1
|
Jash E, Azhar AA, Mendoza H, Tan ZM, Escher HN, Kaufman DS, Csankovszki G. XOL-1 regulates developmental timing by modulating the H3K9 landscape in C. elegans early embryos. PLoS Genet 2024; 20:e1011238. [PMID: 39146391 PMCID: PMC11349215 DOI: 10.1371/journal.pgen.1011238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 08/27/2024] [Accepted: 07/30/2024] [Indexed: 08/17/2024] Open
Abstract
Sex determination in the nematode C. elegans is controlled by the master regulator XOL-1 during embryogenesis. Expression of xol-1 is dependent on the ratio of X chromosomes and autosomes, which differs between XX hermaphrodites and XO males. In males, xol-1 is highly expressed and in hermaphrodites, xol-1 is expressed at very low levels. XOL-1 activity is known to be critical for the proper development of C. elegans males, but its low expression was considered to be of minimal importance in the development of hermaphrodite embryos. Our study reveals that XOL-1 plays an important role as a regulator of developmental timing during hermaphrodite embryogenesis. Using a combination of imaging and bioinformatics techniques, we found that hermaphrodite embryos have an accelerated rate of cell division, as well as a more developmentally advanced transcriptional program when xol-1 is lost. Further analyses reveal that XOL-1 is responsible for regulating the timing of initiation of dosage compensation on the X chromosomes, and the appropriate expression of sex-biased transcriptional programs in hermaphrodites. We found that xol-1 mutant embryos overexpress the H3K9 methyltransferase MET-2 and have an altered H3K9me landscape. Some of these effects of the loss of xol-1 gene were reversed by the loss of met-2. These findings demonstrate that XOL-1 plays an important role as a developmental regulator in embryos of both sexes, and that MET-2 acts as a downstream effector of XOL-1 activity in hermaphrodites.
Collapse
Affiliation(s)
- Eshna Jash
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Anati Alyaa Azhar
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Hector Mendoza
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Zoey M. Tan
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Halle Nicole Escher
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Dalia S. Kaufman
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Györgyi Csankovszki
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| |
Collapse
|
2
|
Acón M, Geiß C, Torres-Calvo J, Bravo-Estupiñan D, Oviedo G, Arias-Arias JL, Rojas-Matey LA, Edwin B, Vásquez-Vargas G, Oses-Vargas Y, Guevara-Coto J, Segura-Castillo A, Siles-Canales F, Quirós-Barrantes S, Régnier-Vigouroux A, Mendes P, Mora-Rodríguez R. MYC dosage compensation is mediated by miRNA-transcription factor interactions in aneuploid cancer. iScience 2021; 24:103407. [PMID: 34877484 PMCID: PMC8627999 DOI: 10.1016/j.isci.2021.103407] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 10/01/2021] [Accepted: 11/03/2021] [Indexed: 12/11/2022] Open
Abstract
We hypothesize that dosage compensation of critical genes arises from systems-level properties for cancer cells to withstand the negative effects of aneuploidy. We identified several candidate genes in cancer multiomics data and developed a biocomputational platform to construct a mathematical model of their interaction network with micro-RNAs and transcription factors, where the property of dosage compensation emerged for MYC and was dependent on the kinetic parameters of its feedback interactions with three micro-RNAs. These circuits were experimentally validated using a genetic tug-of-war technique to overexpress an exogenous MYC, leading to overexpression of the three microRNAs involved and downregulation of endogenous MYC. In addition, MYC overexpression or inhibition of its compensating miRNAs led to dosage-dependent cytotoxicity in MYC-amplified colon cancer cells. Finally, we identified negative correlation of MYC dosage compensation with patient survival in TCGA breast cancer patients, highlighting the potential of this mechanism to prevent aneuploid cancer progression.
