1
|
MicroRNAs and Progesterone Receptor Signaling in Endometriosis Pathophysiology. Cells 2022; 11:cells11071096. [PMID: 35406659 PMCID: PMC8997421 DOI: 10.3390/cells11071096] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/13/2022] [Accepted: 03/23/2022] [Indexed: 12/21/2022] Open
Abstract
Endometriosis is a significant disease characterized by infertility and pelvic pain in which endometrial stromal and glandular tissue grow in ectopic locations. Altered responsiveness to progesterone is a contributing factor to endometriosis pathophysiology, but the precise mechanisms are poorly understood. Progesterone resistance influences both the eutopic and ectopic (endometriotic lesion) endometrium. An inability of the eutopic endometrium to properly respond to progesterone is believed to contribute to the infertility associated with the disease, while an altered responsiveness of endometriotic lesion tissue may contribute to the survival of the ectopic tissue and associated symptoms. Women with endometriosis express altered levels of several endometrial progesterone target genes which may be due to the abnormal expression and/or function of progesterone receptors and/or chaperone proteins, as well as inflammation, genetics, and epigenetics. MiRNAs are a class of epigenetic modulators proposed to play a role in endometriosis pathophysiology, including the modulation of progesterone signaling. In this paper, we summarize the role of progesterone receptors and progesterone signaling in endometriosis pathophysiology, review miRNAs, which are over-expressed in endometriosis tissues and fluids, and follow this with a discussion on the potential regulation of key progesterone signaling components by these miRNAs, concluding with suggestions for future research endeavors in this area.
Collapse
|
2
|
Ribeiro AO, de Oliveira AC, Costa JM, Nachtigall PG, Herkenhoff ME, Campos VF, Delella FK, Pinhal D. MicroRNA roles in regeneration: Multiple lessons from zebrafish. Dev Dyn 2021; 251:556-576. [PMID: 34547148 DOI: 10.1002/dvdy.421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 08/23/2021] [Accepted: 09/07/2021] [Indexed: 12/23/2022] Open
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs with pivotal roles in the control of gene expression. By comparing the miRNA profiles of uninjured vs. regenerating tissues and structures, several studies have found that miRNAs are potentially involved in the regenerative process. By inducing miRNA overexpression or inhibition, elegant experiments have directed regenerative responses validating relevant miRNA-to-target interactions. The zebrafish (Danio rerio) has been the epicenter of regenerative research because of its exceptional capability to self-repair damaged tissues and body structures. In this review, we discuss recent discoveries that have improved our understanding of the impact of gene regulation mediated by miRNAs in the context of the regeneration of fins, heart, retina, and nervous tissue in zebrafish. We compiled what is known about the miRNA control of regeneration in these tissues and investigated the links among up-regulated and down-regulated miRNAs, their putative or validated targets, and the regenerative process. Finally, we briefly discuss the forthcoming prospects, highlighting directions and the potential for further development of this field.
Collapse
Affiliation(s)
- Amanda Oliveira Ribeiro
- Laboratório Genômica e Evolução Molecular (LGEM), Departamento de Ciências Químicas e Biológicas, Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Botucatu, SP, Brazil
| | - Arthur Casulli de Oliveira
- Laboratório Genômica e Evolução Molecular (LGEM), Departamento de Ciências Químicas e Biológicas, Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Botucatu, SP, Brazil
| | - Juliana Mara Costa
- Laboratório Genômica e Evolução Molecular (LGEM), Departamento de Ciências Químicas e Biológicas, Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Botucatu, SP, Brazil
| | - Pedro Gabriel Nachtigall
- Laboratório Genômica e Evolução Molecular (LGEM), Departamento de Ciências Químicas e Biológicas, Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Botucatu, SP, Brazil.,Laboratório Especial de Toxicologia Aplicada (LETA), CeTICS, Instituto Butantan, São Paulo, SP, Brazil
| | - Marcos Edgar Herkenhoff
- Laboratório Genômica e Evolução Molecular (LGEM), Departamento de Ciências Químicas e Biológicas, Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Botucatu, SP, Brazil.,Departamento de Tecnologia Bioquímico-Farmacêutica, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Vinicius Farias Campos
- Laboratório de Genômica Estrutural, Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Flávia Karina Delella
- Departamento de Biologia Estrutural e Funcional, Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Botucatu, SP, Brazil
| | - Danillo Pinhal
- Laboratório Genômica e Evolução Molecular (LGEM), Departamento de Ciências Químicas e Biológicas, Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Botucatu, SP, Brazil
| |
Collapse
|
3
|
Garcia A, Dunoyer-Geindre S, Fish RJ, Neerman-Arbez M, Reny JL, Fontana P. Methods to Investigate miRNA Function: Focus on Platelet Reactivity. Thromb Haemost 2021; 121:409-421. [PMID: 33124028 PMCID: PMC8263142 DOI: 10.1055/s-0040-1718730] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 09/08/2020] [Indexed: 12/14/2022]
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs modulating protein production. They are key players in regulation of cell function and are considered as biomarkers in several diseases. The identification of the proteins they regulate, and their impact on cell physiology, may delineate their role as diagnostic or prognostic markers and identify new therapeutic strategies. During the last 3 decades, development of a large panel of techniques has given rise to multiple models dedicated to the study of miRNAs. Since plasma samples are easily accessible, circulating miRNAs can be studied in clinical trials. To quantify miRNAs in numerous plasma samples, the choice of extraction and purification techniques, as well as normalization procedures, are important for comparisons of miRNA levels in populations and over time. Recent advances in bioinformatics provide tools to identify putative miRNAs targets that can then be validated with dedicated assays. In vitro and in vivo approaches aim to functionally validate candidate miRNAs from correlations and to understand their impact on cellular processes. This review describes the advantages and pitfalls of the available techniques for translational research to study miRNAs with a focus on their role in regulating platelet reactivity.
Collapse
Affiliation(s)
- Alix Garcia
- Geneva Platelet Group, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | | | - Richard J. Fish
- Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland
| | - Marguerite Neerman-Arbez
- Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland
- iGE3, Institute of Genetics and Genomics in Geneva, Geneva, Switzerland
| | - Jean-Luc Reny
- Geneva Platelet Group, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Division of General Internal Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Pierre Fontana
- Geneva Platelet Group, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Division of Angiology and Haemostasis, Geneva University Hospitals, Geneva, Switzerland
| |
Collapse
|
4
|
Zygotic Genome Activation: Critical Prelude to the Most Important Time of Your Life. Methods Mol Biol 2021; 2218:319-329. [PMID: 33606242 DOI: 10.1007/978-1-0716-0970-5_25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Activation of the embryonic genome during development represents a major developmental transition in all species. The history of its exploration began in the 1950s-1960s, when this idea was put forward and proven experimentally by Alexander Neyfakh. He observed the aberrant development of fish embryos upon X-ray irradiation and noted the different developmental outcomes depending on the stage when fertilized eggs were subjected to irradiation. Neyfakh also discriminated a regional difference of X-irradiation between the nucleus and the cytoplasm. By selecting the X-ray dose causing nuclear damage, he determined the beginning of zygotic transcription, which at that time became known as the morphogenetic function of nuclei. His team defined the link of zygotic transcription with the asynchronization of cell division and cell migration, the two other hallmarks, which along with the morphogenetic function (or the zygotic genome activation), are at the core of the mid-blastula transition during development. Within this framework, current studies using maternal mutants and application of modern methods of whole-embryo and single-cell transcriptomics begin to decipher the molecular mechanisms of the mid-blastula transition (or the maternal-zygotic transition).
Collapse
|
5
|
Wang X, Song X, Bhandari RK. Distinct expression patterns of seven crucial microRNAs during early embryonic development in medaka (Oryzias latipes). Gene Expr Patterns 2020; 37:119133. [PMID: 32800847 DOI: 10.1016/j.gep.2020.119133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 07/18/2020] [Accepted: 08/11/2020] [Indexed: 12/11/2022]
Abstract
MicroRNAs (i.e. miRNAs) are small non-coding RNAs that play essential modulation roles in embryonic development in vertebrates. Paternal and maternal miRNAs contribute to the development of post-fertilization embryo and zygotic genome activation. The pattern of expression and their roles in embryonic development of medaka are not clearly understood. The present study, therefore, examined a temporal expression of seven miRNAs, ola-let-7a, ola-miR-202-3p, ola-miR-126-3p, ola-miR-122, ola-miR-92a, ola-miR-125a-3p and ola-miR-430a in sperm, oocytes, and embryos during early developmental stages. Three unique expression patterns of miRNAs were observed. ola-let7a, ola-miR-202-3p and ola-miR-126-3p showed both paternal and maternal expression, and ola-miR-122, ola-miR-92a, ola-miR-125a-3p showed maternal expression only. The expression of six out of seven miRNAs significantly decreased after maternal-zygotic transition (MZT), whereas ola-miR-430a expression initiated only after MZT. The temporal dynamic expression of these miRNAs suggests their potential roles in early embryogenesis and genome-zygotic activation in medaka.
Collapse
Affiliation(s)
- Xuegeng Wang
- Department of Biology, University of North Carolina Greensboro, Greensboro, NC, 27412, USA
| | - Xiaohong Song
- Department of Biology, University of North Carolina Greensboro, Greensboro, NC, 27412, USA; College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China
| | - Ramji K Bhandari
- Department of Biology, University of North Carolina Greensboro, Greensboro, NC, 27412, USA.
| |
Collapse
|
6
|
Kornfeld SF, Cummings SE, Fathi S, Bonin SR, Kothary R. MiRNA-145-5p prevents differentiation of oligodendrocyte progenitor cells by regulating expression of myelin gene regulatory factor. J Cell Physiol 2020; 236:997-1012. [PMID: 32602617 DOI: 10.1002/jcp.29910] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 06/17/2020] [Accepted: 06/17/2020] [Indexed: 12/28/2022]
Abstract
The roles of specific microRNAs (miRNA) in oligodendrocyte (OL) differentiation have been studied in depth. However, miRNAs in OL precursors and oligodendrocyte progenitor cells (OPCs) have been less extensively investigated. MiR-145-5p is highly expressed in OPCs relative to differentiating OLs, suggesting this miRNA may serve a function specifically in OPCs. Knockdown of miR-145-5p in primary OPCs led to spontaneous differentiation, as evidenced by an increased proportion of MAG+ cells, increased cell ramification, and upregulation of multiple myelin genes including MYRF, TPPP, and MAG, and OL cell cycle exit marker Cdkn1c. Supporting this transition to a differentiating state, proliferation was reduced in miR-145-5p knockdown OPCs. Further, knockdown of miR-145-5p in differentiating OLs showed enhanced differentiation, with increased branching, myelin membrane production, and myelin gene expression. We identified several OL-specific genes targeted by miR-145-5p that exhibited upregulation with miR-145-5p knockdown, including myelin gene regulatory factor (MYRF), that could be regulating the prodifferentiation phenotype in both miR-145 knockdown OPCs and OLs. Indeed, spontaneous differentiation with knockdown of miR-145-5p was fully rescued by concurrent knockdown of MYRF. However, proliferation rate was only partially rescued with MYRF knockdown, and overexpression of miR-145-5p in OPCs increased proliferation rate without affecting expression of already lowly expressed differentiation genes. Taken together, these data suggest that in OPCs miR-145-5p both prevents differentiation at least in part by preventing expression of MYRF and promotes proliferation via as-yet-unidentified mechanisms. These findings clarify the need for differential regulation of miR-145-5p between OPCs and OLs and may have further implications in demyelinating diseases such as multiple sclerosis where miR-145-5p is dysregulated.
