1
|
Papaioannou VE, Behringer RR. Strategies for Maintaining Mouse Mutations. Cold Spring Harb Protoc 2024; 2024:107960. [PMID: 37932086 DOI: 10.1101/pdb.over107960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Rules for naming a new mutation are provided. The majority of new mutations are recessive and thus easily maintained in a mouse strain. Considerations on the choice of genetic background are given, depending on how the mutant was produced and how you intend to analyze it. General information on maintaining a mutant colony to perpetuate the mutation and to efficiently produce homozygous mutant mice for analysis is provided. Also discussed are special breeding techniques to delete a selection cassette in vivo, if you produced the mutation in embryonic stem (ES) cells, and to maintain a mutant with a balancer chromosome. In the event of either male or female infertility in the heterozygotes, assisted reproductive techniques may be necessary.
Collapse
Affiliation(s)
- Virginia E Papaioannou
- Department of Genetics and Development, Columbia University Medical Center, New York, New York 10032, USA
| | - Richard R Behringer
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| |
Collapse
|
2
|
Papaioannou VE, Behringer RR. Mouse Gene-Targeting Strategies for Maximum Ease and Versatility. Cold Spring Harb Protoc 2024; 2024:107957. [PMID: 37932102 DOI: 10.1101/pdb.over107957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Well-planned strategies are an essential prerequisite for any mutational analysis involving gene targeting. Consideration of the advantages or disadvantages of different methods will aid in the production of a final product that is both technically feasible and versatile. Strategies for gene-targeting experiments in the mouse are discussed, including the rationale behind some of the common elements of gene-targeting vectors, such as homologous DNA and the use of different site-specific recombinases. We detail positive and negative selection as well as screening strategies for homologous recombination events in embryonic stem (ES) cells. For the planning stages of making different types of alleles, we first consider general strategies and then provide details specific to either homologous recombination in ES cells or making alleles by gene editing with CRISPR-Cas in preimplantation embryos. The types of alleles considered are null or knockout alleles, reporter gene knock-in alleles, point mutations, and conditional null alleles.
Collapse
Affiliation(s)
- Virginia E Papaioannou
- Department of Genetics and Development, Columbia University Medical Center, New York, New York 10032, USA
| | - Richard R Behringer
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| |
Collapse
|
3
|
Xu B, Bai X, Zhang J, Li B, Zhang Y, Su R, Wang R, Wang Z, Lv Q, Zhang J, Li J. Metabolomic analysis of seminal plasma to identify goat semen freezability markers. Front Vet Sci 2023; 10:1132373. [PMID: 36968471 PMCID: PMC10036599 DOI: 10.3389/fvets.2023.1132373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 02/21/2023] [Indexed: 03/12/2023] Open
Abstract
Factors affecting sperm freezability in goat seminal plasma were investigated. Based on the total motility of thawed sperm, goats were divided into a high-freezability (HF) group with >60% total motility (n = 8) and a low-freezability (LF) group with <45% total motility (n = 8). Sperm and seminal plasma from the HF and LF groups were separated, HF seminal plasma was mixed with LF spermatozoa, LF seminal plasma was mixed with HF sperm, and the products were subjected to a freeze-thaw procedure. Semen from individual goats exhibited differences in freezability. HF semen had higher sperm motility parameters and plasma membrane and acrosome integrity after thawing; this difference could be related to the composition of seminal plasma. Seminal plasma from the HF and LF groups was evaluated using metabolomic analysis, and multivariate statistical analysis revealed a clear separation of metabolic patterns in the seminal plasma of goats with different freezability classifications. Forty-one differential metabolites were identified using the following screening conditions: variable importance in the projection > 1 and 0.05 < P-value < 0.1. Kyoto Encyclopedia of Genes and Genomes pathway analysis revealed significant enrichment of central carbon metabolism in cancer, protein digestion and absorption, aminoacyl-tRNA, and other pathways and significant differences in the abundance of seven differential metabolites, including L-glutamine, L-aspartate, L-arginine, phenylpyruvate, benzoic acid, ketoisocaproic acid, and choline between seminal plasma from the HF and LF groups (P-value < 0.05). These significantly differentially-expressed metabolites may be potential biomarkers for sperm freezability. L-glutamine, L-aspartate, and L-arginine may directly affect sperm freezability. Benzoic acid, ketoisocaproic acid, and choline may regulate sperm freezability by participating in anabolic processes involving phenylalanine, leucine, and phosphatidylcholine in sperm.