Collapse
Affiliation(s)
- ManSai Acón
- Lab of Tumor Chemosensitivity (LQT), Research Center for Tropical Diseases (CIET), Faculty of Microbiology, University of Costa Rica, 11501-2060 San José, Costa Rica
- Master Program on Bioinformatics and Systems Biology, Postgraduate Program SEP, University of Costa Rica, 11501-2060 San José, Costa Rica
| | - Carsten Geiß
- Institute for Developmental Biology and Neurobiology, Johannes Gutenberg University, 55128 Mainz, Germany
| | - Jorge Torres-Calvo
- Lab of Tumor Chemosensitivity (LQT), Research Center for Tropical Diseases (CIET), Faculty of Microbiology, University of Costa Rica, 11501-2060 San José, Costa Rica
- Master Program on Bioinformatics and Systems Biology, Postgraduate Program SEP, University of Costa Rica, 11501-2060 San José, Costa Rica
| | - Diana Bravo-Estupiñan
- Lab of Tumor Chemosensitivity (LQT), Research Center for Tropical Diseases (CIET), Faculty of Microbiology, University of Costa Rica, 11501-2060 San José, Costa Rica
- Ph.D. Program in Sciences, Postgraduate Program SEP, University of Costa Rica, 11501-2060 San José, Costa Rica
| | - Guillermo Oviedo
- Lab of Tumor Chemosensitivity (LQT), Research Center for Tropical Diseases (CIET), Faculty of Microbiology, University of Costa Rica, 11501-2060 San José, Costa Rica
- Master Program on Bioinformatics and Systems Biology, Postgraduate Program SEP, University of Costa Rica, 11501-2060 San José, Costa Rica
| | - Jorge L Arias-Arias
- Lab of Tumor Chemosensitivity (LQT), Research Center for Tropical Diseases (CIET), Faculty of Microbiology, University of Costa Rica, 11501-2060 San José, Costa Rica
| | - Luis A Rojas-Matey
- Master Program on Bioinformatics and Systems Biology, Postgraduate Program SEP, University of Costa Rica, 11501-2060 San José, Costa Rica
| | - Baez Edwin
- Lab of Tumor Chemosensitivity (LQT), Research Center for Tropical Diseases (CIET), Faculty of Microbiology, University of Costa Rica, 11501-2060 San José, Costa Rica
- Master Program on Bioinformatics and Systems Biology, Postgraduate Program SEP, University of Costa Rica, 11501-2060 San José, Costa Rica
| | - Gloriana Vásquez-Vargas
- Lab of Tumor Chemosensitivity (LQT), Research Center for Tropical Diseases (CIET), Faculty of Microbiology, University of Costa Rica, 11501-2060 San José, Costa Rica
| | - Yendry Oses-Vargas
- Lab of Tumor Chemosensitivity (LQT), Research Center for Tropical Diseases (CIET), Faculty of Microbiology, University of Costa Rica, 11501-2060 San José, Costa Rica
| | - José Guevara-Coto
- School of Computer Sciences and Informatics (ECCI), University of Costa Rica, San Jose Costa Rica, 11501-2060 San José, Costa Rica
| | - Andrés Segura-Castillo
- Laboratorio de Investigación e Innovación Tecnológica, Universidad Estatal a Distancia (UNED), 474-2050 San José, Costa Rica
| | - Francisco Siles-Canales
- Pattern Recognition and Intelligent Systems Laboratory, Department of Electrical Engineering, Universidad de Costa Rica, 11501-2060 San José, Costa Rica
- DC Lab, Lab of Surgery and Cancer, University of Costa Rica, 11501-2060 San José, Costa Rica
| | - Steve Quirós-Barrantes
- Lab of Tumor Chemosensitivity (LQT), Research Center for Tropical Diseases (CIET), Faculty of Microbiology, University of Costa Rica, 11501-2060 San José, Costa Rica
- DC Lab, Lab of Surgery and Cancer, University of Costa Rica, 11501-2060 San José, Costa Rica
| | - Anne Régnier-Vigouroux
- Institute for Developmental Biology and Neurobiology, Johannes Gutenberg University, 55128 Mainz, Germany
| | - Pedro Mendes
- Center for Cell Analysis and Modeling and Department of Cell Biology, University of Connecticut School of Medicine, Farmington, 06030 CT, USA
| | - Rodrigo Mora-Rodríguez
- Lab of Tumor Chemosensitivity (LQT), Research Center for Tropical Diseases (CIET), Faculty of Microbiology, University of Costa Rica, 11501-2060 San José, Costa Rica
- Master Program on Bioinformatics and Systems Biology, Postgraduate Program SEP, University of Costa Rica, 11501-2060 San José, Costa Rica
- DC Lab, Lab of Surgery and Cancer, University of Costa Rica, 11501-2060 San José, Costa Rica
- Institute for Developmental Biology and Neurobiology, Johannes Gutenberg University, 55128 Mainz, Germany
| |
Collapse
|
3
|
Sun Y, Yang Y, Luo Y, Chen M, Wang L, Huang Y, Yang Y, Dong M. Lack of MECP2 gene transcription on the duplicated alleles of two related asymptomatic females with Xq28 duplications and opposite X-chromosome inactivation skewing. Hum Mutat 2021; 42:1429-1442. [PMID: 34273908 DOI: 10.1002/humu.24262] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 06/23/2021] [Accepted: 07/14/2021] [Indexed: 11/10/2022]
Abstract