Collapse
Affiliation(s)
- Samantha F Kornfeld
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada
| | - Sarah E Cummings
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada
| | - Samaneh Fathi
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Canada
| | - Sawyer R Bonin
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Canada
| | - Rashmi Kothary
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada.,Department of Medicine, University of Ottawa, Ottawa, Canada.,Centre for Neuromuscular Disease, University of Ottawa, Ottawa, Canada
| |
Collapse
|
7
|
Liu Q, Wang Z, Zhou X, Tang M, Tan W, Sun T, Wang Y, Deng Y. miR-485-5p/HSP90 axis blocks Akt1 phosphorylation to suppress osteosarcoma cell proliferation and migration via PI3K/AKT pathway. J Physiol Biochem 2020; 76:279-290. [PMID: 32100243 DOI: 10.1007/s13105-020-00730-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 02/06/2020] [Indexed: 02/07/2023]
Abstract
Osteosarcoma (OS) is closely related to the dysregulation of various intracellular signaling pathways, especially the PI3K/Akt signaling pathway. Reportedly, HSP90 was responsible for phospho-Akt stabilization, and both AKT1 and HSP90 were upregulated within osteosarcoma. Herein, we demonstrated that AKT1 and HSP90 mRNA and protein expression were upregulated within osteosarcoma tissues and cells; AKT1 knockdown significantly inhibited OS cell viability. HSP90 knockdown suppressed the phosphorylation of AKT1, decreased ki-67 and Vimentin protein levels, enhanced p21 and E-cadherin protein levels, and inhibited OS cell proliferation and migration; AKT1 overexpression exerted opposing effects and significantly attenuated the effects of HSP90 knockdown. miR-485-5p targeted AKT1 and HSP90 3'-UTR to inhibit AKT1 and HSP90 expression. miR-485-5p overexpression dramatically reduced AKT1, HSP90, and ki-67 proteins, increased E-cadherin protein levels, and inhibited OS cell proliferation and migration. In conclusion, HSP90 knockdown blocked the phosphorylation of AKT1 suppressing the proliferation and migration capacity of OS cells via the PI3K/AKT pathway; miR-485-5p binds to HSP90 and AKT1 in their 3'-UTR to inhibit HSP90 and AKT1 expression, therefore exerting a tumor suppressor function within osteosarcoma.
Collapse
Affiliation(s)
- Qing Liu
- Department of Spine Surgery, The Third Xiangya Hospital of Central South University, No. 138, Tongzipo Road, Changsha, Hunan, People's Republic of China.,Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Zhenting Wang
- Department of Spine Surgery, The Third Xiangya Hospital of Central South University, No. 138, Tongzipo Road, Changsha, Hunan, People's Republic of China.,Department of urology Surgery, Haikou People's Hospital/Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, 410011, Hainan, China
| | - Xiaohua Zhou
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Mingying Tang
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Wei Tan
- Department of Spine Surgery, The Third Xiangya Hospital of Central South University, No. 138, Tongzipo Road, Changsha, Hunan, People's Republic of China.,Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Tianshi Sun
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Yifang Wang
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Youwen Deng
- Department of Spine Surgery, The Third Xiangya Hospital of Central South University, No. 138, Tongzipo Road, Changsha, Hunan, People's Republic of China.
| |
Collapse
|
8
|
Decreased Level of Blood MicroRNA-133b in Men with Opioid Use Disorder on Methadone Maintenance Therapy. J Clin Med 2019; 8:jcm8081105. [PMID: 31349687 PMCID: PMC6722972 DOI: 10.3390/jcm8081105] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 06/14/2019] [Accepted: 07/24/2019] [Indexed: 12/20/2022] Open
Abstract
Although previous animal studies have indicated that certain micro ribonucleic acids (microRNAs) play a part in the pathway of opioid addiction, whether such findings extend to human models is yet unknown. This study aims to investigate the important microRNA expressions in patients with opioid use disorder (OUD) on methadone maintenance treatment (MMT) compared to healthy controls and analyze the correlation between microRNAs and opioid characteristics among the patients. We recruited 50 patients and 25 controls, and both groups were matched regarding gender, age, and body mass index. Serum microRNAs (miR-133b, miR-23b, miR-190, miR-206, miR-210, and miR-21) were measured. The age of OUD onset, duration of MMT participation, and recent daily methadone dosage were considered the opioid characteristics. We adopted the t-test to compare the difference between patients and controls and Pearson's correlation to evaluate the association between microRNAs and opioid profiles. Only the level of miR-133b in OUD patients on MMT was significantly lower than that in healthy controls. We did not detect differences of any other microRNA expressions between the two groups. Furthermore, we found no evidence to support the association between microRNAs and opioid characteristics. This study indicates that miR-133b values may be decreased in OUD patients on MMT.
Collapse
|
9
|
Revealing liver specific microRNAs linked with carbohydrate metabolism of farmed carp, Labeo rohita (Hamilton, 1822). Genomics 2019; 112:32-44. [PMID: 31325488 DOI: 10.1016/j.ygeno.2019.07.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 06/11/2019] [Accepted: 07/16/2019] [Indexed: 12/14/2022]
Abstract
The role of microRNA in gene regulation during developmental biology has been well depicted in several organisms. The present study was performed to investigate miRNAs role in the liver tissues during carbohydrate metabolism and their targets in the farmed carp rohu, Labeo rohita, which is economically important species in aquaculture. Using Illumina-HiSeq technology, a total of 22,612,316; 44,316,046 and 13,338,434 clean reads were obtained from three small-RNA libraries. We have identified 138 conserved and 161 novel miRNAs and studies revealed that miR-22, miR-122, miR-365, miR-200, and miR-146 are involved in carbohydrate metabolism. Further analysis depicted mature miRNA and their predicted target sites in genes that were involved in developmental biology, cellular activities, transportation, etc. This is the first report of the presence of miRNAs in liver tissue of rohu and their comparative profile linked with metabolism serves as a vital resource as a biomarker.
Collapse
|
10
|
Nie M, Tan X, Lu Y, Wu Z, Li J, Xu D, Zhang P, You F. Network of microRNA-transcriptional factor-mRNA in cold response of turbot Scophthalmus maximus. FISH PHYSIOLOGY AND BIOCHEMISTRY 2019; 45:583-597. [PMID: 30790148 DOI: 10.1007/s10695-019-00611-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Accepted: 01/21/2019] [Indexed: 05/19/2023]
Abstract
The aim of this study is to understand fish cold-tolerant mechanism. We analyzed the transcriptional reactions to the cold condition in turbot Scophthalmus maximus by using RNA-seq and microRNA (miRNA)-seq. Meio-gynogenetic diploid turbots were treated at 0 °C to distinguish the cold-tolerant (CT) and cold-sensitive (CS) groups. The results showed that there were quite different responses at both mRNA and miRNA levels, with more up-regulated mRNAs (1069 vs. 194) and less down-regulated miRNAs (4 vs. 1) in CT versus CS relative to the control group. The network of miRNA-transcription factor-mRNA, regulating turbot different response to cold stress, was constructed, which involved in cell cycle, component of cell membrane, signal transduction, and circadian rhythm pathways. The above information demonstrates mechanisms by which cold tolerance is increased in fish.
Collapse
Affiliation(s)
- Miaomiao Nie
- CAS Key Laboratory of Experimental Marine Biology, National and Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, People's Republic of China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 10049, People's Republic of China
| | - Xungang Tan
- CAS Key Laboratory of Experimental Marine Biology, National and Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, People's Republic of China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, People's Republic of China
| | - Yunliang Lu
- CAS Key Laboratory of Experimental Marine Biology, National and Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, People's Republic of China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, People's Republic of China
| | - Zhihao Wu
- CAS Key Laboratory of Experimental Marine Biology, National and Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, People's Republic of China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, People's Republic of China
| | - Jun Li
- CAS Key Laboratory of Experimental Marine Biology, National and Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, People's Republic of China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, People's Republic of China
| | - Dongdong Xu
- Key Lab of Mariculture and Enhancement of Zhejiang Province, Marine Fishery Institute of Zhejiang Province, Zhoushan, 316100, Zhejiang Province, People's Republic of China
| | - Peijun Zhang
- CAS Key Laboratory of Experimental Marine Biology, National and Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, People's Republic of China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, People's Republic of China
| | - Feng You
- CAS Key Laboratory of Experimental Marine Biology, National and Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, People's Republic of China.
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, People's Republic of China.
- Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, People's Republic of China.
| |
Collapse
|
11
|
Weiner AMJ, Scampoli NL, Steeman TJ, Dooley CM, Busch-Nentwich EM, Kelsh RN, Calcaterra NB. Dicer1 is required for pigment cell and craniofacial development in zebrafish. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2019; 1862:472-485. [PMID: 30840854 DOI: 10.1016/j.bbagrm.2019.02.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 02/22/2019] [Accepted: 02/23/2019] [Indexed: 12/22/2022]
Abstract
The multidomain RNase III endoribonuclease DICER is required for the generation of most functional microRNAs (miRNAs). Loss of Dicer affects developmental processes at different levels. Here, we characterized the zebrafish Dicer1 mutant, dicer1sa9205, which has a single point mutation induced by N-ethyl-N-nitrosourea mutagenesis. Heterozygous dicer1sa9205 developed normally, being phenotypically indistinguishable from wild-type siblings. Homozygous dicer1sa9205 mutants display smaller eyes, abnormal craniofacial development and aberrant pigmentation. Reduced numbers of both iridophores and melanocytes were observed in the head and ventral trunk of dicer1sa9205 homozygotes; the effect on melanocytes was stronger and detectable earlier in development. The expression of microphthalmia-associated transcription factor a (mitfa), the master gene for melanocytes differentiation, was enhanced in dicer1-depleted fish. Similarly, the expression of SRY-box containing gene 10 (sox10), required for mitfa activation, was higher in mutants than in wild types. In silico and in vivo analyses of either sox10 or mitfa 3'UTRs revealed conserved potential miRNA binding sites likely involved in the post-transcriptional regulation of both genes. Based on these findings, we propose that dicer1 participates in the gene regulatory network governing zebrafish melanocyte differentiation by controlling the expression of mitfa and sox10.
