptor antagonist reverses functional CNS alteration caused by combined γ-rays and carbon nuclei irradiation. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2021; 21:278-289. [PMID: 33480350 DOI: 10.2174/1871527320666210122092330] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 10/06/2020] [Accepted: 10/19/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Ionizing radiation (IR) is one of the major limiting factors for human deep-space missions. Preventing IR-induced cognitive alterations in astronauts is a critical success factor. It has been shown that cognitive alterations in rodents can be inferred by alterations of a psycho-emotional balance, primarily an anxiogenic effect of IR. In our recent work we hypothesized that the neurokinin-1 (NK1) receptor may be instrumental for such alterations. OBJECTIVE The NK1 receptor antagonist rolapitant and the classic anxiolytic diazepam (as a comparison drug) were selected to test this hypothesis on Wistar rats. METHOD Pharmacological substances were administered through intragastric probes. We used a battery of tests for a comprehensive ethological analysis. A high-performance liquid chromatography was applied to quantify monoamines content. An analysis of mRNA expression was performed by real-time PCR. Protein content was studied by Western blotting technique. RESULTS Our salient finding includes no substantial changes in anxiety, locomotor activity and cognitive abilities of treated rats under irradiation. No differences were found in the content of monoamines. We discovered a synchronous effect on mRNA expression and protein content of 5-HT2a and 5-HT4 receptors in the prefrontal cortex, as well as decreased content of serotonin transporter and increased content of tryptophan hydroxylase in the hypothalamus of irradiated rats. Rolapitant affected the protein amount of a number of serotonin receptors in the amygdala of irradiated rats. CONCLUSION Rolapitant may be the first atypical radioprotector, providing symptomatic treatment of CNS functional disorders in astronauts caused by IR.
Collapse
Affiliation(s)
- Viktor S Kokhan
- V.P. Serbsky Federal Medical Research Centre for Psychiatry and Narcology, Moscow. Russian Federation
| | - Sofia Mariasina
- M.V. Lomonosov Moscow State University, Moscow. Russian Federation
| | - Vladimir A Pikalov
- Institute for High Energy Physics named by A.A. Logunov of NRC "Kurchatov Institute", Protvino. Russian Federation
| | | | - Siva G Somasundaram
- Department of Biological Sciences, Salem University, Salem, WV, 26426. United States
| | - Cecil E Kirkland
- Department of Biological Sciences, Salem University, Salem, WV, 26426. United States
| | - Gjumrakch Aliev
- I. M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 8/2 Trubetskaya Str., Moscow, 119991. Russian Federation
| |
Collapse
|
7
|
Enhanced Retrieval of Taste Associative Memory by Chemogenetic Activation of Locus Coeruleus Norepinephrine Neurons. J Neurosci 2020; 40:8367-8385. [PMID: 32994339 DOI: 10.1523/jneurosci.1720-20.2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 08/28/2020] [Accepted: 09/21/2020] [Indexed: 01/08/2023] Open
Abstract
The ability of animals to retrieve memories stored in response to the environment is essential for behavioral adaptation. Norepinephrine (NE)-containing neurons in the brain play a key role in the modulation of synaptic plasticity underlying various processes of memory formation. However, the role of the central NE system in memory retrieval remains unclear. Here, we developed a novel chemogenetic activation strategy exploiting insect olfactory ionotropic receptors (IRs), termed "IR-mediated neuronal activation," and used it for selective stimulation of NE neurons in the locus coeruleus (LC). Drosophila melanogaster IR84a and IR8a subunits were expressed in LC NE neurons in transgenic mice. Application of phenylacetic acid (a specific ligand for the IR84a/IR8a complex) at appropriate doses induced excitatory responses of NE neurons expressing the receptors in both slice preparations and in vivo electrophysiological conditions, resulting in a marked increase of NE release in the LC nerve terminal regions (male and female). Ligand-induced activation of LC NE neurons enhanced the retrieval process of conditioned taste aversion without affecting taste sensitivity, general arousal state, and locomotor activity. This enhancing effect on taste memory retrieval was mediated, in part, through α1- and β-adrenergic receptors in the basolateral nucleus of the amygdala (BLA; male). Pharmacological inhibition of LC NE neurons confirmed the facilitative role of these neurons in memory retrieval via adrenergic receptors in the BLA (male). Our findings indicate that the LC NE system, through projections to the BLA, controls the retrieval process of taste associative memory.SIGNIFICANCE STATEMENT Norepinephrine (NE)-containing neurons in the brain play a key role in the modulation of synaptic plasticity underlying various processes of memory formation, but the role of the NE system in memory retrieval remains unclear. We developed a chemogenetic activation system based on insect olfactory ionotropic receptors and used it for selective stimulation of NE neurons in the locus coeruleus (LC) in transgenic mice. Ligand-induced activation of LC NE neurons enhanced the retrieval of conditioned taste aversion, which was mediated, in part, through adrenoceptors in the basolateral amygdala. Pharmacological blockade of LC activity confirmed the facilitative role of these neurons in memory retrieval. Our findings indicate that the LC-amygdala pathway plays an important role in the recall of taste associative memory.
Collapse
|
8
|
Kindt M. The surprising subtleties of changing fear memory: a challenge for translational science. Philos Trans R Soc Lond B Biol Sci 2019; 373:rstb.2017.0033. [PMID: 29352032 PMCID: PMC5790831 DOI: 10.1098/rstb.2017.0033] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2017] [Indexed: 12/27/2022] Open
Abstract
Current pharmacological and psychological treatments for disorders of emotional memory only dampen the affective response while leaving the original fear memory intact. Under adverse circumstances, these original memories regain prominence, causing relapses in many patients. The (re)discovery in neuroscience that after reactivation consolidated fear memories may return to a transient labile state, requiring a process of restabilization in order to persist, offers a window of opportunity for modifying fear memories with amnestic agents. This process, known as memory reconsolidation, opens avenues for developing a revolutionary treatment for emotional memory disorders. The reconsolidation intervention challenges the dominant pharmacological and psychological models of treatment: it is only effective when the amnestic drug is given in conjunction with memory reactivation during a specific time window, and a modification of cognitive processes is a boundary condition for changing fear. Notwithstanding the dramatic effects of targeting memory reconsolidation in the laboratory (i.e. proof of principle), the greatest hurdle to overcome is that the success of the manipulation depends on subtle differences in the reactivation procedure. These experimental parameters cannot be easily controlled in clinical practice. In harnessing the clinical potential of memory reconsolidation, a heuristic for bi-directionally translating behavioural neuroscience and clinical science is proposed. This article is part of a discussion meeting issue ‘Of mice and mental health: facilitating dialogue between basic and clinical neuroscientists’.
Collapse
Affiliation(s)
- Merel Kindt
- Department of Clinical Psychology, University of Amsterdam, Nieuwe Achtergracht 129B, 1018WS, Amsterdam, The Netherlands
| |
Collapse
|
9
|
Mechanisms of fear learning and extinction: synaptic plasticity-fear memory connection. Psychopharmacology (Berl) 2019; 236:163-182. [PMID: 30415278 PMCID: PMC6374177 DOI: 10.1007/s00213-018-5104-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 11/02/2018] [Indexed: 12/21/2022]
Abstract
RATIONALE The ability to memorize threat-associated cues and subsequently react to them, exhibiting escape or avoidance responses, is an essential, often life-saving behavioral mechanism that can be experimentally studied using the fear (threat) conditioning training paradigm. Presently, there is substantial evidence supporting the Synaptic Plasticity-Memory (SPM) hypothesis in relation to the mechanisms underlying the acquisition, retention, and extinction of conditioned fear memory. OBJECTIVES The purpose of this review article is to summarize findings supporting the SPM hypothesis in the context of conditioned fear control, applying the set of criteria and tests which were proposed as necessary to causally link lasting changes in synaptic transmission in corresponding neural circuits to fear memory acquisition and extinction with an emphasis on their pharmacological diversity. RESULTS The mechanisms of synaptic plasticity in fear circuits exhibit complex pharmacological profiles and satisfy all four SPM criteria-detectability, anterograde alteration, retrograde alteration, and mimicry. CONCLUSION The reviewed findings, accumulated over the last two decades, provide support for both necessity and sufficiency of synaptic plasticity in fear circuits for fear memory acquisition and retention, and, in part, for fear extinction, with the latter requiring additional experimental work.
Collapse
|
10
|
Lee JH, Lee S, Kim JH. Amygdala Circuits for Fear Memory: A Key Role for Dopamine Regulation. Neuroscientist 2016; 23:542-553. [DOI: 10.1177/1073858416679936] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
In addition to modulating a number of cognitive functions including reward, punishment, motivation, and salience, dopamine (DA) plays a pivotal role in regulating threat-related emotional memory. Changes in neural circuits of the amygdala nuclei are also critically involved in the acquisition and expression of emotional memory. In this review, we summarize the regulation of amygdala circuits by DA. Specifically, we describe DA signaling in the amygdala, and DA regulation of synaptic transmission and synaptic plasticity of the amygdala neurons. Finally, we discuss a potential contribution of DA-related mechanisms to the pathogenesis of posttraumatic stress disorder.