Xq28 duplication syndrome (MIM# 300815) is a severe neurodevelopmental disorder in males due to MeCP2 overexpression. Most females with MECP2 duplication are asymptomatic carriers, but there are phenotypic heterogeneities. Skewed X-chromosome inactivation (XCI) can protect females from exhibiting clinical phenotypes. Herein we reported two asymptomatic females (mother and grandmother) with interstitial Xq28 duplication. AR and RP2 assays showed that both had extremely skewed XCI, the Xq28 duplicated chromosome was inactivated in the mother, but was surprisingly activated in the grandmother. Interestingly, by combining RNA sequencing and whole-exome sequencing, we confirmed that XIST only expressed in the Xq28 duplication chromosomes of the two females, indicating that the Xq28 duplication chromosomes were inactive. Meanwhile, MECP2 and most XCI genes in the duplicated X-chromosomes were not transcriptionally expressed or upregulated, precluding major clinical phenotypes in the two females, especially the grandmother. We showed that XCI status detected using RNA sequencing was more relevant for establishing the clinical phenotype of MECP2 duplication in females. It suggested that there were other factors maintaining the XCI status in addition to DNA methylation, a possible additional inhibition mechanism occurred at the transcriptional level in the unmethylated X-chromosome, counter balancing the MECP2 duplication's detrimental phenotype effects.
Collapse
Affiliation(s)
- Yixi Sun
- Department of Reproductive Genetics, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.,Key Laboratory of Reproductive Genetics, Ministry of Education, Zhejiang University, Hangzhou, Zhejiang, China.,Key Laboratory of Women's Reproductive Health of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Yali Yang
- Department of Reproductive Genetics, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.,Key Laboratory of Reproductive Genetics, Ministry of Education, Zhejiang University, Hangzhou, Zhejiang, China.,Key Laboratory of Women's Reproductive Health of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Yuqin Luo
- Department of Reproductive Genetics, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.,Key Laboratory of Reproductive Genetics, Ministry of Education, Zhejiang University, Hangzhou, Zhejiang, China.,Key Laboratory of Women's Reproductive Health of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Min Chen
- Department of Reproductive Genetics, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.,Key Laboratory of Reproductive Genetics, Ministry of Education, Zhejiang University, Hangzhou, Zhejiang, China.,Key Laboratory of Women's Reproductive Health of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Liya Wang
- Department of Reproductive Genetics, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.,Key Laboratory of Reproductive Genetics, Ministry of Education, Zhejiang University, Hangzhou, Zhejiang, China.,Key Laboratory of Women's Reproductive Health of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Yingzhi Huang
- Department of Reproductive Genetics, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.,Key Laboratory of Reproductive Genetics, Ministry of Education, Zhejiang University, Hangzhou, Zhejiang, China.,Key Laboratory of Women's Reproductive Health of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Yanmei Yang
- Department of Reproductive Genetics, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.,Key Laboratory of Reproductive Genetics, Ministry of Education, Zhejiang University, Hangzhou, Zhejiang, China.,Key Laboratory of Women's Reproductive Health of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Minyue Dong
- Department of Reproductive Genetics, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.,Key Laboratory of Reproductive Genetics, Ministry of Education, Zhejiang University, Hangzhou, Zhejiang, China.,Key Laboratory of Women's Reproductive Health of Zhejiang Province, Hangzhou, Zhejiang, China
| |
Collapse
|
4
|
Abstract
Aneuploidy (i.e., abnormal chromosome number) is the leading cause of miscarriage and congenital defects in humans. Moreover, aneuploidy is ubiquitous in cancer. The deleterious phenotypes associated with aneuploidy are likely a result of the imbalance in the levels of gene products derived from the additional chromosome(s). Here, we summarize the current knowledge on how the presence of extra chromosomes impacts gene expression. We describe studies that have found a strict correlation between gene dosage and transcript levels as wells as studies that have found a less stringent correlation, hinting at the possible existence of dosage compensation mechanisms. We conclude by peering into the epigenetic changes found in aneuploid cells and outlining current knowledge gaps and potential areas of future investigation.