Collapse
Affiliation(s)
- Andrea M J Weiner
- Instituto de Biología Molecular y Celular de Rosario (IBR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Ocampo y Esmeralda, S2000EZP Rosario, Argentina.
| | - Nadia L Scampoli
- Instituto de Biología Molecular y Celular de Rosario (IBR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Ocampo y Esmeralda, S2000EZP Rosario, Argentina
| | - Tomás J Steeman
- Instituto de Biología Molecular y Celular de Rosario (IBR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Ocampo y Esmeralda, S2000EZP Rosario, Argentina
| | - Christopher M Dooley
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton CB10 1SA, United Kingdom
| | - Elisabeth M Busch-Nentwich
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton CB10 1SA, United Kingdom; Department of Medicine, University of Cambridge, Cambridge CB2 0QQ, United Kingdom
| | - Robert N Kelsh
- Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, United Kingdom
| | - Nora B Calcaterra
- Instituto de Biología Molecular y Celular de Rosario (IBR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Ocampo y Esmeralda, S2000EZP Rosario, Argentina.
| |
Collapse
|
12
|
Role of microRNAs in inner ear development and hearing loss. Gene 2018; 686:49-55. [PMID: 30389561 DOI: 10.1016/j.gene.2018.10.075] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 09/12/2018] [Accepted: 10/25/2018] [Indexed: 02/06/2023]
Abstract
The etiology of hearing loss tends to be multi-factorial and affects a significant proportion of the global population. Despite the differences in etiology, a common physical pathological change that leads to hearing loss is damage to the mechanosensory hair cells of the inner ear. MicroRNAs (miRNAs) have been shown to play a role in inner ear development and thus, may play a role in the development or prevention of hearing loss. In this paper, we review the mechanism of action of miRNAs in the auditory system. We present an overview about the role of miRNAs in inner ear development, summarize the current research on the role of miRNAs in gene regulation, and discuss the effects of both miRNA mutations as well as overexpression. We discuss the crucial role of miRNAs in ensuring normal physiological development of the inner ear. Any deviation from the proper function of miRNA in the cochlea seems to contribute to deleterious damage to the structure of the auditory system and subsequently results in hearing loss. As interest for miRNA research increases, this paper serves as a platform to review current understandings and postulate future avenues for research. A better knowledge about the role of miRNA in the auditory system will help in developing novel treatment modalities for restoring hearing function based on regeneration of damaged inner ear hair cells.
Collapse
|
13
|
Bhattacharya M, Ghosh S, Malick RC, Patra BC, Das BK. Therapeutic applications of zebrafish (Danio rerio) miRNAs linked with human diseases: A prospective review. Gene 2018; 679:202-211. [PMID: 30201335 DOI: 10.1016/j.gene.2018.09.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 08/31/2018] [Accepted: 09/06/2018] [Indexed: 11/17/2022]
Abstract
MicroRNAs (miRNAs) are the class of small, non-coding RNAs that are produced from precursor transcripts by subsequent processing steps mediated by members of the RNaseIII family, Dicer and Drosha protein within cell. The importance of zebrafish miRNAs in regulation of normal cellular development and support to various kinds of metabolism process. Although the zebrafish model provides a fundamental platform for the study of developmental biology but recent work with zebrafish model has expanded its appliance to a broad range of experimental studies relevant to different kind of human diseases. Presently, the zebrafish model is used for the study of cardiovascular disease, schizophrenia, bipolar I disorder in eyes, psoriasis, spinal cord injury, cancer and diabetes that showing in some selected miRNAs are regulate these diseases in molecular levels. Here, a superior drive performed to depict the fundamental utilization of the zebrafish miRNAs that targeted to several clinical diseases connected to human. This review aims to provide a summary of understanding of the cellular mechanism which is responsible for selected diseases and suggests some therapeutic application for inhibition of miRNA functions.
Collapse
Affiliation(s)
- Manojit Bhattacharya
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata 700 120, West Bengal, India
| | - Soumendu Ghosh
- Centre For Aquaculture Research, Extension & Livelihood, Department of Aquaculture Management & Technology, Vidyasagar University, Midnapore 721102, West Bengal, India
| | - Ramesh Chandra Malick
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata 700 120, West Bengal, India
| | - Bidhan Chandra Patra
- Centre For Aquaculture Research, Extension & Livelihood, Department of Aquaculture Management & Technology, Vidyasagar University, Midnapore 721102, West Bengal, India
| | - Basanta Kumar Das
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata 700 120, West Bengal, India.
| |
Collapse
|
14
|
Jin S, He J, Li J, Guo R, Shu Y, Liu P. MiR-873 inhibition enhances gefitinib resistance in non-small cell lung cancer cells by targeting glioma-associated oncogene homolog 1. Thorac Cancer 2018; 9:1262-1270. [PMID: 30126075 PMCID: PMC6166090 DOI: 10.1111/1759-7714.12830] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 07/09/2018] [Accepted: 07/10/2018] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The five-year survival rate of non-small cell lung cancer (NSCLC) patients is very low. MiR-873 is involved in the growth, metastasis, and differentiation of tumors. Herein, we determined the target gene and influence of miR-873 in NSCLC. METHODS MiRanda and Targetscan websites were used to predict the target gene of miR-873 in NSCLC. Luciferase activity was examined using a dual luciferase reporter gene assay kit. The viability, tube formation, and proliferation of cells were analyzed by cell counting kit-8, angiogenic analysis, and flow cytometry, respectively. The levels of miR-873 and GLI1 were evaluated using quantitative real-time PCR and Western blot assays. RESULTS Low levels of GLI1 and high levels of miR-873 were observed in an NSCLC cell line (PC9) highly sensitive to EGFR-tyrosine kinase inhibitors. There was a negative correlation between miR-873 and GLI1 expression in PC9 and PC9/GR cells. The inhibition of miR-873 enhanced GLI1 levels. MiR-873 expression was inhibited by gefitinib. Gefitinib markedly reduced the viability, tube formation, and cell number in PC9 cells. However, suppression of miR-873 enhanced the resistance and knockdown of GLI1 enhanced the sensitivity of PC9 cells to gefitinib. CONCLUSIONS GLI1 is a target gene of miR-873 in NSCLC. The inhibition of miR-873 increased gefitinib resistance of NSCLC cells via the upregulation of GLI1. These results indicate that miR-873-GLI1 signaling is involved in gefitinib resistance in NSCLC.
Collapse
Affiliation(s)
- Shidai Jin
- Department of Medical Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jing He
- Department of Medical Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jun Li
- Department of Medical Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Renhua Guo
- Department of Medical Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yongqian Shu
- Department of Medical Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ping Liu
- Department of Medical Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
15
|
Weiner AMJ. MicroRNAs and the neural crest: From induction to differentiation. Mech Dev 2018; 154:98-106. [PMID: 29859253 DOI: 10.1016/j.mod.2018.05.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 05/18/2018] [Accepted: 05/28/2018] [Indexed: 01/06/2023]
Abstract
MicroRNAs are small noncoding RNAs that can control gene expression by base pairing to partially complementary mRNAs. Regulation by microRNAs plays essential roles in diverse biological processes such as neural crest formation during embryonic development. The neural crest is a multipotent cell population that develops from the dorsal neural fold of vertebrate embryos in order to migrate extensively and differentiate into a variety of tissues. Gene regulatory networks that coordinate neural crest cell specification and differentiation have been considerably studied so far. Although it is known that microRNAs play important roles in neural crest development, posttranscriptional regulation by microRNAs has not been deeply characterized yet. This review is focused on the microRNAs identified so far in order to regulate gene expression of neural crest cells during vertebrate development.
Collapse
Affiliation(s)
- Andrea M J Weiner
- Instituto de Biología Molecular y Celular de Rosario (IBR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Ocampo y Esmeralda, S2000EZP Rosario, Argentina.
| |
Collapse
|
16
|
Peng C, Wang YL. Editorial: MicroRNAs as New Players in Endocrinology. Front Endocrinol (Lausanne) 2018; 9:459. [PMID: 30174649 PMCID: PMC6107694 DOI: 10.3389/fendo.2018.00459] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 07/26/2018] [Indexed: 11/13/2022] Open
Affiliation(s)
- Chun Peng
- Department of Biology and Centre for Research in Biomolecular Interactions, York University, Toronto, ON, Canada
- *Correspondence: Chun Peng
| | - Yan-Ling Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
17
|
Introduction: A Brief Guide to the Periconception Environment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1014:1-14. [PMID: 28864982 DOI: 10.1007/978-3-319-62414-3_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Definition of the periconception period is not an exact science and is probably somewhat arbitrary. One can define it as spanning the period from the final stages of gamete maturation until formation of the embryo and the stages of embryonic development and implantation. Hence, the periconception period includes periods when spermatozoa are in the female reproductive tract, oocytes are matured and ovulated into the oviduct, fertilization occurs and the embryo undergoes development. By definition the implantation process and the early stages of placenta formation are also regarded as a part of the periconception period. In this article we highlight a few of the major advances which have transformed this topic over the last two decades. It is now clear that the fitness and wellbeing of developing mammalian embryos, including the human, are highly dependent on the health status, diet and habits of both parents especially in the months and weeks that precede the formation of oocytes and spermatozoa.
Collapse
|
18
|
Avital G, França GS, Yanai I. Bimodal Evolutionary Developmental miRNA Program in Animal Embryogenesis. Mol Biol Evol 2017; 35:646-654. [PMID: 29237075 DOI: 10.1093/molbev/msx316] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
miRNAs play essential roles in the mechanics of gene regulation, however, on an organismal-scale, the processes in which they are deployed are not well understood. Here, we adopt an evolutionary developmental approach to study miRNA function by examining their expression throughout embryogenesis in both Caenorhabditis elegans and Drosophila melanogaster. We find that, in both species, miRNA transcriptomic shifts in a punctuated fashion during the mid-developmental transition, specifying two dominant modes of early and late expression profiles. Strikingly, late-expressed miRNAs are enriched for phylogenetic conservation and function by fine-tuning the expression of their targets, implicating a role in the canalization of cell types during differentiation. In contrast, early expressed miRNAs are inversely expressed with their targets suggesting strong target-inhibition. Taken together, our work exposes a bimodal role for miRNA function during animal development, involving late-expressed physiological roles and early expressed repressive roles.
