1
|
Wen MH, Barbosa Triana H, Butler R, Hu HW, Dai YH, Lawrence N, Hong JJ, Garrett N, Jones-Green R, Rawlins EL, Dong Z, Koziol MJ, Gurdon JB. Deterministic nuclear reprogramming of mammalian nuclei to a totipotency-like state by Amphibian meiotic oocytes for stem cell therapy in humans. Biol Open 2024; 13:bio060011. [PMID: 37982514 PMCID: PMC10924218 DOI: 10.1242/bio.060011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 11/13/2023] [Indexed: 11/21/2023] Open
Abstract
The ultimate aim of nuclear reprogramming is to provide stem cells or differentiated cells from unrelated cell types as a cell source for regenerative medicine. A popular route towards this is transcription factor induction, and an alternative way is an original procedure of transplanting a single somatic cell nucleus to an unfertilized egg. A third route is to transplant hundreds of cell nuclei into the germinal vesicle (GV) of a non-dividing Amphibian meiotic oocyte, which leads to the activation of silent genes in 24 h and robustly induces a totipotency-like state in almost all transplanted cells. We apply this third route for potential therapeutic use and describe a procedure by which the differentiated states of cells can be reversed so that totipotency and pluripotency gene expression are regained. Differentiated cells are exposed to GV extracts and are reprogrammed to form embryoid bodies, which shows the maintenance of stemness and could be induced to follow new directions of differentiation. We conclude that much of the reprogramming effect of eggs is already present in meiotic oocytes and does not require cell division or selection of dividing cells. Reprogrammed cells by oocytes could serve as replacements for defective adult cells in humans.
Collapse
Affiliation(s)
- Ming-Hsuan Wen
- Wellcome Trust/Cancer Research UK Gurdon Institute, Henry Wellcome Building of Cancer and Developmental Biology University of Cambridge, Cambridge CB2 1QN, UK
- Department of Zoology, University of Cambridge, Cambridge CB3 3EJ, UK
| | - Hector Barbosa Triana
- Wellcome Trust/Cancer Research UK Gurdon Institute, Henry Wellcome Building of Cancer and Developmental Biology University of Cambridge, Cambridge CB2 1QN, UK
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK
| | - Richard Butler
- Wellcome Trust/Cancer Research UK Gurdon Institute, Henry Wellcome Building of Cancer and Developmental Biology University of Cambridge, Cambridge CB2 1QN, UK
| | - Hsiang-Wei Hu
- Department of Artificial Intelligence in Healthcare, International Academia of Biomedical Innovation Technology, Taipei 10488, Taiwan
- Department of Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu 310401, Taiwan
| | - Yang-Hong Dai
- Department of Artificial Intelligence in Healthcare, International Academia of Biomedical Innovation Technology, Taipei 10488, Taiwan
- Department of Radiation Oncology, Tri-Service General Hospital, Taipei 114202, Taiwan
| | - Nicola Lawrence
- Wellcome Trust/Cancer Research UK Gurdon Institute, Henry Wellcome Building of Cancer and Developmental Biology University of Cambridge, Cambridge CB2 1QN, UK
| | - Jun-Jie Hong
- Scientific Research Services, Phalanx Biotech Group, Hsinchu 30077, Taiwan
| | - Nigel Garrett
- Wellcome Trust/Cancer Research UK Gurdon Institute, Henry Wellcome Building of Cancer and Developmental Biology University of Cambridge, Cambridge CB2 1QN, UK
| | - Rue Jones-Green
- Wellcome Trust/Cancer Research UK Gurdon Institute, Henry Wellcome Building of Cancer and Developmental Biology University of Cambridge, Cambridge CB2 1QN, UK
| | - Emma L. Rawlins
- Wellcome Trust/Cancer Research UK Gurdon Institute, Henry Wellcome Building of Cancer and Developmental Biology University of Cambridge, Cambridge CB2 1QN, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK
| | - Ziqi Dong
- Wellcome Trust/Cancer Research UK Gurdon Institute, Henry Wellcome Building of Cancer and Developmental Biology University of Cambridge, Cambridge CB2 1QN, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK
| | - Magdalena J. Koziol
- Wellcome Trust/Cancer Research UK Gurdon Institute, Henry Wellcome Building of Cancer and Developmental Biology University of Cambridge, Cambridge CB2 1QN, UK
- Chinese Institute for Brain Research, Research Unit of Medical Neurobiology, Chinese Academy of Medical Sciences Beijing 102206, China
| | - J. B. Gurdon
- Wellcome Trust/Cancer Research UK Gurdon Institute, Henry Wellcome Building of Cancer and Developmental Biology University of Cambridge, Cambridge CB2 1QN, UK
- Department of Zoology, University of Cambridge, Cambridge CB3 3EJ, UK
| |
Collapse
|
2
|