Collapse
Affiliation(s)
- Joo Han Lee
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, Korea
| | - Seungho Lee
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, Korea
| | - Joung-Hun Kim
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, Korea
| |
Collapse
|
11
|
Modification of Fear Memory by Pharmacological and Behavioural Interventions during Reconsolidation. PLoS One 2016; 11:e0161044. [PMID: 27537364 PMCID: PMC4990323 DOI: 10.1371/journal.pone.0161044] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 06/23/2016] [Indexed: 11/19/2022] Open
Abstract
Background Dysfunctional fear responses play a central role in many mental disorders. New insights in learning and memory suggest that pharmacological and behavioural interventions during the reconsolidation of reactivated fear memories may increase the efficacy of therapeutic interventions. It has been proposed that interventions applied during reconsolidation may modify the original fear memory, and thus prevent the spontaneous recovery and reinstatement of the fear response. Methods We investigated whether pharmacological (propranolol) and behavioural (reappraisal, multisensory stimulation) interventions reduce fear memory, and prevent reinstatement of fear in comparison to a placebo control group. Eighty healthy female subjects underwent a differential fear conditioning procedure with three stimuli (CS). Two of these (CS+) were paired with an electric shock on day 1. On day 2, 20 subjects were pseudo-randomly assigned to either the propranolol or placebo condition, or underwent one of the two behavioural interventions after one of the two CS+ was reactivated. On day 3, all subjects underwent an extinction phase, followed by a reinstatement test. Dependent variables were US expectancy ratings, fear-potentiated startle, and skin conductance response. Results Differential fear responses to the reactivated and non-reactivated CS+ were observed only in the propranolol condition. Here, the non-reactivated CS+ evoked stronger fear-potentiated startle-responses compared to the placebo group. None of the interventions prevented the return of the extinguished fear response after re-exposure to the unconditioned stimulus. Conclusions Our data are in line with an increasing body of research stating that the occurrence of reconsolidation may be constrained by boundary conditions such as subtle differences in experimental manipulations and instructions. In conclusion, our findings do not support a beneficial effect in using reconsolidation processes to enhance effects of psychotherapeutic interventions. This implies that more research is required before therapeutic interventions may benefit from a combination with reconsolidation processes.
Collapse
|
12
|
Cavalier M, Crouzin N, Ben Sedrine A, de Jesus Ferreira MC, Guiramand J, Cohen-Solal C, Fehrentz JA, Martinez J, Barbanel G, Vignes M. Involvement of PKA and ERK pathways in ghrelin-induced long-lasting potentiation of excitatory synaptic transmission in the CA1 area of rat hippocampus. Eur J Neurosci 2015; 42:2568-76. [DOI: 10.1111/ejn.13013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 07/01/2015] [Accepted: 07/02/2015] [Indexed: 12/21/2022]
Affiliation(s)
- Mélanie Cavalier
- Institut des Biomolécules Max Mousseron; UMR 5247 CNRS-University of Montpellier; Place E Bataillon 34095 Montpellier Cedex 5 France
| | - Nadine Crouzin
- Institut des Biomolécules Max Mousseron; UMR 5247 CNRS-University of Montpellier; Place E Bataillon 34095 Montpellier Cedex 5 France
| | - Azza Ben Sedrine
- Institut des Biomolécules Max Mousseron; UMR 5247 CNRS-University of Montpellier; Place E Bataillon 34095 Montpellier Cedex 5 France
| | - Marie Celeste de Jesus Ferreira
- Institut des Biomolécules Max Mousseron; UMR 5247 CNRS-University of Montpellier; Place E Bataillon 34095 Montpellier Cedex 5 France
| | - Janique Guiramand
- Institut des Biomolécules Max Mousseron; UMR 5247 CNRS-University of Montpellier; Place E Bataillon 34095 Montpellier Cedex 5 France
| | - Catherine Cohen-Solal
- Institut des Biomolécules Max Mousseron; UMR 5247 CNRS-University of Montpellier; Place E Bataillon 34095 Montpellier Cedex 5 France
| | - Jean-Alain Fehrentz
- Institut des Biomolécules Max Mousseron; UMR 5247 CNRS-University of Montpellier; Place E Bataillon 34095 Montpellier Cedex 5 France
| | - Jean Martinez
- Institut des Biomolécules Max Mousseron; UMR 5247 CNRS-University of Montpellier; Place E Bataillon 34095 Montpellier Cedex 5 France
| | - Gérard Barbanel
- Institut des Biomolécules Max Mousseron; UMR 5247 CNRS-University of Montpellier; Place E Bataillon 34095 Montpellier Cedex 5 France
| | - Michel Vignes
- Institut des Biomolécules Max Mousseron; UMR 5247 CNRS-University of Montpellier; Place E Bataillon 34095 Montpellier Cedex 5 France
| |
Collapse
|
13
|
Heath FC, Jurkus R, Bast T, Pezze MA, Lee JLC, Voigt JP, Stevenson CW. Dopamine D1-like receptor signalling in the hippocampus and amygdala modulates the acquisition of contextual fear conditioning. Psychopharmacology (Berl) 2015; 232:2619-29. [PMID: 25743759 PMCID: PMC4480849 DOI: 10.1007/s00213-015-3897-y] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 02/16/2015] [Indexed: 12/11/2022]
Abstract
RATIONALE Dopamine D1-like receptor signalling is involved in contextual fear conditioning, but the brain regions involved and its role in other contextual fear memory processes remain unclear. OBJECTIVES The objective of this study was to investigate (1) the effects of SCH 23390, a dopamine D1/D5 receptor antagonist, on contextual fear memory encoding, retrieval and reconsolidation, and (2) if the effects of SCH 23390 on conditioning involve the dorsal hippocampus (DH) and/or basolateral amygdala (BLA). METHODS Rats were used to examine the effects of systemically administering SCH 23390 on the acquisition, consolidation, retrieval and reconsolidation of contextual fear memory, and on locomotor activity and shock sensitivity. We also determined the effects of MK-801, an NMDA receptor antagonist, on contextual fear memory reconsolidation. The effects of infusing SCH 23390 locally into DH or BLA on contextual fear conditioning and locomotor activity were also examined. RESULTS Systemic administration of SCH 23390 impaired contextual fear conditioning but had no effects on fear memory consolidation, retrieval or reconsolidation. MK-801 was found to impair reconsolidation, suggesting that the behavioural parameters used allowed for the pharmacological disruption of memory reconsolidation. The effects of SCH 23390 on conditioning were unlikely the result of any lasting drug effects on locomotor activity at memory test or any acute drug effects on shock sensitivity during conditioning. SCH 23390 infused into either DH or BLA impaired contextual fear conditioning and decreased locomotor activity. CONCLUSIONS These findings suggest that dopamine D1-like receptor signalling in DH and BLA contributes to the acquisition of contextual fear memory.
Collapse
Affiliation(s)
- Florence C. Heath
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD UK
| | - Regimantas Jurkus
- School of Mathematical Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD UK
| | - Tobias Bast
- School of Psychology and Neuroscience, University of Nottingham, University Park, Nottingham, NG7 2RD UK
| | - Marie A. Pezze
- School of Psychology and Neuroscience, University of Nottingham, University Park, Nottingham, NG7 2RD UK
| | - Jonathan L. C. Lee
- School of Psychology, University of Birmingham, Edgbaston, Birmingham, B15 2TT UK
| | - J. Peter Voigt
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD UK
| | - Carl W. Stevenson
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD UK
| |
Collapse
|
14
|
Improvements in memory after medial septum stimulation are associated with changes in hippocampal cholinergic activity and neurogenesis. BIOMED RESEARCH INTERNATIONAL 2014; 2014:568587. [PMID: 25101288 PMCID: PMC4101966 DOI: 10.1155/2014/568587] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Revised: 06/04/2014] [Accepted: 06/05/2014] [Indexed: 01/09/2023]
Abstract
Deep brain stimulation (DBS) has been found to have therapeutic effects in patients with dementia, but DBS mechanisms remain elusive. To provide evidence for the effectiveness of DBS as a treatment for dementia, we performed DBS in a rat model of dementia with intracerebroventricular administration of 192 IgG-saporins. We utilized four groups of rats, group 1, unlesioned control; group 2, cholinergic lesion; group 3, cholinergic lesion plus medial septum (MS) electrode implantation (sham stimulation); group 4, cholinergic lesions plus MS electrode implantation and stimulation. During the probe test in the water maze, performance of the lesion group decreased for measures of time spent and the number of swim crossings over the previous platform location. Interestingly, the stimulation group showed an equivalent performance to the normal group on all measures. And these are partially reversed by the electrode implantation. Acetylcholinesterase activity in the hippocampus was decreased in lesion and implantation groups, whereas activity in the stimulation group was not different from the normal group. Hippocampal neurogenesis was increased in the stimulation group. Our results revealed that DBS of MS restores spatial memory after damage to cholinergic neurons. This effect is associated with an increase in hippocampal cholinergic activity and neurogenesis.
Collapse
|
15
|
Lo AC, De Maeyer JH, Vermaercke B, Callaerts-Vegh Z, Schuurkes JAJ, D'Hooge R. SSP-002392, a new 5-HT4 receptor agonist, dose-dependently reverses scopolamine-induced learning and memory impairments in C57Bl/6 mice. Neuropharmacology 2014; 85:178-89. [PMID: 24863046 DOI: 10.1016/j.neuropharm.2014.05.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 05/09/2014] [Accepted: 05/10/2014] [Indexed: 10/25/2022]
Abstract
5-HT4 receptors (5-HT4R) are suggested to affect learning and memory processes. Earlier studies have shown that animals treated with 5-HT4R agonists, often with limited selectivity, show improved learning and memory with retention memory often being assessed immediately after or within 24 h after the last training session. In this study, we characterized the effect of pre-training treatment with the selective 5-HT4R agonist SSP-002392 on memory acquisition and the associated long-term memory retrieval in animal models of impaired cognition. Pre-training treatment with SSP-002392 (0.3 mg/kg, 1.5 mg/kg and 7.5 mg/kg p.o.) dose-dependently inhibited the cognitive deficits induced by scopolamine (0.5 mg/kg s.c.) in two different behavioral tasks: passive avoidance and Morris water maze. In the Morris water maze, spatial learning was significantly improved after treatment with SSP-002392 translating in an accelerated and more efficient localization of the hidden platform compared to scopolamine-treated controls. Moreover, retention memory was assessed 24 h (passive avoidance) and 72 h (Morris water maze) after the last training session of cognitive-impaired animals and this was significantly improved in animals treated with SSP-002392 prior to the training sessions. Furthermore, the effects of SSP-002392 were comparable to galanthamine hydrobromide. We conclude that SSP-002392 has potential as a memory-enhancing compound.