Collapse
Affiliation(s)
- Gal Avital
- Department of Biology, Technion-Israel Institute of Technology, Haifa, Israel.,Department of Biochemistry and Molecular Pharmacology, Institute for Computational Medicine, New York University School of Medicine, New York, NY
| | - Gustavo S França
- Department of Biochemistry and Molecular Pharmacology, Institute for Computational Medicine, New York University School of Medicine, New York, NY
| | - Itai Yanai
- Department of Biochemistry and Molecular Pharmacology, Institute for Computational Medicine, New York University School of Medicine, New York, NY
| |
Collapse
|
19
|
Abstract
Zebrafish have been extensively used for studying vertebrate development and modeling human diseases such as cancer. In the last two decades, they have also emerged as an important model for developmental toxicology research and, more recently, for studying the developmental origins of health and disease (DOHaD). It is widely recognized that epigenetic mechanisms mediate the persistent effects of exposure to chemicals during sensitive windows of development. There is considerable interest in understanding the epigenetic mechanisms associated with DOHaD using zebrafish as a model system. This review summarizes our current knowledge on the effects of environmental chemicals on DNA methylation, histone modifications and noncoding RNAs in the context of DOHaD, and suggest some key considerations in designing experiments for characterizating the mechanisms of action.
Collapse
Affiliation(s)
- Neelakanteswar Aluru
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA
| |
Collapse
|
20
|
Bhattacharya M, Sharma AR, Sharma G, Patra BC, Nam JS, Chakraborty C, Lee SS. The crucial role and regulations of miRNAs in zebrafish development. PROTOPLASMA 2017; 254:17-31. [PMID: 26820151 DOI: 10.1007/s00709-015-0931-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 12/10/2015] [Indexed: 06/05/2023]
Abstract
To comprehend the events during developmental biology, fundamental knowledge about the basic machinery of regulation is a prerequisite. MicroRNA (miRNAs) act as regulators in most of the biological processes and recently, it has been concluded that miRNAs can act as modulatory factors even during developmental process from lower to higher animal. Zebrafish, because of its favorable attributes like tiny size, transparent embryo, and rapid external embryonic development, has gained a preferable status among all other available experimental animal models. Currently, zebrafish is being utilized for experimental studies related to stem cells, regenerative molecular medicine as well drug discovery. Therefore, it is important to understand precisely about the various miRNAs that controls developmental biology of this vertebrate model. In here, we have discussed about the miRNA-controlled zebrafish developmental stages with a special emphasis on different miRNA families such as miR-430, miR-200, and miR-133. Moreover, we have also reviewed the role of various miRNAs during embryonic and vascular development stages of zebrafish. In addition, efforts have been made to summarize the involvement of miRNAs in the development of different body parts such as the brain, eye, heart, muscle, and fin, etc. In each section, we have tried to fulfill the gaps of zebrafish developmental biology with the help of available knowledge of miRNA research. We hope that precise knowledge about the miRNA-regulated developmental stages of zebrafish may further help the researchers to efficiently utilize this vertebrate model for experimental purpose.
Collapse
Affiliation(s)
- Manojit Bhattacharya
- Aquaculture Research Unit, Department of Zoology, Vidyasagar University, Midnapore, 721102, West Bengal, India
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon, 200704, South Korea
| | - Ashish Ranjan Sharma
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon, 200704, South Korea
| | - Garima Sharma
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon, 200704, South Korea
- Amity Institute of Nanotechnology, Amity University Uttar Pradesh, Noida, 201313, India
| | - Bidhan Chandra Patra
- Aquaculture Research Unit, Department of Zoology, Vidyasagar University, Midnapore, 721102, West Bengal, India
| | - Ju-Suk Nam
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon, 200704, South Korea
| | - Chiranjib Chakraborty
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon, 200704, South Korea.
- Department of Bio-informatics, School of Computer and Information Sciences, Galgotias University, Greater Noida, 201306, India.
| | - Sang-Soo Lee
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon, 200704, South Korea.
- Department of Orthopedic Surgery, Hallym University Hospital-College of Medicine, Chuncheon-si, Gangwon-do, 200-704, Republic of Korea.
| |
Collapse
|
21
|
Mechanisms of Vertebrate Germ Cell Determination. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 953:383-440. [PMID: 27975276 DOI: 10.1007/978-3-319-46095-6_8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Two unique characteristics of the germ line are the ability to persist from generation to generation and to retain full developmental potential while differentiating into gametes. How the germ line is specified that allows it to retain these characteristics within the context of a developing embryo remains unknown and is one focus of current research. Germ cell specification proceeds through one of two basic mechanisms: cell autonomous or inductive. Here, we discuss how germ plasm driven germ cell specification (cell autonomous) occurs in both zebrafish and the frog Xenopus. We describe the segregation of germ cells during embryonic development of solitary and colonial ascidians to provide an evolutionary context to both mechanisms. We conclude with a discussion of the inductive mechanism as exemplified by both the mouse and axolotl model systems. Regardless of mechanism, several general themes can be recognized including the essential role of repression and posttranscriptional regulation of gene expression.
Collapse
|
22
|
Gu KL, Zhang Q, Yan Y, Li TT, Duan FF, Hao J, Wang XW, Shi M, Wu DR, Guo WT, Wang Y. Pluripotency-associated miR-290/302 family of microRNAs promote the dismantling of naive pluripotency. Cell Res 2016; 26:350-66. [PMID: 26742694 PMCID: PMC4783473 DOI: 10.1038/cr.2016.2] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 11/16/2015] [Accepted: 11/20/2015] [Indexed: 01/20/2023] Open
Abstract
The molecular mechanism controlling the dismantling of naive pluripotency is poorly understood. Here we show that microRNAs (miRNAs) have important roles during naive to primed pluripotency transition. Dgcr8−/− embryonic stem cells (ESCs) failed to completely silence the naive pluripotency program, as well as to establish the primed pluripotency program during differentiation. miRNA profiling revealed that expression levels of a large number of miRNAs changed dynamically and rapidly during naive to primed pluripotency transition. Furthermore, a miRNA screen identified numerous miRNAs promoting naive to primed pluripotency transition. Unexpectedly, multiple miRNAs from miR-290 and miR-302 clusters, previously shown as pluripotency-promoting miRNAs, demonstrated the strongest effects in silencing naive pluripotency. Knockout of both miR-290 and miR-302 clusters but not either alone blocked the silencing of naive pluripotency program. Mechanistically, the miR-290/302 family of miRNAs may facilitate the exit of naive pluripotency in part by promoting the activity of MEK pathway and through directly repressing Akt1. Our study reveals miRNAs as an important class of regulators potentiating ESCs to transition from naive to primed pluripotency, and uncovers context-dependent functions of the miR-290/302 family of miRNAs at different developmental stages.
Collapse
Affiliation(s)
- Kai-Li Gu
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking-Tsinghua Center for Life Science, Institute of Molecular Medicine, Peking University, Beijing 100871, China
| | - Qiang Zhang
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking-Tsinghua Center for Life Science, Institute of Molecular Medicine, Peking University, Beijing 100871, China
| | - Ying Yan
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking-Tsinghua Center for Life Science, Institute of Molecular Medicine, Peking University, Beijing 100871, China
| | - Ting-Ting Li
- Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University Health Science Center, Peking University, Beijing 100083, China
| | - Fei-Fei Duan
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking-Tsinghua Center for Life Science, Institute of Molecular Medicine, Peking University, Beijing 100871, China
| | - Jing Hao
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking-Tsinghua Center for Life Science, Institute of Molecular Medicine, Peking University, Beijing 100871, China
| | - Xi-Wen Wang
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking-Tsinghua Center for Life Science, Institute of Molecular Medicine, Peking University, Beijing 100871, China
| | - Ming Shi
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking-Tsinghua Center for Life Science, Institute of Molecular Medicine, Peking University, Beijing 100871, China
| | - Da-Ren Wu
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking-Tsinghua Center for Life Science, Institute of Molecular Medicine, Peking University, Beijing 100871, China
| | - Wen-Ting Guo
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking-Tsinghua Center for Life Science, Institute of Molecular Medicine, Peking University, Beijing 100871, China
| | - Yangming Wang
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking-Tsinghua Center for Life Science, Institute of Molecular Medicine, Peking University, Beijing 100871, China
| |
Collapse
|
23
|
RNA Binding Proteins in the miRNA Pathway. Int J Mol Sci 2015; 17:ijms17010031. [PMID: 26712751 PMCID: PMC4730277 DOI: 10.3390/ijms17010031] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 12/13/2015] [Accepted: 12/23/2015] [Indexed: 12/21/2022] Open
Abstract
microRNAs (miRNAs) are short ~22 nucleotides (nt) ribonucleic acids which post-transcriptionally regulate gene expression. miRNAs are key regulators of all cellular processes, and the correct expression of miRNAs in an organism is crucial for proper development and cellular function. As a result, the miRNA biogenesis pathway is highly regulated. In this review, we outline the basic steps of miRNA biogenesis and miRNA mediated gene regulation focusing on the role of RNA binding proteins (RBPs). We also describe multiple mechanisms that regulate the canonical miRNA pathway, which depends on a wide range of RBPs. Moreover, we hypothesise that the interaction between miRNA regulation and RBPs is potentially more widespread based on the analysis of available high-throughput datasets.
Collapse
|
24
|
Induction of autophagy improves embryo viability in cloned mouse embryos. Sci Rep 2015; 5:17829. [PMID: 26643778 PMCID: PMC4672298 DOI: 10.1038/srep17829] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 11/06/2015] [Indexed: 11/08/2022] Open
Abstract
Autophagy is an essential cellular mechanism that degrades cytoplasmic proteins and organelles to recycle their components. Moreover, autophagy is essential for preimplantation development in mammals. Here we show that autophagy is also important for reprogramming in somatic cell nuclear transfer (SCNT). Our data indicate that unlike fertilized oocytes, autophagy is not triggered in SCNT embryos during 6 hours of activation. Mechanistically, the inhibited autophagic induction during SCNT activation is due to the cytochalasin B (CB) caused depolymerization of actin filaments. In this study, we induced autophagy during SCNT activation by rapamycin and pp242, which could restore the expected level of autophagy and significantly enhance the development of SCNT embryos to the blastocyst stage when compared with the control (68.5% and 68.7% vs. 41.5%, P < 0.05). Furthermore, the treatment of rapamycin and pp242 accelerates active DNA demethylation indicated by the conversion of 5 mC to 5 hmC, and treatment of rapamycin improves degradation of maternal mRNA as well. Thus, our findings reveal that autophagy is important for development of SCNT embryos and inhibited autophagic induction during SCNT activation might be one of the serious causes of low efficiency of SCNT.