Akin AT, Toluk A, Ozdamar S, Taheri S, Kaymak E, Mehmetbeyoglu E. Effects of adriamycin on cell differentiation and proliferation in rat testis. Biotech Histochem 2023; 98:523-533. [PMID: 37655584 DOI: 10.1080/10520295.2023.2248880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023] Open
Abstract
Although adriamycin (ADR) is used to treat many cancers, it can be toxic to healthy organs including the testis. We investigated the effects of ADR on pluripotency in rat testis. Testicular damage was induced by either cumulative or single dose single dose administration of ADR in Wistar albino rats. Rats were divided randomly into three groups: untreated control, cumulative dose ADR group (2 mg/kg ADR every three days for 30 days) and single dose ADR group (15 mg/kg, single dose ADR). Testicular damage was evaluated and seminiferous tubule diameters were measured using light microscopy. Expression levels of Oct4, Sox2, Klf4, c-Myc, Utf1 and Dazl were assessed by immunohistochemistry and real time PCR. Serum testosterone levels were measured using ELISA assay. Histopathologic scores were lower and mean seminiferous tubule diameters were less compared to the ADR groups. Oct4, Sox2, Klf4 and Utf1 expressions were decreased significantly in spermatogenic cells of both cumulative and single dose ADR groups compared to the control group. We found that c-Myc expression in spermatogenic and Leydig cells were increased significantly in both ADR groups compared to the control group. Dazl expression was decreased in the cumulative adriamycin group compared to the control group, but increased in the single dose ADR group compared to both the control and cumulative ADR groups. Serum testosterone levels were decreased in both ADR groups compared to the control group. Our findings suggest that ADR is detrimental to regulation and maintenance of pluripotency in rat testis.
Collapse
Affiliation(s)
- Ali Tugrul Akin
- Department of Biology, Science Faculty, Erciyes University, Kayseri, Turkey
| | - Ayse Toluk
- Department of Biology, Science Faculty, Erciyes University, Kayseri, Turkey
| | - Saim Ozdamar
- Histology-Embryology Department, Faculty of Medicine, Pamukkale University, Denizli, Turkey
| | - Serpil Taheri
- Medical Biology Department, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Emin Kaymak
- Histology-Embryology Department, Faculty of Medicine, Yozgat Bozok University, Yozgat, Turkey
| | - Ecmel Mehmetbeyoglu
- Betul-Ziya Eren Genome and Stem Cell Center, Medical Faculty, Erciyes University, Kayseri, Turkey
| |
Collapse
|
3
|
Im I, Son YS, Jung KB, Kang I, Teh BE, Lee KB, Son MY, Kim J. Mass cytometry-based single-cell analysis of human stem cell reprogramming uncovers differential regulation of specific pluripotency markers. J Biol Chem 2019; 294:18547-18556. [PMID: 31570522 DOI: 10.1074/jbc.ra119.009061] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 09/25/2019] [Indexed: 12/22/2022] Open
Abstract
Human induced pluripotent stem cells (hiPSCs) are reprogrammed from somatic cells and are regarded as promising sources for regenerative medicine and disease research. Recently, techniques for analyses of individual cells, such as single-cell RNA-Seq and mass cytometry, have been used to understand the stem cell reprogramming process in the mouse. However, the reprogramming process in hiPSCs remains poorly understood. Here we used mass cytometry to analyze the expression of pluripotency and cell cycle markers in the reprogramming of human stem cells. We confirmed that, during reprogramming, the main cell population was shifted to an intermediate population consisting of neither fibroblasts nor hiPSCs. Detailed population analyses using computational approaches, including dimensional reduction by spanning-tree progression analysis of density-normalized events, PhenoGraph, and diffusion mapping, revealed several distinct cell clusters representing the cells along the reprogramming route. Interestingly, correlation analysis of various markers in hiPSCs revealed that the pluripotency marker TRA-1-60 behaves in a pattern that is different from other pluripotency markers. Furthermore, we found that the expression pattern of another pluripotency marker, octamer-binding protein 4 (OCT4), was distinctive in the pHistone-H3high population (M phase) of the cell cycle. To the best of our knowledge, this is the first mass cytometry-based investigation of human reprogramming and pluripotency. Our analysis elucidates several aspects of hiPSC reprogramming, including several intermediate cell clusters active during the process of reprogramming and distinctive marker expression patterns in hiPSCs.