Collapse
Affiliation(s)
- Adrian C Lo
- Laboratory of Biological Psychology, KU Leuven, Leuven, Belgium; Leuven Institute for Neuroscience & Disease (LIND), Leuven, Belgium
| | | | - Ben Vermaercke
- Laboratory of Biological Psychology, KU Leuven, Leuven, Belgium; Leuven Institute for Neuroscience & Disease (LIND), Leuven, Belgium
| | - Zsuzsanna Callaerts-Vegh
- Laboratory of Biological Psychology, KU Leuven, Leuven, Belgium; Leuven Institute for Neuroscience & Disease (LIND), Leuven, Belgium
| | | | - Rudi D'Hooge
- Laboratory of Biological Psychology, KU Leuven, Leuven, Belgium; Leuven Institute for Neuroscience & Disease (LIND), Leuven, Belgium.
| |
Collapse
|
16
|
Gonzalez J, Morales IS, Villarreal DM, Derrick BE. Low-frequency stimulation induces long-term depression and slow onset long-term potentiation at perforant path-dentate gyrus synapses in vivo. J Neurophysiol 2013; 111:1259-73. [PMID: 24335215 DOI: 10.1152/jn.00941.2012] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The expression of homosynaptic long-term depression (LTD) is thought to mediate a crucial role in sustaining memory function. Our in vivo investigations of LTD expression at lateral (LPP) and medial perforant path (MPP) synapses in the dentate gyrus (DG) corroborate prior demonstrations that PP-DG LTD is difficult to induce in intact animals. In freely moving animals, LTD expression occurred inconsistently among LPP-DG and MPP-DG responses. Interestingly, following acute electrode implantation in anesthetized rats, low-frequency stimulation (LFS; 900 pulses, 1 Hz) promotes slow-onset LTP at both MPP-DG and LPP-DG synapses that utilize distinct induction mechanisms. Systemic administration of the N-methyl-d-aspartate (NMDA) receptor antagonist (+/-)-cyclopiperidine-6-piperiperenzine (CPP; 10 mg/kg) 90 min before LFS selectively blocked MPP-DG but not LPP-DG slow onset LTP, suggesting MPP-DG synapses express a NMDA receptor-dependent slow onset LTP whereas LPP-DG slow onset LTP induction is NMDA receptor independent. In experiments where paired-pulse LFS (900 paired pulses, 200-ms paired-pulse interval) was used to induce LTD, paired-pulse LFS of the LPP resulted in rapid onset LTP of DG responses, whereas paired-pulse LFS of the MPP induced slow onset LTP of DG responses. Although LTD observations were very rare following acute electrode implantation in anesthetized rats, LPP-DG LTD was demonstrated in some anesthetized rats with previously implanted electrodes. Together, our data indicate in vivo PP-DG LTD expression is an inconsistent phenomenon that is primarily observed in recovered animals, suggesting perturbation of the dentate through surgery-related tissue trauma influences both LTD incidence and LTP induction at PP-DG synapses in vivo.
Collapse
Affiliation(s)
- Jossina Gonzalez
- Department of Biology, Neurosciences Research Institute, University of Texas, San Antonio, Texas
| | | | | | | |
Collapse
|
17
|
Fonseca R. Asymmetrical synaptic cooperation between cortical and thalamic inputs to the amygdale. Neuropsychopharmacology 2013; 38:2675-87. [PMID: 23884343 PMCID: PMC3828539 DOI: 10.1038/npp.2013.178] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 07/14/2013] [Accepted: 07/17/2013] [Indexed: 02/06/2023]
Abstract
Fear conditioning, a form of associative learning is thought to involve the induction of an associative long-term potentiation of cortical and thalamic inputs to the lateral amygdala. Here, we show that stimulation of the thalamic input can reinforce a transient form of plasticity (E-LTP) induced by weak stimulation of the cortical inputs. This synaptic cooperation occurs within a time window of 30 min, suggesting that synaptic integration at amygdala synapses can occur within large time windows. Interestingly, we found that synaptic cooperation is not symmetrical. Reinforcement of a thalamic E-LTP by subsequent cortical stimulation is only observed within a shorter time window. We found that activation of endocannabinoid CB1 receptors is involved in the time restriction of thalamic and cortical synaptic cooperation in an activity-dependent manner. Our results support the hypothesis that synaptic cooperation can underlie associative learning and that synaptic tagging and capture is a general mechanism in synaptic plasticity.
Collapse
Affiliation(s)
- Rosalina Fonseca
- Champalimaud Neuroscience Program at Gulbenkian Institute of Science, Oeiras, Portugal,Cellular and Systems Neuroscience, Gulbenkian Institute of Science, Rua da Quinta Grande, 6, Oeiras 2850 Portugal, Tel: +351 214 404 664, Fax: +351 214 407 970, E-mail:
| |
Collapse
|
18
|
Habib D, Tsui CKY, Rosen LG, Dringenberg HC. Occlusion of low-frequency-induced, heterosynaptic long-term potentiation in the rat hippocampus in vivo following spatial training. Cereb Cortex 2013; 24:3090-6. [PMID: 23825318 DOI: 10.1093/cercor/bht174] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Recent work has shown that some low-frequency stimulation (LFS) protocols can induce long-term potentiation (LTP) at hippocampal synapses. As LFS mimics certain aspects of low-frequency oscillations during slow-wave sleep, LFS-LTP may be relevant to processes of sleep-dependent consolidation. Here, alternating LFS (1 Hz) of heterosynaptic inputs arising in the medial septum and area CA3 induced LTP at hippocampal CA1 synapses of anesthetized rats. Remarkably, this LTP was absent when delivered 3 h, but not 8 or 24 h, after training in the hidden platform version of the Morris water maze, suggesting a time-specific occlusion of LFS-LTP following spatial learning. LTP assessed 3 h after training was intact in yoked swim controls and rats trained in darkness. Visible platform training resulted in heterogeneous effects, with about half of the animals showing LTP occlusion. Pharmacological experiments revealed that N-methyl-d-aspartate (NMDA)-receptor activation was required for both LFS-LTP and the retention of spatial learning. To test whether a learning-related, NMDA-dependent potentiation accounted for the occlusion effect, we blocked NMDA receptors immediately following spatial training. This manipulation reversed LTP occlusion 3 h after training. Together, these experiments indicate a mechanistic overlap between heterosynaptically induced LFS-LTP and processes mediating the consolidation of spatial information at hippocampal synapses.
Collapse
Affiliation(s)
| | - Claudia K Y Tsui
- Department of Psychology, Queen's University, Kingston, Ontario, Canada K7L 3N6
| | | | - Hans C Dringenberg
- Centre for Neuroscience Studies and Department of Psychology, Queen's University, Kingston, Ontario, Canada K7L 3N6
| |
Collapse
|
19
|
Masalov IS, Tsvetkov EA, Lokshina EI, Vesselkin NP. Effect of antagonists of serotonin receptors on modulation with serotonin of synaptic activity of projectional neurons of rat amygdala dorsolateral nucleus. J EVOL BIOCHEM PHYS+ 2013. [DOI: 10.1134/s0022093012050064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
20
|
Zhang J, Muller JF, McDonald AJ. Noradrenergic innervation of pyramidal cells in the rat basolateral amygdala. Neuroscience 2013; 228:395-408. [PMID: 23103792 PMCID: PMC4586037 DOI: 10.1016/j.neuroscience.2012.10.035] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Revised: 10/16/2012] [Accepted: 10/16/2012] [Indexed: 11/26/2022]
Abstract
The basolateral nuclear complex of the amygdala (BLC) receives dense noradrenergic/norepinephrine (NE) inputs from the locus coeruleus that play a key role in modulating emotional memory consolidation. Knowledge of the extent of synapse formation by NE inputs to the BLC, as well as the cell types innervated, would contribute to an understanding of how NE modulates the activity of the BLC. To gain a better understanding of NE circuits in the BLC, dual-label immunohistochemistry was used at the light and electron microscopic levels in the present study to analyze NE axons and their innervation of pyramidal cells in the anterior subdivision of the basolateral amygdalar nucleus (BLa). NE axons and BLa pyramidal cells were labeled using antibodies to the norepinephrine transporter (NET) and Ca(2+)/calmodulin-dependent protein kinase (CaMK), respectively. Dual localization studies using antibodies to NET and dopamine-beta-hydroxylase (DBH) revealed that virtually all NE axons and varicosities expressed both proteins. The BLa exhibited a medium density of NET+ fibers. Ultrastructural analysis of serial section reconstructions of NET+ axons revealed that only about half of NET+ terminals formed synapses. The main postsynaptic targets were small-caliber CAMK+ dendritic shafts and spines of pyramidal cells. A smaller number of NET+ terminals formed synapses with unlabeled cell bodies and dendrites. These findings indicate that the distal dendritic domain of BLa pyramidal cells is the major target of NE terminals in the BLa, and the relatively low synaptic incidence suggests that diffusion from non-synaptic terminals may be important for noradrenergic modulation of the BLa.