Collapse
|
25
|
Low-temperature microRNA expression in the painted turtle,Chrysemys pictaduring freezing stress. FEBS Lett 2015; 589:3665-70. [DOI: 10.1016/j.febslet.2015.10.026] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 10/21/2015] [Accepted: 10/21/2015] [Indexed: 12/12/2022]
|
26
|
Sullivan CV, Chapman RW, Reading BJ, Anderson PE. Transcriptomics of mRNA and egg quality in farmed fish: Some recent developments and future directions. Gen Comp Endocrinol 2015; 221:23-30. [PMID: 25725305 DOI: 10.1016/j.ygcen.2015.02.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 02/14/2015] [Accepted: 02/18/2015] [Indexed: 11/29/2022]
Abstract
Maternal mRNA transcripts deposited in growing oocytes regulate early development and are under intensive investigation as determinants of egg quality. The research has evolved from single gene studies to microarray and now RNA-Seq analyses in which mRNA expression by virtually every gene can be assessed and related to gamete quality. Such studies have mainly focused on genes changing two- to several-fold in expression between biological states, and have identified scores of candidate genes and a few gene networks whose functioning is related to successful development. However, ever-increasing yields of information from high throughput methods for detecting transcript abundance have far outpaced progress in methods for analyzing the massive quantities of gene expression data, and especially for meaningful relation of whole transcriptome profiles to gamete quality. We have developed a new approach to this problem employing artificial neural networks and supervised machine learning with other novel bioinformatics procedures to discover a previously unknown level of ovarian transcriptome function at which minute changes in expression of a few hundred genes is highly predictive of egg quality. In this paper, we briefly review the progress in transcriptomics of fish egg quality and discuss some future directions for this field of study.
Collapse
Affiliation(s)
- Craig V Sullivan
- Department of Biology, North Carolina State University, Raleigh, NC 27695-7617, USA; Carolina AquaGyn, P.O. Box 12914, Raleigh, NC 27605, USA(1).
| | - Robert W Chapman
- Marine Resources Division, South Carolina Department of Natural Resources, Charleston, SC 29412, USA
| | - Benjamin J Reading
- Department of Biology, North Carolina State University, Raleigh, NC 27695-7617, USA; Department of Applied Ecology, North Carolina State University, Raleigh, NC 27695-7617, USA(1)
| | - Paul E Anderson
- Department of Computer Science, College of Charleston, Charleston, SC 29424, USA
| |
Collapse
|
27
|
Ohana R, Weiman-Kelman B, Raviv S, Tamm ER, Pasmanik-Chor M, Rinon A, Netanely D, Shamir R, Solomon AS, Ashery-Padan R. MicroRNAs are essential for differentiation of the retinal pigmented epithelium and maturation of adjacent photoreceptors. Development 2015; 142:2487-98. [PMID: 26062936 DOI: 10.1242/dev.121533] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Accepted: 06/03/2015] [Indexed: 12/21/2022]
Abstract
Dysfunction of the retinal pigmented epithelium (RPE) results in degeneration of photoreceptors and vision loss and is correlated with common blinding disorders in humans. Although many protein-coding genes are known to be expressed in RPE and are important for its development and maintenance, virtually nothing is known about the in vivo roles of non-coding transcripts. The expression patterns of microRNAs (miRNAs) have been analyzed in a variety of ocular tissues, and a few were implicated to play role in RPE based on studies in cell lines. Here, through RPE-specific conditional mutagenesis of Dicer1 or Dgcr8 in mice, the importance of miRNAs for RPE differentiation was uncovered. miRNAs were found to be dispensable for maintaining RPE fate and survival, and yet they are essential for the acquisition of important RPE properties such as the expression of genes involved in the visual cycle pathway, pigmentation and cell adhesion. Importantly, miRNAs of the RPE are required for maturation of adjacent photoreceptors, specifically for the morphogenesis of the outer segments. The alterations in the miRNA and mRNA profiles in the Dicer1-deficient RPE point to a key role of miR-204 in regulation of the RPE differentiation program in vivo and uncover the importance of additional novel RPE miRNAs. This study reveals the combined regulatory activity of miRNAs that is required for RPE differentiation and for the development of the adjacent neuroretina.
Collapse
Affiliation(s)
- Reut Ohana
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Benjamin Weiman-Kelman
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Shaul Raviv
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Ernst R Tamm
- Institute of Human Anatomy and Embryology, University of Regensburg, D-93053 Regensburg, Germany
| | - Metsada Pasmanik-Chor
- Bioinformatics Unit, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Ariel Rinon
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Dvir Netanely
- Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv 69978, Israel
| | - Ron Shamir
- Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv 69978, Israel
| | - Arie S Solomon
- The Goldschleger Eye Research Institute, Sackler Faculty of Medicine, Tel Aviv University Sheba Medical Center, Tel Hashomer 52621, Israel
| | - Ruth Ashery-Padan
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
28
|
Ma H, Weber GM, Hostuttler MA, Wei H, Wang L, Yao J. MicroRNA expression profiles from eggs of different qualities associated with post-ovulatory ageing in rainbow trout (Oncorhynchus mykiss). BMC Genomics 2015; 16:201. [PMID: 25885637 PMCID: PMC4374207 DOI: 10.1186/s12864-015-1400-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 02/24/2015] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Egg quality is an important aspect in rainbow trout farming. Post-ovulatory aging is one of the most important factors affecting egg quality. MicroRNAs (miRNAs) are the major regulators in various biological processes and their expression profiles could serve as reliable biomarkers for various pathological and physiological conditions. The objective of this study was to identify miRNAs that are associated with egg qualities in rainbow trout using post-ovulatory aged eggs. RESULTS Egg samples from females on day 1, day 7, and day 14 post-ovulation (D1PO, D7PO and D14PO), which had the fertilization rates of 91.8%, 73.4% and less than 50%, respectively, were collected and small RNAs isolated from these samples were subjected to deep sequencing using the Illumina platform. The massive sequencing produced 27,342,477, 26,910,438 and 29,185,371 reads from the libraries of D1PO, D7PO and D14PO eggs, respectively. A three-way comparison of the miRNAs indicated that the egg samples shared 392 known and 236 novel miRNAs, and a total of 414, 481, and 470 known and 243, 298, and 296 novel miRNAs were identified from D1PO, D7PO and D14PO eggs, respectively. Four known miRNAs (omy-miR-193b-3p, omy-miR-203c-3p, omy-miR-499-5p and omy-miR-7550-3p) and two novel miRNAs (omy-miR-nov-95-5p and omy-miR-nov-112-5p) showed significantly higher expression in D1PO eggs relative to D14PO eggs as revealed by both deep sequencing and real time quantitative PCR analysis. GO analysis of the predicted target genes of these differentially expressed miRNAs revealed significantly enriched GO terms that are related to stress response, cell death, DNA damage, ATP generation, signal transduction and transcription regulation. CONCLUSIONS Results indicate that post-ovulatory ageing affects miRNA expression profiles in rainbow trout eggs, which can in turn impact egg quality. Further characterization of the differentially expressed miRNAs and their target genes may provide valuable information on the role of these miRNAs in controlling egg quality, and ultimately lead to the development of biomarkers for prediction of egg quality in rainbow trout.
Collapse
Affiliation(s)
- Hao Ma
- Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, WV, 26506, USA.
| | - Gregory M Weber
- National Center for Cool and Cold Water Aquaculture, USDA/ARS, Kearneysville, WV, 25430, USA.
| | - Mark A Hostuttler
- National Center for Cool and Cold Water Aquaculture, USDA/ARS, Kearneysville, WV, 25430, USA.
| | - Hairong Wei
- School of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI, 49931, USA.
| | - Lei Wang
- Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, WV, 26506, USA.
| | - Jianbo Yao
- Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, WV, 26506, USA.
| |
Collapse
|
29
|
Biggar KK, Storey KB. Evidence for cell cycle suppression and microRNA regulation of cyclin D1 during anoxia exposure in turtles. Cell Cycle 2014; 11:1705-13. [DOI: 10.4161/cc.19790] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
30
|
Tiago DM, Marques CL, Roberto VP, Cancela ML, Laizé V. Mir-20a regulates in vitro mineralization and BMP signaling pathway by targeting BMP-2 transcript in fish. Arch Biochem Biophys 2013; 543:23-30. [PMID: 24361749 DOI: 10.1016/j.abb.2013.12.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 12/02/2013] [Accepted: 12/12/2013] [Indexed: 12/29/2022]
Abstract
MicroRNAs (miRNAs) are important regulators of vertebrate development but their role during skeletogenesis remains unknown. In this regard, we investigated the mineralogenic activity of miR-20a, a miRNA associated with osteogenesis, in fish bone-derived cells. Expression of miR-20a was up-regulated during differentiation and its overexpression inhibited mineralization, suggesting a role in fish tissue calcification. In this regard, a conserved miR-20a binding site was identified in bone morphogenetic protein 2 (BMP-2) 3'UTR and its functionality was evidenced through luciferase assays, and further confirmed by western-blot and qPCR. Type II BMP receptor (BMPR2) is also targeted by miR-20a in mammalian systems and evidence was collected for the presence of a binding site in fish sequences. We propose that miR-20a is a regulator of BMP pathway through specific action on BMP-2 and possibly BMPR2. Overexpression of miR-20a was also shown to up-regulate matrix Gla protein (MGP) transcript, a physiological inhibitor of calcification previously found to form a complex with BMP-2. We propose that MGP may play a role in the anti-mineralogenic effect promoted by miR-20a by decreasing availability of BMP-2. This study gives new insights into miRNA-mediated regulation of BMP-2, and sheds light into the potential role of miR-20a as a regulator of skeletogenesis.