Collapse
Affiliation(s)
- Shihoko Kojima
- Department of Biological Sciences & Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA 24061, USA
| | - Daniela Cimini
- Department of Biological Sciences & Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
5
|
Dosage compensation in the process of inactivation/reactivation during both germ cell development and early embryogenesis in mouse. Sci Rep 2017. [PMID: 28623283 PMCID: PMC5473838 DOI: 10.1038/s41598-017-03829-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Ohno proposed that dosage compensation in mammals evolved as a two-step mechanism involving X-inactivation and X-upregulation. While X-inactivation is well characterized, it remains to further analysis whether upregulation of the single activated X chromosome in mammals occurs. We obtained RNA-seq data, including single-cell RNA-seq data, from cells undergoing inactivation/reactivation in both germ cell development and early embryogenesis stages in mouse and calculated the X: A ratio from the gene expression. Our results showed that the X: A ratio is always 1, regardless of the number of X chromosomes being transcribed for expressed genes. Furthermore, the single-cell RNA-seq data across individual cells of mouse preimplantation embryos of mixed backgrounds indicated that strain-specific SNPs could be used to distinguish transcription from maternal and paternal chromosomes and further showed that when the paternal was inactivated, the average gene dosage of the active maternal X chromosome was increased to restore the balance between the X chromosome and autosomes. In conclusion, our analysis of RNA-seq data (particularly single-cell RNA-seq) from cells undergoing the process of inactivation/reactivation provides direct evidence that the average gene dosage of the single active X chromosome is upregulated to achieve a similar level to that of two active X chromosomes and autosomes present in two copies.
Collapse
|
6
|
Abstract
X chromosome inactivation (XCI) is a process in mammals that ensures equal transcript levels between males and females by genetic inactivation of one of the two X chromosomes in females. Central to XCI is the long non-coding RNA Xist, which is highly and specifically expressed from the inactive X chromosome. Xist covers the X chromosome in cis and triggers genetic silencing, but its working mechanism remains elusive. Here, we review current knowledge about Xist regulation, structure, function and conservation and speculate on possible mechanisms by which its action is restricted in cis. We also discuss dosage compensation mechanisms other than XCI and how knowledge from invertebrate species may help to provide a better understanding of the mechanisms of mammalian XCI.
Collapse
Affiliation(s)
- Daphne B. Pontier
- Department of Reproduction and Development, Erasmus MC, Dr. Molewaterplein 50, 3015 GE Rotterdam, The Netherlands
| | - Joost Gribnau
- Department of Reproduction and Development, Erasmus MC, Dr. Molewaterplein 50, 3015 GE Rotterdam, The Netherlands
| |
Collapse
|
7
|
Xiong Y, Chen X, Chen Z, Wang X, Shi S, Wang X, Zhang J, He X. RNA sequencing shows no dosage compensation of the active X-chromosome. Nat Genet 2010; 42:1043-7. [PMID: 21102464 DOI: 10.1038/ng.711] [Citation(s) in RCA: 150] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Mammalian cells from both sexes typically contain one active X chromosome but two sets of autosomes. It has previously been hypothesized that X-linked genes are expressed at twice the level of autosomal genes per active allele to balance the gene dose between the X chromosome and autosomes (termed 'Ohno's hypothesis'). This hypothesis was supported by the observation that microarray-based gene expression levels were indistinguishable between one X chromosome and two autosomes (the X to two autosomes ratio (X:AA) ~1). Here we show that RNA sequencing (RNA-Seq) is more sensitive than microarray and that RNA-Seq data reveal an X:AA ratio of ~0.5 in human and mouse. In Caenorhabditis elegans hermaphrodites, the X:AA ratio reduces progressively from ~1 in larvae to ~0.5 in adults. Proteomic data are consistent with the RNA-Seq results and further suggest the lack of X upregulation at the protein level. Together, our findings reject Ohno’s hypothesis, necessitating a major revision of the current model of dosage compensation in the evolution of sex chromosomes.