Collapse
Affiliation(s)
- Jingyi Zhang
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC 29208
| | - Jay F. Muller
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC 29208
| | - Alexander J. McDonald
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC 29208
| |
Collapse
|
21
|
Shehadi K, Maroun M. Different effects of low frequency stimulation to infralimbic prefrontal cortex on extinction of aversive memories. Brain Res 2012; 1490:111-6. [PMID: 23088962 DOI: 10.1016/j.brainres.2012.10.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Revised: 09/25/2012] [Accepted: 10/13/2012] [Indexed: 10/27/2022]
Abstract
Experimental extinction is a behavioral technique in which animals learn to extinguish previously learned fear responses. The infralimbic cortex (IL) of the medial prefrontal cortex has an important role in extinction of aversive memories. We have recently shown that electrical stimulation of the IL in a form of high-frequency stimulation (HFS), which induces potentiation in the IL, was associated with enhanced ability to extinguish aversive memory in two aversive paradigms, the fear conditioning and the conditioned taste aversion paradigms. These results suggest that the induction of potentiation in the IL is associated with better ability to extinguish. In the present study we examined the opposite hypothesis that inducing depression in the IL by the application of low-frequency stimulation (LFS) will result in impairments in extinction. Our results show that the application of LFS to the IL retards extinction of fear conditioning only, suggesting that the application of LFS to the IL results in impairments in extinction of conditioned fear. In the conditioned taste aversion paradigm (CTA), LFS to the IL was associated with delayed enhancement of extinction of CTA that was apparent 48 h following stimulation. These results suggest that localized electrical stimulation to the IL may be an effective method for manipulating learned fear and affecting the ability to extinguish aversive associations.
Collapse
Affiliation(s)
- Kamilia Shehadi
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Hafia, Haifa 31905, Israel
| | | |
Collapse
|
22
|
Sarabdjitsingh RA, Kofink D, Karst H, de Kloet ER, Joëls M. Stress-induced enhancement of mouse amygdalar synaptic plasticity depends on glucocorticoid and ß-adrenergic activity. PLoS One 2012; 7:e42143. [PMID: 22900007 PMCID: PMC3416843 DOI: 10.1371/journal.pone.0042143] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Accepted: 07/02/2012] [Indexed: 12/16/2022] Open
Abstract
Background Glucocorticoid hormones, in interaction with noradrenaline, enable the consolidation of emotionally arousing and stressful experiences in rodents and humans. Such interaction is thought to occur at least partly in the basolateral nucleus of the amygdala (BLA) which is crucially involved in emotional memory formation. Extensive evidence points to long-term synaptic potentiation (LTP) as a mechanism contributing to memory formation. Here we determined in adolescent C57/Bl6 mice the effects of stress on LTP in the LA-BLA pathway and the specific roles of corticosteroid and β-adrenergic receptor activation in this process. Principal Findings Exposure to 20 min of restraint stress (compared to control treatment) prior to slice preparation enhanced subsequent LTP induction in vitro, without affecting baseline fEPSP responses. The role of glucocorticoid receptors, mineralocorticoid receptors and β2-adrenoceptors in the effects of stress was studied by treating mice with the antagonists mifepristone, spironolactone or propranolol respectively (or the corresponding vehicles) prior to stress or control treatment. In undisturbed controls, mifepristone and propranolol administration in vivo did not influence LTP induced in vitro. By contrast, spironolactone caused a gradually attenuating form of LTP, both in unstressed and stressed mice. Mifepristone treatment prior to stress strongly reduced the ability to induce LTP in vitro. Propranolol normalized the stress-induced enhancement of LTP to control levels during the first 10 min after high frequency stimulation, after which synaptic responses further declined. Conclusions Acute stress changes BLA electrical properties such that subsequent LTP induction is facilitated. Both β-adrenergic and glucocorticoid receptors are involved in the development of these changes. Mineralocorticoid receptors are important for the maintenance of LTP in the BLA, irrespective of stress-induced changes in the circuit. The prolonged changes in BLA network function after stress may contribute to effective memory formation of emotional and stressful events.
Collapse
Affiliation(s)
- Ratna Angela Sarabdjitsingh
- Department of Neuroscience and Pharmacology, Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, Utrecht, The Netherlands.
| | | | | | | | | |
Collapse
|
23
|
Bos MGN, Beckers T, Kindt M. The effects of noradrenergic blockade on extinction in humans. Biol Psychol 2012; 89:598-605. [PMID: 22321909 DOI: 10.1016/j.biopsycho.2012.01.007] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Revised: 01/24/2012] [Accepted: 01/24/2012] [Indexed: 10/14/2022]
Abstract
The process of reconsolidation has attracted much attention because of its potential application for the treatment of psychiatric disorders. Here, we investigate a possible boundary condition of disrupting reconsolidation with the noradrenergic antagonist propranolol in humans. Reconsolidation can be initiated by retrieval of an acquired fear memory, which is in procedure equivalent to extinction training. If memory retrieval promotes the formation of a novel extinction memory trace, propranolol may interfere with extinction rather than with reconsolidation. Using a differential fear conditioning paradigm, we demonstrate that administration of propranolol (double-blind placebo controlled) prior to repetitive unreinforced CS presentations did not affect extinction at a physiological level (startle reflex and skin conductance). At a cognitive level, propranolol directly impaired extinction learning. These findings indicate that careful selection of timing parameters is essential to ensure that pharmacological agents interfere with the intended memory process to reduce fear.
Collapse
Affiliation(s)
- Marieke G N Bos
- Department of Clinical Psychology, University of Amsterdam, The Netherlands
| | | | | |
Collapse
|
24
|
A novel form of low-frequency hippocampal mossy fiber plasticity induced by bimodal mGlu1 receptor signaling. J Neurosci 2012; 31:16897-906. [PMID: 22114260 DOI: 10.1523/jneurosci.1264-11.2011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Mossy fiber synapses act as the critical mediators of highly dynamic communication between hippocampal granule cells in the dentate gyrus and CA3 pyramidal neurons. Excitatory synaptic strength at mossy fiber to CA3 pyramidal cell synapses is potentiated rapidly and reversibly by brief trains of low-frequency stimulation of mossy fiber axons. We show that slight modifications to the pattern of stimulation convert this short-term potentiation into prolonged synaptic strengthening lasting tens of minutes in rodent hippocampal slices. This low-frequency potentiation of mossy fiber EPSCs requires postsynaptic mGlu1 receptors for induction but is expressed presynaptically as an increased release probability and therefore impacts both AMPA and NMDA components of the mossy fiber EPSC. A nonconventional signaling pathway initiated by mGlu1 receptors contributes to induction of plasticity, because EPSC potentiation was prevented by a tyrosine kinase inhibitor and only partially reduced by guanosine 5'-O-(2-thiodiphosphate). A slowly reversible state of enhanced synaptic efficacy could serve as a mechanism for altering the integrative properties of this synapse within a relatively broad temporal window.
Collapse
|
25
|
Escobar M, Crouzin N, Cavalier M, Quentin J, Roussel J, Lanté F, Batista-Novais AR, Cohen-Solal C, De Jesus Ferreira MC, Guiramand J, Barbanel G, Vignes M. Early, time-dependent disturbances of hippocampal synaptic transmission and plasticity after in utero immune challenge. Biol Psychiatry 2011; 70:992-9. [PMID: 21377655 DOI: 10.1016/j.biopsych.2011.01.009] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Revised: 01/10/2011] [Accepted: 01/11/2011] [Indexed: 11/17/2022]
Abstract
BACKGROUND Maternal infection during pregnancy is a recognized risk factor for the occurrence of a broad spectrum of psychiatric and neurologic disorders, including schizophrenia, autism, and cerebral palsy. Prenatal exposure of rats to lipopolysaccharide (LPS) leads to impaired learning and psychotic-like behavior in mature offspring, together with an enduring modification of glutamatergic excitatory synaptic transmission. The question that arises is whether any alterations of excitatory transmission and plasticity occurred at early developmental stages after in utero LPS exposure. METHODS Electrophysiological experiments were carried out on the CA1 area of hippocampal slices from prenatally LPS-exposed male offspring from 4 to 190 days old to study the developmental profiles of long-term depression (LTD) triggered by delivering 900 shocks either single- or paired-pulse (50-msec interval) at 1 Hz and the N-methyl-D-aspartate receptor (NMDAr) contribution to synaptic transmission. RESULTS The age-dependent drop of LTD is accelerated in prenatally LPS-exposed animals, and LTD is transiently converted into a slow-onset long-term potentiation between 16 and 25 days old. This long-term potentiation depends on Group I metabotropic glutamate receptors and protein kinase A activations and is independent of NMDArs. Maternal LPS challenge also leads to a rapid developmental impairment of synaptic NMDArs. This was associated with a concomitant reduced expression of GluN1, without any detectable alteration in the developmental switch of NMDAr GluN2 subunits. CONCLUSIONS Aberrant forms of synaptic plasticity can be detected at early developmental stages after prenatal LPS challenge concomitant with a clear hypo-functioning of the NMDAr in the hippocampus. This might result in later-occurring brain dysfunctions.