Collapse
Affiliation(s)
- Ilkyun Im
- Stem Cell Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahag-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Ye Seul Son
- Stem Cell Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahag-ro, Yuseong-gu, Daejeon 34141, Republic of Korea; Department of Functional Genomics, Korea Research Institute of Bioscience and Biotechnology School of Bioscience, Korea University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea
| | - Kwang Bo Jung
- Stem Cell Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahag-ro, Yuseong-gu, Daejeon 34141, Republic of Korea; Department of Functional Genomics, Korea Research Institute of Bioscience and Biotechnology School of Bioscience, Korea University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea
| | - Insoo Kang
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06520; Department of Genetics, Yale University School of Medicine, New Haven, Connecticut 06520; Department of Orthopedics and Rehabilitation, Yale University School of Medicine, New Haven, Connecticut 06520
| | - Boon-Eng Teh
- Fluidigm Corporation, South San Francisco, California 94080-7603
| | - Kyung-Bok Lee
- Center for Research Equipment, Korea Basic Science Institute, 162 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Cheongju 28119, Republic of Korea
| | - Mi-Young Son
- Stem Cell Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahag-ro, Yuseong-gu, Daejeon 34141, Republic of Korea; Department of Functional Genomics, Korea Research Institute of Bioscience and Biotechnology School of Bioscience, Korea University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea.
| | - Janghwan Kim
- Stem Cell Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahag-ro, Yuseong-gu, Daejeon 34141, Republic of Korea; Department of Functional Genomics, Korea Research Institute of Bioscience and Biotechnology School of Bioscience, Korea University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea.
| |
Collapse
|
4
|
Tran KA, Dillingham CM, Sridharan R. Coordinated removal of repressive epigenetic modifications during induced reversal of cell identity. EMBO J 2019; 38:e101681. [PMID: 31583744 DOI: 10.15252/embj.2019101681] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 09/03/2019] [Accepted: 09/12/2019] [Indexed: 01/20/2023] Open
Abstract
Epigenetic modifications operate in concert to maintain cell identity, yet how these interconnected networks suppress alternative cell fates remains unknown. Here, we uncover a link between the removal of repressive histone H3K9 methylation and DNA methylation during the reprogramming of somatic cells to pluripotency. The H3K9me2 demethylase, Kdm3b, transcriptionally controls DNA hydroxymethylase Tet1 expression. Unexpectedly, in the absence of Kdm3b, loci that must be DNA demethylated are trapped in an intermediate hydroxymethylated (5hmC) state and do not resolve to unmethylated cytosine. Ectopic 5hmC trapping precludes the chromatin association of master pluripotency factor, POU5F1, and pluripotent gene activation. Increased Tet1 expression is important for the later intermediates of the reprogramming process. Taken together, coordinated removal of distinct chromatin modifications appears to be an important mechanism for altering cell identity.
Collapse
Affiliation(s)
- Khoa A Tran
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA
| | - Caleb M Dillingham
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA
| | - Rupa Sridharan
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA.,Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
5
|
Buchwalter A, Kaneshiro JM, Hetzer MW. Coaching from the sidelines: the nuclear periphery in genome regulation. Nat Rev Genet 2019; 20:39-50. [PMID: 30356165 DOI: 10.1038/s41576-018-0063-5] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The genome is packaged and organized nonrandomly within the 3D space of the nucleus to promote efficient gene expression and to faithfully maintain silencing of heterochromatin. The genome is enclosed within the nucleus by the nuclear envelope membrane, which contains a set of proteins that actively participate in chromatin organization and gene regulation. Technological advances are providing views of genome organization at unprecedented resolution and are beginning to reveal the ways that cells co-opt the structures of the nuclear periphery for nuclear organization and gene regulation. These genome regulatory roles of proteins of the nuclear periphery have important influences on development, disease and ageing.