Collapse
Affiliation(s)
- Daniel M Tiago
- Centre of Marine Sciences (CCMAR/CIMAR-LA), University of Algarve, Faro, Portugal.
| | - Cátia L Marques
- Centre of Marine Sciences (CCMAR/CIMAR-LA), University of Algarve, Faro, Portugal; PhD Program in Biomedical Sciences, University of Algarve, Faro, Portugal
| | - Vânia P Roberto
- Centre of Marine Sciences (CCMAR/CIMAR-LA), University of Algarve, Faro, Portugal; PhD Program in Biomedical Sciences, University of Algarve, Faro, Portugal
| | - M Leonor Cancela
- Centre of Marine Sciences (CCMAR/CIMAR-LA), University of Algarve, Faro, Portugal; Department of Biomedical Sciences and Medicine, University of Algarve, Faro, Portugal
| | - Vincent Laizé
- Centre of Marine Sciences (CCMAR/CIMAR-LA), University of Algarve, Faro, Portugal
| |
Collapse
|
31
|
Gays D, Santoro MM. The admiR-able advances in cardiovascular biology through the zebrafish model system. Cell Mol Life Sci 2013; 70:2489-503. [PMID: 23069988 PMCID: PMC11113687 DOI: 10.1007/s00018-012-1181-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 09/12/2012] [Accepted: 09/24/2012] [Indexed: 12/30/2022]
Abstract
MicroRNAs are small non-coding RNAs endogenously expressed by all tissues during development and adulthood. They regulate gene expression by controlling the stability of targeted messenger RNA. In cardiovascular tissues microRNAs play a role by modulating essential genes involved in heart and blood vessel development and homeostasis. The zebrafish (Danio rerio) system is a recognized vertebrate model system useful to study cardiovascular biology; recently, it has been used to investigate microRNA functions during natural and pathological states. In this review, we will illustrate the advantages of the zebrafish model in the study of microRNAs in heart and vascular cells, providing an update on recent discoveries using the zebrafish to identify new microRNAs and their targeted genes in cardiovascular tissues. Lastly, we will provide evidence that the zebrafish is an optimal model system to undercover new microRNA functions in vertebrates and to improve microRNA-based therapeutic approaches.
Collapse
Affiliation(s)
- Dafne Gays
- Department of Biology, Biochemistry and Genetics, Molecular Biotechnology Center, University of Turin, Via Nizza 52, 10126 Turin, Italy
| | - Massimo Mattia Santoro
- Department of Biology, Biochemistry and Genetics, Molecular Biotechnology Center, University of Turin, Via Nizza 52, 10126 Turin, Italy
| |
Collapse
|
32
|
Wu CW, Biggar KK, Storey KB. Biochemical adaptations of mammalian hibernation: exploring squirrels as a perspective model for naturally induced reversible insulin resistance. ACTA ACUST UNITED AC 2013; 46:1-13. [PMID: 23314346 PMCID: PMC3854349 DOI: 10.1590/1414-431x20122388] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Accepted: 09/17/2012] [Indexed: 01/20/2023]
Abstract
An important disease among human metabolic disorders is type 2 diabetes mellitus. This disorder involves multiple physiological defects that result from high blood glucose content and eventually lead to the onset of insulin resistance. The combination of insulin resistance, increased glucose production, and decreased insulin secretion creates a diabetic metabolic environment that leads to a lifetime of management. Appropriate models are critical for the success of research. As such, a unique model providing insight into the mechanisms of reversible insulin resistance is mammalian hibernation. Hibernators, such as ground squirrels and bats, are excellent examples of animals exhibiting reversible insulin resistance, for which a rapid increase in body weight is required prior to entry into dormancy. Hibernator studies have shown differential regulation of specific molecular pathways involved in reversible resistance to insulin. The present review focuses on this growing area of research and the molecular mechanisms that regulate glucose homeostasis, and explores the roles of the Akt signaling pathway during hibernation. Here, we propose a link between hibernation, a well-documented response to periods of environmental stress, and reversible insulin resistance, potentially facilitated by key alterations in the Akt signaling network, PPAR-γ/PGC-1α regulation, and non-coding RNA expression. Coincidentally, many of the same pathways are frequently found to be dysregulated during insulin resistance in human type 2 diabetes. Hence, the molecular networks that may regulate reversible insulin resistance in hibernating mammals represent a novel approach by providing insight into medical treatment of insulin resistance in humans.
Collapse
Affiliation(s)
- C-W Wu
- Department of Biology, Institute of Biochemistry, Carleton University, Ottawa, ON, Canada
| | | | | |
Collapse
|
33
|
Rodríguez RE. Morphine and microRNA Activity: Is There a Relation with Addiction? Front Genet 2012; 3:223. [PMID: 23162566 PMCID: PMC3494017 DOI: 10.3389/fgene.2012.00223] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Accepted: 10/06/2012] [Indexed: 12/19/2022] Open
Abstract
When we talk about drug addiction, we are really dealing with an extremely complex system in which there still remain many unknowns and where many empty spaces or missing links are still present. Recent studies have identified changes in the expression profiles of several specific miRNAs which affect the interactions between these molecules and their targets in various illnesses, including addiction, and which may serve as valuable targets for more efficient therapies. In this review, we summarize results which clearly demonstrate that several morphine-related miRNAs have roles in the mechanisms that define addiction. In this regard, morphine has been shown to have an important role in the regulation of different miRNAs, such as miR-let-7 [which works as a mediator of the movement of the mu opioid receptor (MOR) mRNA into P-bodies, leading to translational repression], miR-23b (involved in linking MOR expression and morphine treatment at the post-transcriptional level), and miR-190 (a key post-transcriptional repressor of neurogenic differentiation, NeuroD). Fentanyl increases NeuroD levels by reducing the amount of miR-190, but morphine does not affect the levels of NeuroD. We also discuss the relationship between morphine, miRNAs, and the immune system, based on the discovery that morphine treatment of monocytes led to a decrease in several anti-HIV miRNAs (mir-28, 125b, 150, and 382). This review is centered on miR-133b and its possible involvement in addiction through the effects of morphine. We establish the importance of miR-133b as a regulatory factor by summarizing its activity in different pathological processes, especially cancer. Using the zebrafish as a research model, we discuss the relationship between mir-133b, the dopaminergic system, and morphine, considering: (1) that morphine modulates the expression of miR-133b and of its target transcript Pitx3, (2) the role of the zebrafish mu opioid receptor (zfMOR) in morphine-induced regulation of miR-133b, which depends on ERK1/2, (3) that morphine regulates miR-133b in hippocampal neurons, and (4) the role of delta opioid receptors in morphine-induced regulation of miR-133b. We conclude that the control of miR-133b levels may be a mechanism for the development of addiction to morphine, or other drugs of abuse that increase dopaminergic levels in the extracellular space. These results show that miR-133b is a possible new target for the design of new treatments against addictive disorders.
Collapse
Affiliation(s)
- Raquel E Rodríguez
- Department of Biochemistry and Molecular Biology, Institute of Neuroscience, University of Salamanca Salamanca, Spain
| |
Collapse
|
34
|
McCleary-Wheeler AL, Lomberk GA, Weiss FU, Schneider G, Fabbri M, Poshusta TL, Dusetti NJ, Baumgart S, Iovanna JL, Ellenrieder V, Urrutia R, Fernandez-Zapico ME. Insights into the epigenetic mechanisms controlling pancreatic carcinogenesis. Cancer Lett 2012; 328:212-21. [PMID: 23073473 DOI: 10.1016/j.canlet.2012.10.005] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Revised: 10/02/2012] [Accepted: 10/08/2012] [Indexed: 12/14/2022]
Abstract
During the last couple decades, we have significantly advanced our understanding of mechanisms underlying the development of pancreatic ductual adenocarcinoma (PDAC). In the late 1990s into the early 2000s, a model of PDAC development and progression was developed as a multi-step process associated with the accumulation of somatic mutations. The correlation and association of these particular genetic aberrations with the establishment and progression of PDAC has revolutionized our understanding of this process. However, this model leaves out other molecular events involved in PDAC pathogenesis that contribute to its development and maintenance, specifically those being epigenetic events. Thus, a new model considering the new scientific paradigms of epigenetics will provide a more comprehensive and useful framework for understanding the pathophysiological mechanisms underlying this disease. Epigenetics is defined as the type of inheritance not based on a particular DNA sequence but rather traits that are passed to the next generation via DNA and histone modifications as well as microRNA-dependent mechanisms. Key tumor suppressors that are well established to play a role in PDAC may be altered through hypermethylation, and oncogenes can be upregulated secondary to permissive histone modifications. Factors involved in tumor invasiveness can be aberrantly expressed through dysregulated microRNAs. A noteworthy characteristic of epigenetic-based inheritance is its reversibility, which is in contrast to the stable nature of DNA sequence-based alterations. Given this nature of epigenetic alterations, it becomes imperative that our understanding of epigenetic-based events promoting and maintaining PDAC continues to grow.
Collapse
Affiliation(s)
- Angela L McCleary-Wheeler
- Schulze Center for Novel Therapeutics, Division of Oncology Research, Department of Oncology, Rochester, MN, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Bioinformatic identification and validation of conservative microRNAs in Ictalurus punctatus. Mol Biol Rep 2012; 39:10395-405. [PMID: 23053943 DOI: 10.1007/s11033-012-1918-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Accepted: 10/01/2012] [Indexed: 01/07/2023]
Abstract
Catfish (Ictalurus spp.) is an important aquaculture species around the world, accounting for over 60 % of the domestic aquaculture output in the United States. However, little information is available about I. punctatus miRNAs which play an important role in the regulation of almost every biological process. In the present studies, we applied a bioinformatic strategy to identify 16 miRNAs which represent 12 miRNA families in I. punctatus by searching both expressed sequence tags and genome survey sequences databases. The A + U contents of the candidate pre-miRNA sequence range from 51 to 63 %, and the pre-miRNA sequences vary from 55 to 63 bp in length. To verify the predicted miRNAs, real-time PCR was used to profile the expression of 16 miRNAs with different tissues of I. punctatus. All the miRNA candidates were detectable in five tissues except for ipu-miR-9-3p. Based on sequence complementarity between miRNAs and their mRNA targets, potential targets for I. punctatus miRNAs were predicted. Due to the limited information for the I. punctatus transcripts, only one sequence targeted by ipu-miR-135 was identified to be an I. punctatus EB1 mRNA. Bioinformatic analyses indicated that the 3' untranslated region (3'-UTR) of EB1 mRNA contains an ipu-miR-135 target site, which are perfectly complementary to the seed region (positions 2-8) of the mature ipu-miR-135. I. punctatus miRNAs characterized in this study may provide useful information for the miRNAs research in I. punctatus and other aquaculture species.