Collapse
Affiliation(s)
- Marion Escobar
- Institut des Biomolécules Max Mousseron, Montpellier, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Synergistic activation of dopamine D1 and TrkB receptors mediate gain control of synaptic plasticity in the basolateral amygdala. PLoS One 2011; 6:e26065. [PMID: 22022509 PMCID: PMC3193533 DOI: 10.1371/journal.pone.0026065] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Accepted: 09/19/2011] [Indexed: 12/22/2022] Open
Abstract
Fear memory formation is thought to require dopamine, brain-derived neurotrophic factor (BDNF) and zinc release in the basolateral amygdala (BLA), as well as the induction of long term potentiation (LTP) in BLA principal neurons. However, no study to date has shown any relationship between these processes in the BLA. Here, we have used in vitro whole-cell patch clamp recording from BLA principal neurons to investigate how dopamine, BDNF, and zinc release may interact to modulate the LTP induction in the BLA. LTP was induced by either theta burst stimulation (TBS) protocol or spaced 5 times high frequency stimulation (5xHFS). Significantly, both TBS and 5xHFS induced LTP was fully blocked by the dopamine D1 receptor antagonist, SCH23390. LTP induction was also blocked by the BDNF scavenger, TrkB-FC, the zinc chelator, DETC, as well as by an inhibitor of matrix metalloproteinases (MMPs), gallardin. Conversely, prior application of the dopamine reuptake inhibitor, GBR12783, or the D1 receptor agonist, SKF39393, induced robust and stable LTP in response to a sub-threshold HFS protocol (2xHFS), which does not normally induce LTP. Similarly, prior activation of TrkB receptors with either a TrkB receptor agonist, or BDNF, also reduced the threshold for LTP-induction, an effect that was blocked by the MEK inhibitor, but not by zinc chelation. Intriguingly, the TrkB receptor agonist-induced reduction of LTP threshold was fully blocked by prior application of SCH23390, and the reduction of LTP threshold induced by GBR12783 was blocked by prior application of TrkB-FC. Together, our results suggest a cellular mechanism whereby the threshold for LTP induction in BLA principal neurons is critically dependent on the level of dopamine in the extracellular milieu and the synergistic activation of postsynaptic D1 and TrkB receptors. Moreover, activation of TrkB receptors appears to be dependent on concurrent release of zinc and activation of MMPs.
Collapse
|
27
|
Sadowski RN, Canal CE, Gold PE. Lidocaine attenuates anisomycin-induced amnesia and release of norepinephrine in the amygdala. Neurobiol Learn Mem 2011; 96:136-42. [PMID: 21453778 DOI: 10.1016/j.nlm.2011.03.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Revised: 03/10/2011] [Accepted: 03/18/2011] [Indexed: 12/25/2022]
Abstract
When administered near the time of training, protein synthesis inhibitors such as anisomycin impair later memory. A common interpretation of these findings is that memory consolidation requires new protein synthesis initiated by training. However, recent findings support an alternative interpretation that abnormally large increases in neurotransmitter release after injections of anisomycin may be responsible for producing amnesia. In the present study, a local anesthetic was administered prior to anisomycin injections in an attempt to mitigate neurotransmitter actions and thereby attenuate the resulting amnesia. Rats received lidocaine and anisomycin injections into the amygdala 130 and 120 min, respectively, prior to inhibitory avoidance training. Memory tests 48 h later revealed that lidocaine attenuated anisomycin-induced amnesia. In other rats, in vivo microdialysis was performed at the site of amygdala infusion of lidocaine and anisomycin. As seen previously, anisomycin injections produced large increases in release of norepinephrine in the amygdala. Lidocaine attenuated the anisomycin-induced increase in release of norepinephrine but did not reverse anisomycin inhibition of protein synthesis, as assessed by c-Fos immunohistochemistry. These findings are consistent with past evidence suggesting that anisomycin causes amnesia by initiating abnormal release of neurotransmitters in response to the inhibition of protein synthesis.
Collapse
Affiliation(s)
- Renee N Sadowski
- Neuroscience Program, College of Medicine, University of Illinois at Urbana-Champaign, Champaign, IL 61820, USA
| | | | | |
Collapse
|
28
|
Terry AV, Callahan PM, Hall B, Webster SJ. Alzheimer's disease and age-related memory decline (preclinical). Pharmacol Biochem Behav 2011; 99:190-210. [PMID: 21315756 DOI: 10.1016/j.pbb.2011.02.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Revised: 01/21/2011] [Accepted: 02/01/2011] [Indexed: 01/05/2023]
Abstract
An unfortunate result of the rapid rise in geriatric populations worldwide is the increasing prevalence of age-related cognitive disorders such as Alzheimer's disease (AD). AD is a devastating neurodegenerative illness that is characterized by a profound impairment of cognitive function, marked physical disability, and an enormous economic burden on the afflicted individual, caregivers, and society in general. The rise in elderly populations is also resulting in an increase in individuals with related (potentially treatable) conditions such as "Mild Cognitive Impairment" (MCI) which is characterized by a less severe (but abnormal) level of cognitive impairment and a high-risk for developing dementia. Even in the absence of a diagnosable disorder of cognition (e.g., AD and MCI), the perception of increased forgetfulness and declining mental function is a clear source of apprehension in the elderly. This is a valid concern given that even a modest impairment of cognitive function is likely to be associated with significant disability in a rapidly evolving, technology-based society. Unfortunately, the currently available therapies designed to improve cognition (i.e., for AD and other forms of dementia) are limited by modest efficacy and adverse side effects, and their effects on cognitive function are not sustained over time. Accordingly, it is incumbent on the scientific community to develop safer and more effective therapies that improve and/or sustain cognitive function in the elderly allowing them to remain mentally active and productive for as long as possible. As diagnostic criteria for memory disorders evolve, the demand for pro-cognitive therapeutic agents is likely to surpass AD and dementia to include MCI and potentially even less severe forms of memory decline. The purpose of this review is to provide an overview of the contemporary therapeutic targets and preclinical pharmacologic approaches (with representative drug examples) designed to enhance memory function.
Collapse
Affiliation(s)
- Alvin V Terry
- Department of Pharmacology and Toxicology and Small Animal Behavior Core, Medical College of Georgia, Augusta, GA 30912, USA.
| | | | | | | |
Collapse
|
29
|
Sinai L, Duffy S, Roder JC. Src inhibition reduces NR2B surface expression and synaptic plasticity in the amygdala. Learn Mem 2010; 17:364-71. [DOI: 10.1101/lm.1765710] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
30
|
Habib D, Dringenberg HC. Surprising similarity between mechanisms mediating low (1 Hz)-and high (100 Hz)-induced long-lasting synaptic potentiation in CA1 of the intact hippocampus. Neuroscience 2010; 170:489-96. [PMID: 20638446 DOI: 10.1016/j.neuroscience.2010.06.074] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2010] [Revised: 06/25/2010] [Accepted: 06/28/2010] [Indexed: 11/15/2022]
Abstract
It is generally assumed that long lasting synaptic potentiation (long-term potentiation, LTP) and depression (long-term depression, LTD) result from distinct patterns of afferent activity, with high and low frequency activity favouring LTP and LTD, respectively. However, a novel form of N-methyl-d-aspartate (NMDA) receptor-dependent synaptic potentiation in the hippocampal CA1 area in vivo induced by low frequency afferent stimulation has recently been demonstrated. Here, we further characterize the mechanisms mediating this low frequency stimulation (LFS)-induced LTP in area CA1 of intact, urethane-anesthetized preparations. Consistent with previous reports, alternating, low frequency (1 Hz) stimulation of CA1 afferents originating in the contralateral CA3 area and the medial septum resulted in gradually developing, long lasting (>2 h) LTP of field excitatory postsynaptic potentials (fEPSPs) recorded in CA1. Local application of the protein synthesis inhibitor anisomycin in CA1 blocked LFS-induced LTP, as did application of H89, an inhibitor of protein kinase A. Given the apparent overlap in molecular mechanisms mediating LFS-LTP and "classic" high-frequency stimulation (HFS)-induced LTP in CA1, we examined the relation between these forms of LTP by means of occlusion experiments. LFS, delivered to synapses saturated by initial HFS, resulted in a gradually developing LTD, rather than the normally seen LTP. Conversely, initial induction of LFS-LTP reduced the amount of subsequent HFS-LTP. Together, these experiments reveal a surprising similarity in the molecular mechanisms (dependence on NMDA receptors, protein kinase A, protein synthesis) mediating LTP induced by highly distinct (1 vs. 100 Hz) induction protocols. Importantly, these findings further challenge the "high-frequency-LTP, low-frequency LTD" dogma by demonstrating that this dichotomy does not account for all types of plasticity phenomena at central synapses.
Collapse
Affiliation(s)
- D Habib
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada
| | | |
Collapse
|
31
|
Dissociating response systems: Erasing fear from memory. Neurobiol Learn Mem 2010; 94:30-41. [DOI: 10.1016/j.nlm.2010.03.004] [Citation(s) in RCA: 222] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2010] [Revised: 03/05/2010] [Accepted: 03/25/2010] [Indexed: 11/22/2022]
|
32
|
Wang H, Kim SS, Zhuo M. Roles of fragile X mental retardation protein in dopaminergic stimulation-induced synapse-associated protein synthesis and subsequent alpha-amino-3-hydroxyl-5-methyl-4-isoxazole-4-propionate (AMPA) receptor internalization. J Biol Chem 2010; 285:21888-901. [PMID: 20457613 DOI: 10.1074/jbc.m110.116293] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Fragile X syndrome, the most common form of inherited mental retardation, is caused by the absence of the RNA-binding protein fragile X mental retardation protein (FMRP). FMRP regulates local protein synthesis in dendritic spines. Dopamine (DA) is involved in the modulation of synaptic plasticity. Activation of DA receptors can regulate higher brain functions in a protein synthesis-dependent manner. Our recent study has shown that FMRP acts as a key messenger for DA modulation in forebrain neurons. Here, we demonstrate that FMRP is critical for DA D1 receptor-mediated synthesis of synapse-associated protein 90/PSD-95-associated protein 3 (SAPAP3) in the prefrontal cortex (PFC). DA D1 receptor stimulation induced dynamic changes of FMRP phosphorylation. The changes in FMRP phosphorylation temporally correspond with the expression of SAPAP3 after D1 receptor stimulation. Protein phosphatase 2A, ribosomal protein S6 kinase, and mammalian target of rapamycin are the key signaling molecules for FMRP linking DA D1 receptors to SAPAP3. Knockdown of SAPAP3 did not affect surface expression of alpha-amino-3-hydroxyl-5-methyl-4-isoxazole-4-propionate (AMPA) GluR1 receptors induced by D1 receptor activation but impaired their subsequent internalization in cultured PFC neurons; the subsequent internalization of GluR1 was also impaired in Fmr1 knock-out PFC neurons, suggesting that FMRP may be involved in subsequent internalization of GluR1 through regulating the abundance of SAPAP3 after DA D1 receptor stimulation. Our study thus provides further insights into FMRP involvement in DA modulation and may help to reveal the molecular mechanisms underlying impaired learning and memory in fragile X syndrome.