Collapse
Affiliation(s)
- Abigail Buchwalter
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA.,Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA.,Department of Physiology, University of California San Francisco, San Francisco, CA, USA
| | - Jeanae M Kaneshiro
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Martin W Hetzer
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA.
| |
Collapse
|
6
|
Chromatin remodeling in Drosophila preblastodermic embryo extract. Sci Rep 2018; 8:10927. [PMID: 30026552 PMCID: PMC6053431 DOI: 10.1038/s41598-018-29129-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 06/13/2018] [Indexed: 01/06/2023] Open
Abstract
Chromatin is known to undergo extensive remodeling during nuclear reprogramming. However, the factors and mechanisms involved in this remodeling are still poorly understood and current experimental approaches to study it are not best suited for molecular and genetic analyses. Here we report on the use of Drosophila preblastodermic embryo extracts (DREX) in chromatin remodeling experiments. Our results show that incubation of somatic nuclei in DREX induces changes in chromatin organization similar to those associated with nuclear reprogramming, such as rapid binding of the germline specific linker histone dBigH1 variant to somatic chromatin, heterochromatin reorganization, changes in the epigenetic state of chromatin, and nuclear lamin disassembly. These results raise the possibility of using the powerful tools of Drosophila genetics for the analysis of chromatin changes associated with this essential process.
Collapse
|
7
|
Menendez JA, Alarcón T. Senescence-Inflammatory Regulation of Reparative Cellular Reprogramming in Aging and Cancer. Front Cell Dev Biol 2017; 5:49. [PMID: 28529938 PMCID: PMC5418360 DOI: 10.3389/fcell.2017.00049] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 04/18/2017] [Indexed: 12/16/2022] Open
Abstract
The inability of adult tissues to transitorily generate cells with functional stem cell-like properties is a major obstacle to tissue self-repair. Nuclear reprogramming-like phenomena that induce a transient acquisition of epigenetic plasticity and phenotype malleability may constitute a reparative route through which human tissues respond to injury, stress, and disease. However, tissue rejuvenation should involve not only the transient epigenetic reprogramming of differentiated cells, but also the committed re-acquisition of the original or alternative committed cell fate. Chronic or unrestrained epigenetic plasticity would drive aging phenotypes by impairing the repair or the replacement of damaged cells; such uncontrolled phenomena of in vivo reprogramming might also generate cancer-like cellular states. We herein propose that the ability of senescence-associated inflammatory signaling to regulate in vivo reprogramming cycles of tissue repair outlines a threshold model of aging and cancer. The degree of senescence/inflammation-associated deviation from the homeostatic state may delineate a type of thresholding algorithm distinguishing beneficial from deleterious effects of in vivo reprogramming. First, transient activation of NF-κB-related innate immunity and senescence-associated inflammatory components (e.g., IL-6) might facilitate reparative cellular reprogramming in response to acute inflammatory events. Second, para-inflammation switches might promote long-lasting but reversible refractoriness to reparative cellular reprogramming. Third, chronic senescence-associated inflammatory signaling might lock cells in highly plastic epigenetic states disabled for reparative differentiation. The consideration of a cellular reprogramming-centered view of epigenetic plasticity as a fundamental element of a tissue's capacity to undergo successful repair, aging degeneration or malignant transformation should provide challenging stochastic insights into the current deterministic genetic paradigm for most chronic diseases, thereby increasing the spectrum of therapeutic approaches for physiological aging and cancer.
Collapse
Affiliation(s)
- Javier A Menendez
- Metabolism and Cancer Group, Program Against Cancer Therapeutic Resistance, Catalan Institute of OncologyGirona, Spain.,Molecular Oncology Group, Girona Biomedical Research Institute (IDIBGI)Girona, Spain.,METABOSTEMBarcelona, Spain
| | - Tomás Alarcón
- Institució Catalana de Recerca i Estudis Avançats (ICREA)Barcelona, Spain.,Computational and Mathematical Biology Research Group, Centre de Recerca MatemàticaBarcelona, Spain.,Departament de Matemàtiques, Universitat Autònoma de BarcelonaBarcelona, Spain.,Barcelona Graduate School of MathematicsBarcelona, Spain
| |
Collapse
|
8
|