Collapse
Affiliation(s)
- Yuanyan Xiong
- State Key Laboratory of Biocontrol, College of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Mank JE. Sex chromosomes and the evolution of sexual dimorphism: lessons from the genome. Am Nat 2010; 173:141-50. [PMID: 20374139 DOI: 10.1086/595754] [Citation(s) in RCA: 148] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Females and males of many animals exhibit a striking array of sexual dimorphisms, ranging from the primary differences of the gametes and gonads to the somatic differences often seen in behavior, morphology, and physiology. These differences raise many questions regarding how such divergent phenotypes can arise from a genome that is largely shared between the sexes. Recent progress in genomics has revealed some of the actual genetic mechanisms that create separate sex-specific phenotypes, and the evidence indicates that thousands of genes across all portions of the genome contribute to male and female forms through sex-biased gene expression. Related work has begun to define the strength and influence of sex-specific evolutionary forces that shape these phenotypic dimorphisms and how they in turn affect the genome. Additionally, theory has long suggested that the evolution of sexual dimorphism is facilitated by sex chromosomes, as these are the only portions of the genome that differ between males and females. Genomic analysis indicates that there is indeed a relationship between sexual dimorphism and the sex chromosomes. However, the connection is far more complicated than current theory allows, and this may ultimately require a reexamination of the assumptions so that predictions match the accumulating empirical data.
Collapse
Affiliation(s)
- Judith E Mank
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, United Kingdom.
| |
Collapse
|
9
|
Melamed E, Arnold AP. The role of LINEs and CpG islands in dosage compensation on the chicken Z chromosome. Chromosome Res 2009; 17:727-36. [PMID: 19672682 PMCID: PMC2759020 DOI: 10.1007/s10577-009-9068-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2009] [Accepted: 07/02/2009] [Indexed: 11/28/2022]
Abstract
Most avian Z genes are expressed more highly in ZZ males than ZW females, suggesting that chromosome-wide mechanisms of dosage compensation have not evolved. Nevertheless, a small percentage of Z genes are expressed at similar levels in males and females, an indication that a yet unidentified mechanism compensates for the sex difference in copy number. Primary DNA sequences are thought to have a role in determining chromosome gene inactivation status on the mammalian X chromosome. However, it is currently unknown whether primary DNA sequences also mediate chicken Z gene compensation status. Using a combination of chicken DNA sequences and Z gene compensation profiles of 310 genes, we explored the relationship between Z gene compensation status and primary DNA sequence features. Statistical analysis of different Z chromosomal features revealed that long interspersed nuclear elements (LINEs) and CpG islands are enriched on the Z chromosome compared with 329 other DNA features. Linear support vector machine (SVM) classifiers, using primary DNA sequences, correctly predict the Z compensation status for >60% of all Z-linked genes. CpG islands appear to be the most accurate classifier and alone can correctly predict compensation of 63% of Z genes. We also show that LINE CR1 elements are enriched 2.7-fold on the chicken Z chromosome compared with autosomes and that chicken chromosomal length is highly correlated with percentage LINE content. However, the position of LINE elements is not significantly associated with dosage compensation status of Z genes. We also find a trend for a higher proportion of CpG islands in the region of the Z chromosome with the fewest dosage-compensated genes compared with the region containing the greatest concentration of compensated genes. Comparison between chicken and platypus genomes shows that LINE elements are not enriched on sex chromosomes in platypus, indicating that LINE accumulation is not a feature of all sex chromosomes. Our results suggest that CpG islands are not randomly distributed on the Z chromosome and may influence Z gene dosage compensation status.
Collapse
Affiliation(s)
- Esther Melamed
- Department of Physiological Science and Laboratory of Neuroendocrinology of the Brain Research Institute, University of California, 621 Charles Young Drive South, Los Angeles, CA 90095-1606, USA.
| | | |
Collapse
|
10
|
Evaluating dosage compensation on the chicken Z chromosome: should effective dosage compensation eliminate sexual bias? Heredity (Edinb) 2009; 103:357-9. [PMID: 19672281 DOI: 10.1038/hdy.2009.91] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
11
|
Shibata S, Lee JT. MacroRNAs in the Epigenetic Control of X-Chromosome Inactivation. Epigenomics 2008. [DOI: 10.1007/978-1-4020-9187-2_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
12
|
Non-coding RNAs revealed during identification of genes involved in chicken immune responses. Immunogenetics 2008; 61:55-70. [PMID: 19009289 DOI: 10.1007/s00251-008-0337-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2008] [Accepted: 10/13/2008] [Indexed: 12/12/2022]
Abstract
Recent large-scale cDNA cloning studies have shown that a significant proportion of the transcripts expressed from vertebrate genomes do not appear to encode protein. Moreover, it was reported in mammals (human and mice) that these non-coding transcripts are expressed and regulated by mechanisms similar to those involved in the control of protein-coding genes. We have produced a collection of cDNA sequences from immunologically active tissues with the aim of discovering chicken genes involved in immune mechanisms, and we decided to explore the non-coding component of these immune-related libraries. After finding known non-coding RNAs (miRNA, snRNA, snoRNA), we identified new putative mRNA-like non-coding RNAs. We characterised their expression profiles in immune-related samples. Some of them showed changes in expression following viral infections. As they exhibit patterns of expression that parallel the behaviour of protein-coding RNAs in immune tissues, our study suggests that they could play an active role in the immune response.