Collapse
|
36
|
Biggar KK, Kornfeld SF, Maistrovski Y, Storey KB. MicroRNA regulation in extreme environments: differential expression of microRNAs in the intertidal snail Littorina littorea during extended periods of freezing and anoxia. GENOMICS PROTEOMICS & BIOINFORMATICS 2012. [PMID: 23200140 PMCID: PMC5054212 DOI: 10.1016/j.gpb.2012.09.002] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Several recent studies of vertebrate adaptation to environmental stress have suggested roles for microRNAs (miRNAs) in regulating global suppression of protein synthesis and/or restructuring protein expression patterns. The present study is the first to characterize stress-responsive alterations in the expression of miRNAs during natural freezing or anoxia exposures in an invertebrate species, the intertidal gastropod Littorina littorea. These snails are exposed to anoxia and freezing conditions as their environment constantly fluctuates on both a tidal and seasonal basis. The expression of selected miRNAs that are known to influence the cell cycle, cellular signaling pathways, carbohydrate metabolism and apoptosis was evaluated using RT-PCR. Compared to controls, significant changes in expression were observed for miR-1a-1, miR-34a and miR-29b in hepatopancreas and for miR-1a-1, miR-34a, miR-133a, miR-125b, miR-29b and miR-2a in foot muscle after freezing exposure at −6 °C for 24 h (P < 0.05). In addition, in response to anoxia stress for 24 h, significant changes in expression were also observed for miR-1a-1, miR-210 and miR-29b in hepatopancreas and for miR-1a-1, miR-34a, miR-133a, miR-29b and miR-2a in foot muscle (P < 0.05). Moreover, protein expression of Dicer, an enzyme responsible for mature microRNA processing, was increased in foot muscle during freezing and anoxia and in hepatopancreas during freezing. Alterations in expression of these miRNAs in L. littorea tissues may contribute to organismal survival under freezing and anoxia.
Collapse
Affiliation(s)
- Kyle K Biggar
- Institute of Biochemistry & Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada.
| | | | | | | |
Collapse
|
37
|
Kornfeld SF, Biggar KK, Storey KB. Differential expression of mature microRNAs involved in muscle maintenance of hibernating little brown bats, Myotis lucifugus: a model of muscle atrophy resistance. GENOMICS PROTEOMICS & BIOINFORMATICS 2012. [PMID: 23200139 PMCID: PMC5054200 DOI: 10.1016/j.gpb.2012.09.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Muscle wasting is common in mammals during extended periods of immobility. However, many small hibernating mammals manage to avoid muscle atrophy despite remaining stationary for long periods during hibernation. Recent research has highlighted roles for short non-coding microRNAs (miRNAs) in the regulation of stress tolerance. We proposed that they could also play an important role in muscle maintenance during hibernation. To explore this possibility, a group of 10 miRNAs known to be normally expressed in skeletal muscle of non-hibernating mammals were analyzed by RT-PCR in hibernating little brown bats, Myotis lucifugus. We then compared the expression of these miRNAs in euthermic control bats and bats in torpor. Our results showed that compared to euthermic controls, significant, albeit modest (1.2–1.6 fold), increases in transcript expression were observed for eight mature miRNAs, including miR-1a-1, miR-29b, miR-181b, miR-15a, miR-20a, miR-206 and miR-128-1, in the pectoral muscle of torpid bats. Conversely, expression of miR-21 decreased by 80% during torpor, while expression of miR-107 remained unaffected. Interestingly, these miRNAs have been either validated or predicted to affect multiple muscle-specific factors, including myostatin, FoxO3a, HDAC4 and SMAD7, and are likely involved in the preservation of pectoral muscle mass and functionality during bat hibernation.
Collapse
Affiliation(s)
- Samantha F Kornfeld
- Institute of Biochemistry & Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
| | | | | |
Collapse
|
38
|
Bianchi N, Zuccato C, Finotti A, Lampronti I, Borgatti M, Gambari R. Involvement of miRNA in erythroid differentiation. Epigenomics 2012; 4:51-65. [PMID: 22332658 DOI: 10.2217/epi.11.104] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
miRNAs are a family of small ncRNAs that regulate gene expression by targeting mRNAs in a sequence-specific manner, inducing translational repression or mRNA degradation. In this review, we present and discuss the available literature on the expression of miRNAs in erythroid cells. There are several experimental systems that can be employed for studies focusing on the relationship between miRNAs and erythroid differentiation, including human embryonic stem cells forced to erythroid differentiation, K562 and UT-7 cells induced to hemoglobin production by chemical compounds, erythropoietin-treated erythroid precursor cells from normal subjects or patients affected by hematological disease and in vivo systems, such as zebrafish embryos. Several miRNAs were identified as deeply involved in the erythroid phenotype, including miR-15a, miR-16-1, miR-126, miR-144, miR-451 and miR-210. Several functions related with erythroid cells were demonstrated to be regulated by these miRNAs, including maturation and proliferation of early erythroid cells, expression of fetal γ-globin genes and enucleation. These identified erythroid specific miRNAs represent the starting point to develop new protocols for miRNA therapeutics, based on both anti-miR molecules or miRNA replacement.
Collapse
Affiliation(s)
- Nicoletta Bianchi
- BioPharmaNet, Department of Biochemistry & Molecular Biology, University of Ferrara, Ferrara, Italy
| | | | | | | | | | | |
Collapse
|
39
|
Bizuayehu TT, Lanes CFC, Furmanek T, Karlsen BO, Fernandes JMO, Johansen SD, Babiak I. Differential expression patterns of conserved miRNAs and isomiRs during Atlantic halibut development. BMC Genomics 2012; 13:11. [PMID: 22233483 PMCID: PMC3398304 DOI: 10.1186/1471-2164-13-11] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Accepted: 01/10/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) play a major role in animal ontogenesis. Size variants of miRNAs, isomiRs, are observed along with the main miRNA types, but their origin and possible biological role are uncovered yet. Developmental profiles of miRNAs have been reported in few fish species only and, to our knowledge, differential expressions of isomiRs have not yet been shown during fish development. Atlantic halibut, Hippoglossus hippoglossus L., undergoes dramatic metamorphosis during early development from symmetrical pelagic larval stage to unsymmetrical flatfish. No data exist on role of miRNAs in halibut metamorphosis. RESULTS miRNA profiling using SOLiD deep sequencing technology revealed a total of 199 conserved, one novel antisense, and one miRNA* mature form. Digital expression profiles of selected miRNAs were validated using reverse transcription quantitative PCR. We found developmental transition-specific miRNA expression. Expression of some miRNA* exceeded the guide strand miRNA. We revealed that nucleotide truncations and/or additions at the 3' end of mature miRNAs resulted in size variants showing differential expression patterns during the development in a number of miRNA families. We confirmed the presence of isomiRs by cloning and Sanger sequencing. Also, we found inverse relationship between expression levels of sense/antisense miRNAs during halibut development. CONCLUSION Developmental transitions during early development of Atlantic halibut are associated with expression of certain miRNA types. IsomiRs are abundant and often show differential expression during the development.
Collapse
Affiliation(s)
- Teshome T Bizuayehu
- University of Nordland, Faculty of Biosciences and Aquaculture, Postbox 1490, 8049 Bodø, Norway
| | - Carlos FC Lanes
- University of Nordland, Faculty of Biosciences and Aquaculture, Postbox 1490, 8049 Bodø, Norway
| | - Tomasz Furmanek
- University of Bergen, Department of Biomedicine, Postbox 7804, N-5020 Bergen, Norway
| | - Bård O Karlsen
- University of Nordland, Faculty of Biosciences and Aquaculture, Postbox 1490, 8049 Bodø, Norway
| | - Jorge MO Fernandes
- University of Nordland, Faculty of Biosciences and Aquaculture, Postbox 1490, 8049 Bodø, Norway
| | - Steinar D Johansen
- University of Nordland, Faculty of Biosciences and Aquaculture, Postbox 1490, 8049 Bodø, Norway
- University of Tromsø, Department of Medical Biology, Faculty of Health Sciences, 9037 Tromsø, Norway
| | - Igor Babiak
- University of Nordland, Faculty of Biosciences and Aquaculture, Postbox 1490, 8049 Bodø, Norway
| |
Collapse
|
40
|
Aanes H, Winata CL, Lin CH, Chen JP, Srinivasan KG, Lee SGP, Lim AYM, Hajan HS, Collas P, Bourque G, Gong Z, Korzh V, Aleström P, Mathavan S. Zebrafish mRNA sequencing deciphers novelties in transcriptome dynamics during maternal to zygotic transition. Genome Res 2011; 21:1328-38. [PMID: 21555364 DOI: 10.1101/gr.116012.110] [Citation(s) in RCA: 217] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Maternally deposited mRNAs direct early development before the initiation of zygotic transcription during mid-blastula transition (MBT). To study mechanisms regulating this developmental event in zebrafish, we applied mRNA deep sequencing technology and generated comprehensive information and valuable resources on transcriptome dynamics during early embryonic (egg to early gastrulation) stages. Genome-wide transcriptome analysis documented at least 8000 maternal genes and identified the earliest cohort of zygotic transcripts. We determined expression levels of maternal and zygotic transcripts with the highest resolution possible using mRNA-seq and clustered them based on their expression pattern. We unravel delayed polyadenylation in a large cohort of maternal transcripts prior to the MBT for the first time in zebrafish. Blocking polyadenylation of these transcripts confirms their role in regulating development from the MBT onward. Our study also identified a large number of novel transcribed regions in annotated and unannotated regions of the genome, which will facilitate reannotation of the zebrafish genome. We also identified splice variants with an estimated frequency of 50%-60%. Taken together, our data constitute a useful genomic information and valuable transcriptome resource for gene discovery and for understanding the mechanisms of early embryogenesis in zebrafish.
Collapse
Affiliation(s)
- Håvard Aanes
- BasAM, Norwegian School of Veterinary Science, 0033 Oslo, Norway
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Ambros V. MicroRNAs and developmental timing. Curr Opin Genet Dev 2011; 21:511-7. [PMID: 21530229 DOI: 10.1016/j.gde.2011.04.003] [Citation(s) in RCA: 228] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Accepted: 04/01/2011] [Indexed: 12/22/2022]
Abstract
MicroRNAs regulate temporal transitions in gene expression associated with cell fate progression and differentiation throughout animal development. Genetic analysis of developmental timing in the nematode Caenorhabditis elegans identified two evolutionarily conserved microRNAs, lin-4/mir-125 and let-7, that regulate cell fate progression and differentiation in C. elegans cell lineages. MicroRNAs perform analogous developmental timing functions in other animals, including mammals. By regulating cell fate choices and transitions between pluripotency and differentiation, microRNAs help to orchestrate developmental events throughout the developing animal, and to play tissue homeostasis roles important for disease, including cancer.