Collapse
Affiliation(s)
- Hansen Wang
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | | | | |
Collapse
|
33
|
Pape HC, Pare D. Plastic synaptic networks of the amygdala for the acquisition, expression, and extinction of conditioned fear. Physiol Rev 2010; 90:419-63. [PMID: 20393190 DOI: 10.1152/physrev.00037.2009] [Citation(s) in RCA: 766] [Impact Index Per Article: 51.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The last 10 years have witnessed a surge of interest for the mechanisms underlying the acquisition and extinction of classically conditioned fear responses. In part, this results from the realization that abnormalities in fear learning mechanisms likely participate in the development and/or maintenance of human anxiety disorders. The simplicity and robustness of this learning paradigm, coupled with the fact that the underlying circuitry is evolutionarily well conserved, make it an ideal model to study the basic biology of memory and identify genetic factors and neuronal systems that regulate the normal and pathological expressions of learned fear. Critical advances have been made in determining how modified neuronal functions upon fear acquisition become stabilized during fear memory consolidation and how these processes are controlled in the course of fear memory extinction. With these advances came the realization that activity in remote neuronal networks must be coordinated for these events to take place. In this paper, we review these mechanisms of coordinated network activity and the molecular cascades leading to enduring fear memory, and allowing for their extinction. We will focus on Pavlovian fear conditioning as a model and the amygdala as a key component for the acquisition and extinction of fear responses.
Collapse
Affiliation(s)
- Hans-Christian Pape
- Institute of Physiology, Westfaelische Wilhelms-University, Muenster, Germany; and Rutgers State University, Newark, New Jersey, USA.
| | | |
Collapse
|
34
|
Bliss JM, Gray EE, Dhaka A, O'Dell TJ, Colicelli J. Fear learning and extinction are linked to neuronal plasticity through Rin1 signaling. J Neurosci Res 2010; 88:917-26. [PMID: 19830836 DOI: 10.1002/jnr.22252] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The amygdala is known to have a crucial role in both the acquisition and extinction of conditioned fear, but the physiological changes and biochemical mechanisms underlying these forms of learning are only partly understood. The Ras effector Rin1 activates Abl tyrosine kinases and Rab5 GTPases and is highly expressed in mature neurons of the telencephalon including the amygdala, where it inhibits the acquisition of fear memories (Rin1(-/-) mice show enhanced learning of conditioned fear). Here we report that Rin1(-/-) mice exhibit profound deficits in both latent inhibition and fear extinction, suggesting a critical role for Rin1 in gating the acquisition and persistence of cue-dependent fear conditioning. Surprisingly, we also find that depotentiation, a proposed cellular mechanism of extinction, is enhanced at lateral-basolateral (LA-BLA) amygdaloid synapses in Rin1(-/-) mice. Inhibition of a single Rin1 downstream effector pathway, the Abl tyrosine kinases, led to reduced amygdaloid depotentiation, arguing that proper coordination of Abl and Rab5 pathways is critical for Rin1-mediated effects on plasticity. While demonstrating a correlation between amygdala plasticity and fear learning, our findings argue against models proposing a direct causative relationship between amygdala depotentiation and fear extinction. Taken together, the behavior and physiology of Rin1(-/-) mice provide new insights into the regulation of memory acquisition and maintenance. In addition, Rin1(-/-) mice should prove useful as a model for pathologies marked by enhanced fear acquisition and retention, such as posttraumatic stress disorder.
Collapse
Affiliation(s)
- Joanne M Bliss
- David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | | | | | | | | |
Collapse
|
35
|
Samson RD, Frank MJ, Fellous JM. Computational models of reinforcement learning: the role of dopamine as a reward signal. Cogn Neurodyn 2010; 4:91-105. [PMID: 21629583 DOI: 10.1007/s11571-010-9109-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2009] [Revised: 02/17/2010] [Accepted: 02/24/2010] [Indexed: 11/27/2022] Open
Abstract
Reinforcement learning is ubiquitous. Unlike other forms of learning, it involves the processing of fast yet content-poor feedback information to correct assumptions about the nature of a task or of a set of stimuli. This feedback information is often delivered as generic rewards or punishments, and has little to do with the stimulus features to be learned. How can such low-content feedback lead to such an efficient learning paradigm? Through a review of existing neuro-computational models of reinforcement learning, we suggest that the efficiency of this type of learning resides in the dynamic and synergistic cooperation of brain systems that use different levels of computations. The implementation of reward signals at the synaptic, cellular, network and system levels give the organism the necessary robustness, adaptability and processing speed required for evolutionary and behavioral success.
Collapse
|
36
|
Habib D, Dringenberg HC. Low-frequency-induced synaptic potentiation: a paradigm shift in the field of memory-related plasticity mechanisms? Hippocampus 2010; 20:29-35. [PMID: 19405136 DOI: 10.1002/hipo.20611] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Long-term potentiation (LTP) and long-term depression (LTD) are two forms of synaptic plasticity thought to play functional roles in learning and memory processes. It is generally assumed that the direction of synaptic modifications (i.e., up- or down-regulation of synaptic strength) depends on the specific pattern of afferent inputs, with high frequency activity or stimulation effectively inducing LTP, while low-frequency patterns often elicit LTD. This dogma ("high frequency-LTP, low frequency-LTD") has recently been challenged by evidence demonstrating low frequency stimulation (LFS)-induced synaptic potentiation in the rodent hippocampus and amygdala. Extensive work in the past decades has focused on deciphering the mechanisms by which high frequency stimulation of afferent fiber systems results in LTP. With this review, we will compare and contrast the well-known synaptic and cellular mechanisms underlying classical, high-frequency-induced LTP to those mediating the more recently discovered phenomena of LFS-induced synaptic enhancement. In addition, we argue that LFS protocols provide a means to more accurately mimic some endogenous, oscillatory activity patterns present in hippocampal and extra-hippocampal (especially neocortical) circuits during periods of memory consolidation. Consequently, LFS-induced synaptic potentiation offers a novel and important avenue to investigate cellular and systems-level mechanisms mediating the encoding, consolidation, and transfer of information throughout multiple forebrain networks implicated in learning and memory processes. (c) 2009 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- Diala Habib
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada
| | | |
Collapse
|
37
|
Siguròsson T, Sigurdsson T, Cain CK, Doyère V, LeDoux JE. Asymmetries in long-term and short-term plasticity at thalamic and cortical inputs to the amygdala in vivo. Eur J Neurosci 2010; 31:250-62. [PMID: 20074223 DOI: 10.1111/j.1460-9568.2009.07056.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Converging lines of evidence suggest that synaptic plasticity at auditory inputs to the lateral amygdala (LA) is critical for the formation and storage of auditory fear memories. Auditory information reaches the LA from both thalamic and cortical areas, raising the question of whether they make distinct contributions to fear memory storage. Here we address this by comparing the induction of long-term potentation (LTP) at the two inputs in vivo in anesthetized rats. We first show, using field potential measurements, that different patterns and frequencies of high-frequency stimulation (HFS) consistently elicit stronger LTP at cortical inputs than at thalamic inputs. Field potential responses elicited during HFS of thalamic inputs were also smaller than responses during HFS of cortical inputs, suggesting less effective postsynaptic depolarization. Pronounced differences in the short-term plasticity profiles of the two inputs were also observed: whereas cortical inputs displayed paired-pulse facilitation, thalamic inputs displayed paired-pulse depression. These differences in short- and long-term plasticity were not due to stronger inhibition at thalamic inputs: although removal of inhibition enhanced responses to HFS, it did not enhance thalamic LTP and left paired-pulse depression unaffected. These results highlight the divergent nature of short- and long-term plasticity at thalamic and cortical sensory inputs to the LA, pointing to their different roles in the fear learning system.
Collapse
Affiliation(s)
- Torfi Siguròsson
- Center for Neural Science, New York University, New York, NY 10003, USA.
| | | | | | | | | |
Collapse
|
38
|
Hagena H, Manahan-Vaughan D. Frequency facilitation at mossy fiber-CA3 synapses of freely behaving rats contributes to the induction of persistent LTD via an adenosine-A1 receptor-regulated mechanism. Cereb Cortex 2009; 20:1121-30. [PMID: 19903765 PMCID: PMC2852506 DOI: 10.1093/cercor/bhp184] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Frequency facilitation (FF), comprising a rapid and multiple-fold increase in the magnitude of evoked field potentials, is elicited by low-frequency stimulation (LFS) at mossy fiber-CA3 synapses. Here, we show that in freely behaving rats, FF reliably occurs in response to 1 and 2Hz but not in response to 0.25-, 0.3-, or 0.5-Hz LFS. Strikingly, prolonged (approximately 600 s) FF was tightly correlated to the induction of long-term depression (LTD) in freely moving animals. Although LFS at 2 Hz elicited unstable FF and unstable LTD, application of LFS at 1 Hz elicited pronounced FF, as well as robust LTD that persisted for over 24 h. This correlation of prolonged FF with LTD was absent at stimulation frequencies that did not induce FF. The adenosine-A1 receptor appears to participate in these effects: Application of adenosine-A1, but not adenosine-A3, receptor antagonists enhanced mossy fiber synaptic transmission and occluded FF. Furthermore, adenosine-A1 receptor antagonism resulted in more stable FF at 1 or 2 Hz and elicited more potent LTD. These data support the fact that FF contributes to the enablement of long-term information storage at mossy fiber-CA3 synapses and that the adenosine-A1 receptor may regulate the thresholds for this process.