Collapse
|
13
|
All dosage compensation is local: Gene-by-gene regulation of sex-biased expression on the chicken Z chromosome. Heredity (Edinb) 2008; 102:312-20. [DOI: 10.1038/hdy.2008.116] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
|
14
|
A sequence motif within chromatin entry sites directs MSL establishment on the Drosophila X chromosome. Cell 2008; 134:599-609. [PMID: 18724933 DOI: 10.1016/j.cell.2008.06.033] [Citation(s) in RCA: 203] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2008] [Revised: 05/22/2008] [Accepted: 06/13/2008] [Indexed: 01/13/2023]
Abstract
The Drosophila MSL complex associates with active genes specifically on the male X chromosome to acetylate histone H4 at lysine 16 and increase expression approximately 2-fold. To date, no DNA sequence has been discovered to explain the specificity of MSL binding. We hypothesized that sequence-specific targeting occurs at "chromatin entry sites," but the majority of sites are sequence independent. Here we characterize 150 potential entry sites by ChIP-chip and ChIP-seq and discover a GA-rich MSL recognition element (MRE). The motif is only slightly enriched on the X chromosome ( approximately 2-fold), but this is doubled when considering its preferential location within or 3' to active genes (>4-fold enrichment). When inserted on an autosome, a newly identified site can direct local MSL spreading to flanking active genes. These results provide strong evidence for both sequence-dependent and -independent steps in MSL targeting of dosage compensation to the male X chromosome.
Collapse
|
15
|
Abstract
The genomes of higher eukaryotes are carefully balanced systems of gene expression that compensate for the different numbers of sex chromosomes in the two sexes by adjusting gene expression levels. Different strategies for sex chromosome dosage compensation have evolved, which all involve modulating chromatin structure as a means to fine-tune transcription levels. As data accumulate, previous over-simplifications are being revised, and novel features of the compensation processes are gaining attention, many of which are of sufficient global validity to influence our view on gene expression beyond the realm of dosage compensation itself.
Collapse
Affiliation(s)
- Tobias Straub
- Adolf Butenandt Institute, Department of Molecular Biology, Ludwig Maximilians University, 80336 Munich, Germany
| | | |
Collapse
|
16
|
Melamed E, Arnold AP. Regional differences in dosage compensation on the chicken Z chromosome. Genome Biol 2007; 8:R202. [PMID: 17900367 PMCID: PMC2375040 DOI: 10.1186/gb-2007-8-9-r202] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2007] [Revised: 09/19/2007] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Most Z chromosome genes in birds are expressed at a higher level in ZZ males than in ZW females, and thus are relatively ineffectively dosage compensated. Some Z genes are compensated, however, by an unknown mechanism. Previous studies identified a non-coding RNA in the male hypermethylated (MHM) region, associated with sex-specific histone acetylation, which has been proposed to be involved in dosage compensation. RESULTS Using microarray mRNA expression analysis, we find that dosage compensated and non-compensated genes occur across the Z chromosome, but a cluster of compensated genes are found in the MHM region of chicken chromosome Zp, whereas Zq is enriched in non-compensated genes. The degree of dosage compensation among Z genes is predicted better by the level of expression of Z genes in males than in females, probably because of better compensation of genes with lower levels of expression. Compensated genes have different functional properties than non-compensated genes, suggesting that dosage compensation has evolved gene-by-gene according to selective pressures on each gene. The group of genes comprising the MHM region also resides on a primitive mammalian (platypus) sex chromosome and, thus, may represent an ancestral precursor to avian ZZ/ZW and monotreme XX/XY sex chromosome systems. CONCLUSION The aggregation of dosage compensated genes near the MHM locus may reflect a local sex- and chromosome-specific mechanism of dosage compensation, perhaps mediated by the MHM non-coding RNA.
Collapse
Affiliation(s)
- Esther Melamed
- Department of Physiological Science, and Laboratory of Neuroendocrinology of the Brain Research Institute, University of California, Los Angeles, CA 90095-1606, USA
| | - Arthur P Arnold
- Department of Physiological Science, and Laboratory of Neuroendocrinology of the Brain Research Institute, University of California, Los Angeles, CA 90095-1606, USA
| |
Collapse
|