Collapse
Affiliation(s)
- Bingbing Xu
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Xue Bai
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Jian Zhang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Boyuan Li
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Yanjun Zhang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Rui Su
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Ruijun Wang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Zhiying Wang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Qi Lv
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Jiaxin Zhang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Hohhot, China
- Key Laboratory of Mutton Sheep Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Hohhot, China
| | - Jinquan Li
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Hohhot, China
- Key Laboratory of Mutton Sheep Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Hohhot, China
- Inner Mongolia Jinlai Animal Husbandry Technology Co., Ltd., Hohhot, China
| |
Collapse
|
4
|
Takeo T, Nakao S, Nakagawa Y, Sztein JM, Nakagata N. Cryopreservation of mouse resources. Lab Anim Res 2020; 36:33. [PMID: 32963977 PMCID: PMC7495967 DOI: 10.1186/s42826-020-00066-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 09/10/2020] [Indexed: 01/19/2023] Open
Abstract
The cryopreservation of sperm and embryos is useful to efficiently archive valuable resources of genetically engineered mice. Till date, more than 60,000 strains of genetically engineered mice have been archived in mouse banks worldwide. Researchers can request for the archived mouse strains for their research projects. The research infrastructure of mouse banks improves the availability of mouse resources, the productivity of research projects, and the reproducibility of animal experiments. Our research team manages the mouse bank at the Center for Animal Resources and Development in Kumamoto University and continuously develops new techniques in mouse reproductive technology to efficiently improve the system of mouse banking. In this review, we introduce the activities of mouse banks and the latest techniques used in mouse reproductive technology.
Collapse
Affiliation(s)
- Toru Takeo
- Division of Reproductive Engineering, Center for Animal Resources and Development, Institute of Resource Development and Analysis, Kumamoto University, 2-2-1 Honjo, Kumamoto, 860-0811 Japan
| | - Satohiro Nakao
- Division of Reproductive Engineering, Center for Animal Resources and Development, Institute of Resource Development and Analysis, Kumamoto University, 2-2-1 Honjo, Kumamoto, 860-0811 Japan
| | - Yoshiko Nakagawa
- Division of Reproductive Engineering, Center for Animal Resources and Development, Institute of Resource Development and Analysis, Kumamoto University, 2-2-1 Honjo, Kumamoto, 860-0811 Japan
| | - Jorge M Sztein
- Division of Reproductive Engineering, Center for Animal Resources and Development, Institute of Resource Development and Analysis, Kumamoto University, 2-2-1 Honjo, Kumamoto, 860-0811 Japan
| | - Naomi Nakagata
- Division of Reproductive Biotechnology and Innovation, Center for Animal Resources and Development, Institute of Resource Development and Analysis, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
5
|
Nakagata N, Takeo T. Basic mouse reproductive techniques developed and modified at the Center for Animal Resources and Development (CARD), Kumamoto University. Exp Anim 2019; 68:391-395. [PMID: 31243193 PMCID: PMC6842795 DOI: 10.1538/expanim.19-0070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The Center for Animal Resources and Development (CARD), Kumamoto University was
established in 1998. We provide advanced research support services for the mouse-based
biomedical research community via an official and a premium mouse bank system. To
efficiently manage these mouse banks, we have actively developed and modified basic mouse
reproductive techniques. We shall introduce these techniques in this paper.
Collapse
Affiliation(s)
- Naomi Nakagata
- Division of Reproductive Engineering, Center for Animal Resources and Development (CARD), Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan
| | - Toru Takeo
- Division of Reproductive Engineering, Center for Animal Resources and Development (CARD), Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan
| |
Collapse
|
6
|
Duselis A, Veres M, Dewey M, Vrana P. Nonsurgical Artificial Insemination in Mice. Cold Spring Harb Protoc 2018; 2018:2018/9/pdb.prot094532. [PMID: 30181220 DOI: 10.1101/pdb.prot094532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Artificial insemination is used to impregnate female mice using a solution containing motile sperm. For nonsurgical artificial insemination, a blunt needle is inserted through the vaginal canal of naturally ovulating females that are in the proestrus/estrous phase. This method requires practice but can be mastered, although initially it may be easier to have two people perform the procedure. Naturally ovulating or superovulated females are used in the absence of natural mating. Artificial insemination is achieved by isolating sperm from the cauda epididymis and vas deferens into a milk solution and introducing it into the reproductive tract of ovulating females. Only females that are known to be in estrus are used.
Collapse
|
7
|
De Repentigny Y, Kothary R. Surgical Artificial Insemination in Mice. Cold Spring Harb Protoc 2018; 2018:2018/9/pdb.prot092734. [PMID: 30181219 DOI: 10.1101/pdb.prot092734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Artificial insemination can be achieved by directly adding sperm from a particular male into the oviduct of a female successfully bred with a vasectomized male by a surgical procedure. Those who are comfortable performing oviduct embryo transfers might find this approach much easier than delivering the sperm into the vagina. Multiple females can be inseminated with sperm from a single male to rescue the line, expand the line quickly, or generate relatively synchronous embryos.
Collapse
|
8
|
Abstract
The success of in vitro fertilization is strongly influenced by genetic background, handling of sperm and oocytes, and culture conditions. This protocol promotes enhanced rates of fertilization by using preincubation medium for sperm containing methyl-β-cyclodextrin (MBCD) and fertilization medium with high calcium and reduced glutathione (GSH).
Collapse
|