Collapse
Affiliation(s)
- Hardy Hagena
- Department of Experimental Neurophysiology, Medical Faculty, Ruhr University Bochum, 44780 Bochum, Germany
| | | |
Collapse
|
39
|
Role of amygdala dopamine D1 and D2 receptors in the acquisition and expression of fructose-conditioned flavor preferences in rats. Behav Brain Res 2009; 205:183-90. [PMID: 19573566 DOI: 10.1016/j.bbr.2009.06.032] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2009] [Revised: 06/12/2009] [Accepted: 06/23/2009] [Indexed: 11/20/2022]
Abstract
Systemic administration of dopamine D1-like (SCH23390) and, to a lesser degree D2-like (raclopride), receptor antagonists significantly reduce the acquisition and expression of fructose-conditioned flavor preferences (CFP) in rats. Given the role of dopamine in the amygdala (AMY) in the processing and learning of food reward, the present study examined whether dopamine D1-like or D2-like antagonists in this site altered acquisition and/or expression of a fructose-CFP. In Experiment 1, food-restricted rats with bilateral AMY cannulae were trained to drink a fructose (8%)+saccharin (0.2%) solution mixed with one flavor (e.g., grape, CS+/Fs) and a less-preferred 0.2% saccharin solution mixed with another flavor (e.g., cherry, CS-/s) during one-bottle (16 ml) sessions. Two-bottle tests with the two flavors mixed in saccharin solutions (CS+/s, CS-/s) occurred 10 min following total bilateral AMY doses of 0, 12, 24 and 48 nmol of SCH23390 or raclopride. Preference for CS+/s over CS-/s was significantly reduced relative to vehicle baseline by the 48 nmol doses of SCH23390 and raclopride (from 77% to 66% and 68%), but not lower doses. In Experiment 2, rats received bilateral AMY injections (12 nmol) of SCH23390 (D1 group) or raclopride (D2 group) 10 min prior to one-bottle training sessions with CS+/Fs and CS-/s. Yoked Control rats received vehicle and were limited to the CS intakes of the D1 and D2 groups; untreated controls were not injected or limited to drug group intakes during training. Subsequent two-bottle tests revealed initial preferences of CS+/s over CS-/s in all groups that remained stable in untreated and Yoked Controls, but were lost over the 6 tests sessions in the D1 group, but not in the D2 group. These data indicate that dopamine D1-like and D2-like antagonists significantly attenuated the expression of the previously acquired fructose-CFP, and did not block acquisition of the fructose-CFP. D1-like antagonism during training hastened extinction of the fructose-CFP. The results are similar to those produced by dopamine D1-like and D2-like antagonist injections into the nucleus accumbens shell which suggests that flavor conditioning involves a regionally distributed brain network.
Collapse
|
40
|
Input-selective potentiation and rebalancing of primary sensory cortex afferents by endogenous acetylcholine. Neuroscience 2009; 163:430-41. [PMID: 19531370 DOI: 10.1016/j.neuroscience.2009.06.026] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2009] [Revised: 05/19/2009] [Accepted: 06/11/2009] [Indexed: 11/22/2022]
Abstract
Acetylcholine (ACh) plays important roles in the modulation of activity and plasticity of primary sensory cortices, thus influencing sensory detection and integration. We examined this in urethane-anesthetized rats, comparing cholinergic modulation of short latency, large amplitude field postsynaptic potentials (fPSPs) in the visual cortex (V1) evoked by stimulation of the ipsilateral lateral geniculate nucleus (LGN), reflecting direct thalamocortical inputs, with longer latency, smaller amplitude fPSPs elicited by contralateral LGN stimulation, reflecting indirect, polysynaptic inputs. Basal forebrain (BF) stimulation (100 Hz) produced a significant (approximately 45%), gradually developing potentiation of the smaller, contralateral fPSPs, while ipsilateral fPSPs showed less enhancement (approximately 15%), shifting the relative strength of dominant/ipsi- and weaker/contralateral inputs to V1. Systemic or local, cortical blockade of muscarinic receptors (scopolamine) reduced potentiation of contralateral fPSP without affecting ipsilateral enhancement, thus preventing the relative amplification of contralateral inputs following BF stimulation. Systemic nicotinic receptor blockade (mecamylamine) resulted in depression of ipsilateral, and reduced enhancement of contralateral fPSPs after BF stimulation. N-methyl-D-aspartate receptor blockade (systemic MK-801) abolished ipsilateral fPSP enhancement without affecting contralateral potentiation. Neither drug reduced the amplification of contralateral relative to ipsilateral signals in V1. In a second experiment in the barrel cortex, BF stimulation enhanced multiunit activity elicited by whisker deflection in a muscarinic-sensitive manner. Similar to the observations in V1, this effect was more pronounced for weaker multiunit activity driven by a surround whisker than activity following principal whisker deflection. These experiments demonstrate that ACh release following BF stimulation exerts surprisingly selective effects to amplify non-dominant inputs to sensory cortices. We suggest that, by diminishing the imbalance between different afferent signals, ACh release during states of behavioral activation acts to induce a long-lasting facilitation of the detection and/or integration of signals in primary sensory fields of the cortical mantle.
Collapse
|
41
|
Muller T, Albrecht D, Gebhardt C. Both NR2A and NR2B subunits of the NMDA receptor are critical for long-term potentiation and long-term depression in the lateral amygdala of horizontal slices of adult mice. Learn Mem 2009; 16:395-405. [DOI: 10.1101/lm.1398709] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
42
|
Chauveau F, Piérard C, Corio M, Célérier A, Christophe T, Vouimba RM, Guillou JL, Béracochéa D. Mediodorsal thalamic lesions block the stress-induced inversion of serial memory retrieval pattern in mice. Behav Brain Res 2009; 203:270-8. [PMID: 19464320 DOI: 10.1016/j.bbr.2009.05.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2009] [Revised: 05/11/2009] [Accepted: 05/13/2009] [Indexed: 12/16/2022]
Abstract
This study examines the effects of ibotenic acid lesions of the mediodorsal nucleus of the thalamus (MD) on serial contextual memory retrieval in non-stress and stress conditions. Independent groups of mice learned two successive contextual serial discriminations (D1 and D2) in a four-hole board. The discriminations differed each by the color and texture of the floor. Twenty-four hours later, memory testing occurred in independent groups of mice on one of the two floors of the initial acquisition session. Half of the subjects received three electric footschocks (0.9mA, 2s) 5min prior to testing. Results showed that (i) stress induced a plasma corticosterone rise of same magnitude in sham-operated and MD-lesioned mice; (ii) non-stressed sham-operated mice accurately remembered D1 but not D2, whereas stressed sham-operated animals remembered D2 but not D1; (iii) non-stressed MD-lesioned mice exhibited a memory retrieval pattern similar to that observed in non-stressed sham-operated mice; (iv) however, the stress-induced inversion of the memory retrieval pattern was not observed in MD animals. The effects of MD lesions on memory retrieval in this task are similar to those observed in earlier studies in prefrontal cortex or amygdala-lesioned mice [Chauveau F, Piérard C, Coutan M, Drouet I, Liscia P, Béracochéa D. Prefrontal cortex or basolateral amygdala lesions blocked the stress-induced inversion of serial memory pattern in mice. Neurobiol Learn Mem 2008;90:395-403]; they are however in sharp contrast with mice exhibiting hippocampal lesions [Chauveau F, Pierard C, Tronche C, Coutan M, Drouet I, Liscia P, et al. The hippocampus and prefrontal cortex are differentially involved in serial memory retrieval in non-stress and stress condition. Neurobiol Learn Mem; in press; Chauveau F, Pierard C, Tronche C, Coutan M, Drouet I, Liscia P, et al. Rapid stress-induced corticosterone rise in the hippocampus reverses serial memory retrieval pattern. Hippocampus; in press]. Overall, the present findings highlight the involvement of the MD in an AMG/PFC system mediating the rapid effects of stress on serial memory retrieval.
Collapse
Affiliation(s)
- Frédéric Chauveau
- Universités de Bordeaux, Centre de Neurosciences Intégratives et Cognitives (CNIC), UMR CNRS 5228, Bâtiment de Biologie Animale, Avenue des Facultés, 33405 Talence Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Zheng Z, Keifer J. PKA has a critical role in synaptic delivery of GluR1- and GluR4-containing AMPARs during initial stages of acquisition of in vitro classical conditioning. J Neurophysiol 2009; 101:2539-49. [PMID: 19261706 DOI: 10.1152/jn.91282.2008] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The cyclic AMP-dependent protein kinase (PKA) signaling pathway has been shown to be important in mechanisms of synaptic plasticity, although its direct and downstream signaling effects are not well understood. Using an in vitro model of eyeblink classical conditioning, we report that PKA has a critical role in initiating a signaling cascade that results in synaptic delivery of glutamate receptor 1 (GluR1)- and GluR4-containing alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) in abducens motor neurons during conditioning. PKA and the Ca(2+)-calmodulin-dependent protein kinases (CaMKs) II and IV are activated early in conditioning and are required for acquisition and expression of conditioned responses (CRs). cAMP-response-element-binding protein (CREB) is also activated early in conditioning but is blocked by coapplication of inhibitors to PKA and the CaMKs, suggesting that CREB is downstream of those signaling cascades. Moreover, evidence suggests that PKA activates extracellular signal-regulated kinase, which is also required for conditioning. Imaging studies after conditioning further indicate that colocalization of GluR1 AMPAR subunits with the synaptic marker synaptophysin requires PKA, but is insensitive to the N-methyl-d-aspartate receptor (NMDAR) inhibitor d,l-AP5. PKA activation also leads to synaptic localization of GluR4 subunits that, unlike GluR1, is dependent on NMDARs and is mediated by CaMKII. Together with previous studies, our findings support a two-stage model of AMPAR synaptic delivery during acquisition of classical conditioning. The first stage involves synaptic incorporation of GluR1-containing AMPARs that serves to activate silent synapses. This allows a second stage of NMDAR- and protein kinase C-dependent delivery of GluR4 AMPAR subunits that supports the acquisition of CRs.