Collapse
Affiliation(s)
- Victor Ambros
- UMass Medical School, Molecular Medicine, 373 Plantation St, Worcester, MA 01605, USA.
| |
Collapse
|
42
|
Abstract
Due to the powerful combination of genetic and embryological techniques, the teleost fish Danio rerio has emerged in the last decade as an important model organism for the study of embryonic development. It is relatively easy to inject material such as mRNA or synthetic oligonucleotides to reduce or increase the expression of a gene product. Changes in gene expression can be analyzed at the level of mRNA, by whole-mount in situ hybridization, or at the level of protein, by immunofluorescence. It is also possible to quantitatively analyze protein levels by Western and immunoprecipitation. Cell behavior can be analyzed in detail by cell transplantation and by fate mapping. Because a large number of mutations have been identified in recent years, these methods can be applied in a variety of contexts to provide a deep understanding of gene function that is often more difficult to achieve in other vertebrate model systems.
Collapse
Affiliation(s)
- Yuhua Sun
- Department of Cellular Biology, The University of Georgia, Athens, GA, USA.
| | | | | |
Collapse
|
43
|
Cerdà J, Douglas S, Reith M. Genomic resources for flatfish research and their applications. JOURNAL OF FISH BIOLOGY 2010; 77:1045-1070. [PMID: 21039490 DOI: 10.1111/j.1095-8649.2010.02695.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Flatfishes are a group of teleosts of high commercial and environmental interest, whose biology is still poorly understood. The recent rapid development of different 'omic' technologies is, however, enhancing the knowledge of the complex genetic control underlying different physiological processes of flatfishes. This review describes the different functional genomic approaches and resources currently available for flatfish research and summarizes different areas where microarray-based gene expression analysis has been applied. The increase in genome sequencing data has also allowed the construction of genetic linkage maps in different flatfish species; these maps are invaluable for investigating genome organization and identifying genetic traits of commercial interest. Despite the significant progress in this field, the genomic resources currently available for flatfish are still scarce. Further intensive research should be carried out to develop larger genomic sequence databases, high-density microarrays and, more detailed, complete linkage maps, using second-generation sequencing platforms. These tools will be crucial for further expanding the knowledge of flatfish physiology, and it is predicted that they will have important implications for wild fish population management, improved fish welfare and increased productivity in aquaculture.
Collapse
Affiliation(s)
- J Cerdà
- Laboratory of Institut de Recerca i Tecnologia Agroalimentàries (IRTA) - Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (CSIC), Passeig marítim 37-49, 08003 Barcelona, Spain.
| | | | | |
Collapse
|
44
|
Sanchez-Simon FM, Zhang XX, Loh HH, Law PY, Rodriguez RE. Morphine regulates dopaminergic neuron differentiation via miR-133b. Mol Pharmacol 2010; 78:935-42. [PMID: 20716624 DOI: 10.1124/mol.110.066837] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Morphine is one of the analgesics used most to treat chronic pain, although its long-term administration produces tolerance and dependence through neuronal plasticity. The ability of morphine to regulate neuron differentiation in vivo has been reported. However, the detailed mechanisms have not yet been elucidated because of the inability to separate maternal influences from embryonic events. Using zebrafish embryos as the model, we demonstrate that morphine decreases miR-133b expression, hence increasing the expression of its target, Pitx3, a transcription factor that activates tyrosine hydroxylase and dopamine transporter. Using a specific morpholino to knock down the zebrafish μ-opioid receptor (zfMOR) in the embryos and selective mitogen-activated protein kinase inhibitors, we demonstrate that the morphine-induced miR-133b decrease in zebrafish embryos is mediated by zfMOR activation of extracellular signal-regulated kinase 1/2. A parallel morphine-induced down-regulation of miR-133b was observed in the immature but not in mature rat hippocampal neurons. Our results indicate for the first time that zebrafish embryos express a functional μ-opioid receptor and that zebrafish serves as an excellent model to investigate the roles of microRNA in neuronal development affected by long-term morphine exposure.
Collapse
Affiliation(s)
- Fatima Macho Sanchez-Simon
- Department of Biochemistry and Molecular Biology, Institute of Neuroscience, University of Salamanca, Salamanca, Spain
| | | | | | | | | |
Collapse
|
45
|
Levy C, Khaled M, Robinson KC, Veguilla RA, Chen PH, Yokoyama S, Makino E, Lu J, Larue L, Beermann F, Chin L, Bosenberg M, Song JS, Fisher DE. Lineage-specific transcriptional regulation of DICER by MITF in melanocytes. Cell 2010; 141:994-1005. [PMID: 20550935 DOI: 10.1016/j.cell.2010.05.004] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2009] [Revised: 01/19/2010] [Accepted: 04/09/2010] [Indexed: 12/21/2022]
Abstract
DICER is a central regulator of microRNA maturation. However, little is known about mechanisms regulating its expression in development or disease. While profiling miRNA expression in differentiating melanocytes, two populations were observed: some upregulated at the pre-miRNA stage, and others upregulated as mature miRNAs (with stable pre-miRNA levels). Conversion of pre-miRNAs to fully processed miRNAs appeared to be dependent upon stimulation of DICER expression--an event found to occur via direct transcriptional targeting of DICER by the melanocyte master transcriptional regulator MITF. MITF binds and activates a conserved regulatory element upstream of DICER's transcriptional start site upon melanocyte differentiation. Targeted KO of DICER is lethal to melanocytes, at least partly via DICER-dependent processing of the pre-miRNA-17 approximately 92 cluster thus targeting BIM, a known proapoptotic regulator of melanocyte survival. These observations highlight a central mechanism underlying lineage-specific miRNA regulation which could exist for other cell types during development.
Collapse
Affiliation(s)
- Carmit Levy
- Department of Dermatology, Cutaneous Biology Research Center, Mass. General Hospital, Harvard Medical School, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Liu Q, Tuo W, Gao H, Zhu XQ. MicroRNAs of parasites: current status and future perspectives. Parasitol Res 2010; 107:501-7. [DOI: 10.1007/s00436-010-1927-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2010] [Accepted: 05/18/2010] [Indexed: 12/26/2022]
|
47
|
Review: Time–space translation regulates trunk axial patterning in the early vertebrate embryo. Genomics 2010; 95:250-5. [DOI: 10.1016/j.ygeno.2009.11.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Revised: 11/12/2009] [Accepted: 11/16/2009] [Indexed: 11/22/2022]
|
48
|
Castro FO, Sharbati S, Rodríguez-Alvarez LL, Cox JF, Hultschig C, Einspanier R. MicroRNA expression profiling of elongated cloned and in vitro-fertilized bovine embryos. Theriogenology 2010; 73:71-85. [PMID: 19836069 DOI: 10.1016/j.theriogenology.2009.08.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2009] [Revised: 08/14/2009] [Accepted: 08/18/2009] [Indexed: 11/25/2022]
Abstract
The objective of this study was to identify microRNAs (miRNAs) expressed in bovine (Bos Taurus) cloned embryos at Day 17 of development (Day 0=day of nucleus transfer or in vitro fertilization) during elongation. Day 7 bovine expanded blastocysts produced by hand made cloning (HMC) or in vitro fertilization were bulk-transferred to synchronized recipient cattle (48 HMC embryos to 10 recipients and 28 in vitro-produced embryos to four recipients). Elongated embryos were retrieved at Day 17; miRNAs were isolated and subjected to microarray screening using custom composite slides spotted with human, mouse, and rat and in silico-predicted miRNAs. An initial profile of expressed miRNAs was determined in cloned embryos and somatic donor cells; this profile changed after somatic cell nucleus transfer, identifying differentially expressed miRNAs between cloned and in vitro-produced bovine embryos. Furthermore, microarray data were validated using a miRNA-specific quantitative reverse transcription-polymerase chain reaction (qRT-PCR) approach (miR-Q). There was an 83% correlation (P=0.01) between microarray and qPCR data. Based on qRT-PCR, correct reprogramming of some miRNAs from the donor cells was confirmed in cloned bovine embryos, whereas other somatic miRNAs were not appropriately reprogrammed. Some of the miRNAs that were equally reprogrammed clustered on the same chromosomal location in the bovine genome. In conclusion, reprogramming of miRNAs seemed to occur in cloned bovine embryos. This could have profound implications for elucidating nuclear reprogramming in somatic cloning, as well as for the role of miRNAs in preimplantation mammalian development.
Collapse
Affiliation(s)
- F O Castro
- Department of Animal Science, Faculty of Veterinary Sciences, Universidad de Concepción, Avenida Vicente Méndez 595, Chillán 537, Chile.
| | | | | | | | | | | |
Collapse
|
49
|
|
50
|
Tani S, Kusakabe R, Naruse K, Sakamoto H, Inoue K. Genomic organization and embryonic expression of miR-430 in medaka (Oryzias latipes): insights into the post-transcriptional gene regulation in early development. Gene 2009; 449:41-9. [PMID: 19770025 DOI: 10.1016/j.gene.2009.09.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2009] [Revised: 08/13/2009] [Accepted: 09/15/2009] [Indexed: 11/30/2022]
Abstract
MicroRNAs (miRNAs, miRs) are short noncoding RNA molecules that negatively control the target mRNAs by binding to the 3' untranslated region (UTR). Previous studies have demonstrated that miR-430 is encoded by a clustered multigene family and is abundantly expressed in early development. In zebrafish, miR-430 is needed to suppress primordial germ cell (PGC)-specific genes, such as nanos1, in somatic cells. However, the molecular characteristics of the miR-430 family in other teleost species have not been reported, and it is unclear whether such a function of miR-430 in PGC specification is a conserved feature of animals or not. In medaka (Oryzias latipes), a distantly related teleost, it has been suggested that PGC might be established in a different mode of specification from that of zebrafish. We characterized 16 miR-430 precursors in the medaka genomic sequence. These miR-430 genes form clusters on chromosome 4, which might share its evolutionary origin with that of the very large miR-430 clusters in zebrafish chromosome 4. However, none of the medaka miR-430 genes are identical to the zebrafish miR-430 paralogs. Medaka miR-430 expression starts during epiboly and decreases after axis formation. Functional analysis using reporter gene constructs showed that miR-430 repressed protein expression by binding to the 3'UTR of zebrafish TDRD7. Consistently, the 3'UTR of medaka TDRD7 contains at least two significant candidates for the putative miR-430 binding site. The ubiquitous and early expression of medaka miR-430 and its ability to downregulate GFP:TDRD7 reporter mRNA imply that miR-430 has a conserved role in early embryogenesis. Smaller copy numbers of miR-430 genes and relatively brief expression in medaka might represent the characteristics of this miRNA family in the common ancestor of teleosts. Changes in the relationships between miR-430 and the target mRNA might be related to differences in the localization patterns of PGC-related genes in medaka and zebrafish.
Collapse
Affiliation(s)
- Saori Tani
- Department of Biology, Graduate School of Science, Kobe University, 1-1 Rokkodaicho, Nadaku, Kobe 657-8501, Japan
| | | | | | | | | |
Collapse
|