Collapse
Affiliation(s)
- Zhaoqing Zheng
- Neuroscience Group, Division of Basic Biomedical Sciences, University of South Dakota School of Medicine, 414 E. Clark St., Vermillion, SD 57069, USA
| | | |
Collapse
|
44
|
Habib D, Dringenberg HC. Alternating low frequency stimulation of medial septal and commissural fibers induces NMDA-dependent, long-lasting potentiation of hippocampal synapses in urethane-anesthetized rats. Hippocampus 2009; 19:299-307. [DOI: 10.1002/hipo.20507] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
45
|
Biedenkapp JC, Rudy JW. Hippocampal and extrahippocampal systems compete for control of contextual fear: role of ventral subiculum and amygdala. Learn Mem 2008; 16:38-45. [PMID: 19117915 DOI: 10.1101/lm.1099109] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Two neural systems, a hippocampal system and an extrahippocampal system compete for control over contextual fear, and the hippocampal system normally dominates. Our experiments reveal that output provided by the ventral subiculum is critical for the hippocampal system to win this competition. Bilateral electrolytic lesions of the ventral subiculum after conditioning, but not before conditioning, impaired contextual fear conditioning. Reversibly inactivating this region by bilateral injections of muscimol produced the same results-no impairment when the injection occurred prior to conditioning but a significant impairment when this region was inactivated after conditioning. Thus, the extrahippocampal system can support contextual fear conditioning if the ventral subiculum is disabled before conditioning but not if it is disabled after conditioning. Our experiments also reveal that the basolateral region of the amygdala (BLA) is where the two systems compete for associative control of the fear system. To test this hypothesis we reasoned that the extrahippocampal system would also acquire associative control over the fear system, even if the hippocampal system were functional, if the basal level of plasticity potential in the BLA could be increased. We did this by injecting the D1 dopamine agonist, SKF82958, into the BLA just prior to conditioning. This treatment resulted in a significant increase in freezing when the ventral subiculum was disabled prior to the test. These results are discussed in relationship to the idea that D1 agonists increase plasticity potential by increasing the pool of available extrasynaptic GluR1 receptors in the population of neurons supporting acquired fear.
Collapse
Affiliation(s)
- Joseph C Biedenkapp
- Department of Psychology, Center for Neuroscience, University of Colorado, Boulder, Colorado 80309, USA
| | | |
Collapse
|
46
|
Lanté F, Crouzin N, Vignes M. Unveiling novel forms of hippocampal synaptic plasticity with microelectrode arrays. J Integr Neurosci 2008; 7:249-70. [PMID: 18763723 DOI: 10.1142/s0219635208001800] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2008] [Accepted: 03/14/2008] [Indexed: 11/18/2022] Open
Abstract
In this report, we elucidate by use of microelectrode arrays novel forms of long-term depression and potentiation in the hippocampus which are triggered by low frequency afferent stimulation and which rely on the activation of metabotropic glutamate receptor of the fifth subtype (mGlu5 receptor).
Collapse
Affiliation(s)
- Fabien Lanté
- UMR5247 The Max Mousseron Biomolecules Institute,University of Montpellier 2, 34095 Montpellier Cedex 05, France
| | | | | |
Collapse
|
47
|
Huang YY, Kandel ER, Levine A. Chronic nicotine exposure induces a long-lasting and pathway-specific facilitation of LTP in the amygdala. Learn Mem 2008; 15:603-10. [PMID: 18685152 DOI: 10.1101/lm.975308] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Nicotine, in the form of tobacco, is the most commonly used drug of abuse. In addition to its rewarding properties, nicotine also affects many cognitive and emotional processes that involve several brain regions, including hippocampus and amygdala. Long-term changes in synaptic strength in these brain regions after drug exposure may be importantly correlated with behavioral changes induced by nicotine. Here, we study the effect of chronic oral administration of nicotine on the long-term synaptic potentiation in the amygdala, a key structure for emotional memory. We find that oral administration of nicotine for 7 d produces a significant enhancement of LTP in the amygdala. This facilitation is pathway specific: Nicotine selectively facilitates LTP in the cortical-lateral amygdala pathway, but not the thalamic-lateral and the lateral-basolateral synaptic pathway. The synaptic facilitation induced by a 7-d exposure to nicotine is long-lasting, it persists for 72 h after cessation of nicotine but decays 8 d after its cessation. In contrast, a shorter exposure of nicotine (24 h) induces only a short-lasting facilitation of synaptic plasticity that dissipates 24 and 72 h after cessation of nicotine. The facilitation of LTP in the amygdala after exposure to nicotine is mediated by removal of GABAergic inhibition, is dependent on the activation NMDA receptors, and can be prevented by blocking either alpha7 or beta2 nACh receptors. Our results indicate that chronic exposure to nicotine can promote the induction of long-lasting modifications of synapses in a specific pathway in the amygdala. These changes in synaptic plasticity may contribute to the complex neural adaptations and behaviors caused by nicotine.
Collapse
Affiliation(s)
- Yan-You Huang
- Center for Neurobiology and Behavior, College of Physicians and Surgeons of Columbia University, New York State Psychiatric Institute, New York, New York 10032, USA
| | | | | |
Collapse
|
48
|
Parallel memory processing by the CA1 region of the dorsal hippocampus and the basolateral amygdala. Proc Natl Acad Sci U S A 2008; 105:10279-84. [PMID: 18647831 DOI: 10.1073/pnas.0805284105] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
There is abundant literature on the role of the basolateral amygdala (BLA) and the CA1 region of the hippocampus in memory formation of inhibitory avoidance (IA) and other behaviorally arousing tasks. Here, we investigate molecular correlates of IA consolidation in the two structures and their relation to NMDA receptors (NMDArs) and beta-adrenergic receptors (beta-ADrs). The separate posttraining administration of antagonists of NMDAr and beta-ADr to BLA and CA1 is amnesic. IA training is followed by an increase of the phosphorylation of calcium and calmodulin-dependent protein kinase II (CaMKII) and ERK2 in CA1 but only an increase of the phosphorylation of ERK2 in BLA. The changes are blocked by NMDAr antagonists but not beta-ADr antagonists in CA1, and they are blocked by beta-ADr but not NMDAr antagonists in BLA. In addition, the changes are accompanied by increased phosphorylation of tyrosine hydroxylase in BLA but not in CA1, suggesting that beta-AD modulation results from local catecholamine synthesis in the former but not in the latter structure. NMDAr blockers in CA1 do not alter the learning-induced neurochemical changes in BLA, and beta-ADr blockade in BLA does not hinder those in CA1. When put together with other data from the literature, the present findings suggest that CA1 and BLA play a role in consolidation, but they operate to an extent in parallel, suggesting that each is probably involved with different aspects of the task studied.
Collapse
|
49
|
Fidzinski P, Shor O, Behr J. Target-cell-specific bidirectional synaptic plasticity at hippocampal output synapses. Eur J Neurosci 2008; 27:1111-8. [PMID: 18312585 DOI: 10.1111/j.1460-9568.2008.06089.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
It is commonly accepted that the hippocampus is critically involved in the explicit memory formation of mammals. The subiculum is the principal target of CA1 pyramidal cells and thus serves as the major relay station for the outgoing hippocampal information. Pyramidal cells in the subiculum can be classified according to their firing properties into burst-spiking and regular-spiking cells. In the present study we demonstrate that burst-spiking and regular-spiking cells show fundamentally different forms of low frequency-induced synaptic plasticity in rats. In burst-spiking cells, low-frequency stimulation (at 0.5-5 Hz) induces frequency-dependent long-term depression (LTD) with a maximum at 1 Hz. This LTD is dependent on the activation of NMDAR and masks an mGluR-dependent long-term potentiation (LTP). In contrast, in regular-spiking cells low-frequency stimulation induces an mGluR-dependent LTP that masks an NMDAR-dependent LTD. Both processes depend on postsynaptic Ca(2+)-signaling as BAPTA prevents the induction of synaptic plasticity in both cell types. Thus, mGluR-dependent LTP and NMDAR-dependent LTD occur simultaneously at CA1-subiculum synapses and the predominant direction of synaptic plasticity relies on the cell type investigated. Our data indicate a novel mechanism for the sliding-threshold model of synaptic plasticity, in which induction of LTP and LTD seems to be driven by the relative activation state of NMDAR and mGluR. Our observation that the direction of synaptic plasticity correlates with the discharge properties of the postsynaptic cell reveals a novel and intriguing mechanism of target specificity that may serve in tuning the significance of neuronal information by trafficking hippocampal output onto either subicular burst-spiking or regular-spiking cells.
Collapse
Affiliation(s)
- Pawel Fidzinski
- Department of Psychiatry and Psychotherapy, Charité Universitätsmedizin Berlin, Chariteplatz 1, 10117 Berlin, Germany.
| | | | | |
Collapse
|