Kochat V, Equbal Z, Baligar P, Kumar V, Srivastava M, Mukhopadhyay A. JMJD3 aids in reprogramming of bone marrow progenitor cells to hepatic phenotype through epigenetic activation of hepatic transcription factors. PLoS One 2017; 12:e0173977. [PMID: 28328977 PMCID: PMC5362104 DOI: 10.1371/journal.pone.0173977] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 03/01/2017] [Indexed: 01/23/2023] Open
Abstract
The strictly regulated unidirectional differentiation program in some somatic stem/progenitor cells has been found to be modified in the ectopic site (tissue) undergoing regeneration. In these cases, the lineage barrier is crossed by either heterotypic cell fusion or direct differentiation. Though studies have shown the role of coordinated genetic and epigenetic mechanisms in cellular development and differentiation, how the lineage fate of adult bone marrow progenitor cells (BMPCs) is reprogrammed during liver regeneration and whether this lineage switch is stably maintained are not clearly understood. In the present study, we wanted to decipher genetic and epigenetic mechanisms that involve in lineage reprogramming of BMPCs into hepatocyte-like cells. Here we report dynamic transcriptional change during cellular reprogramming of BMPCs to hepatocytes and dissect the epigenetic switch mechanism of BM cell-mediated liver regeneration after acute injury. Genome-wide gene expression analysis in BM-derived hepatocytes, isolated after 1 month and 5 months of transplantation, showed induction of hepatic transcriptional program and diminishing of donor signatures over the time. The transcriptional reprogramming of BM-derived cells was found to be the result of enrichment of activating marks (H3K4me3 and H3K9Ac) and loss of repressive marks (H3K27me3 and H3K9me3) at the promoters of hepatic transcription factors (HTFs). Further analyses showed that BMPCs possess bivalent histone marks (H3K4me3 and H3K27me3) at the promoters of crucial HTFs. H3K27 methylation dynamics at the HTFs was antagonistically regulated by EZH2 and JMJD3. Preliminary evidence suggests a role of JMJD3 in removal of H3K27me3 mark from promoters of HTFs, thus activating epigenetically poised hepatic genes in BMPCs prior to partial nuclear reprogramming. The importance of JMJD3 in reprogramming of BMPCs to hepatic phenotype was confirmed by inhibiting catalytic function of the enzyme using small molecule GSK-J4. Our results propose a potential role of JMJD3 in lineage conversion of BM cells into hepatic lineage.
Collapse
Affiliation(s)
- Veena Kochat
- Stem Cell Biology Laboratory, National Institute of Immunology, New Delhi, India
| | - Zaffar Equbal
- Stem Cell Biology Laboratory, National Institute of Immunology, New Delhi, India
| | - Prakash Baligar
- Stem Cell Biology Laboratory, National Institute of Immunology, New Delhi, India
| | - Vikash Kumar
- Stem Cell Biology Laboratory, National Institute of Immunology, New Delhi, India
| | - Madhulika Srivastava
- Epigenetic Regulation Research Laboratory, National Institute of Immunology, New Delhi, India
| | - Asok Mukhopadhyay
- Stem Cell Biology Laboratory, National Institute of Immunology, New Delhi, India
- * E-mail: ,
| |
Collapse
|
9
|
Cai Y, Dai X, Zhang Q, Dai Z. Gene expression of OCT4, SOX2, KLF4 and MYC (OSKM) induced pluripotent stem cells: identification for potential mechanisms. Diagn Pathol 2015; 10:35. [PMID: 25907774 PMCID: PMC4414430 DOI: 10.1186/s13000-015-0263-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Accepted: 04/06/2015] [Indexed: 02/09/2023] Open
Abstract
Background Somatic cells could be reprogrammed to induced pluripotent stem cells (iPS) by ectopic expression of OCT4, SOX2, KLF4 and MYC (OSKM). We aimed to gain insights into the early mechanisms underlying the induction of pluripotency. Methods GSE28688 containing 14 gene expression profiles were downloaded from GEO, including untreated human neonatal foreskin fibroblasts (HFF1) as control, OSKM-induced HFF1 (at 24, 48, 72 h post-transduction of OSKM encoding viruses), two iPS cell lines, and two embryonic stem (ES) cell lines. Differentially expressed genes (DEGs) were screened between different cell lines and the control by Limma package in Bioconductor. KEGG pathway enrichment analysis was performed by DAVID. The STRING database was used to construct protein-protein interaction (PPI) network. Activities and regulatory networks of transcription factors (TFs) were calculated and constructed by Fast Network Component Analysis (FastNCA). Results Compared with untreated HFF1, 117, 347, 557, 2263 and 2307 DEGs were obtained from three point post-transduction HFF1, iPS and ES cells. Meanwhile, up-regulated DEGs in first two days of HFF1 were mainly enriched in RIG-I-like receptor (RLR) and Toll-like receptor (TLR) signaling pathways. Down-regulated DEGs at 72 h were significantly enriched in focal adhesion pathway which was similar to iPS cells. Moreover, ISG15, IRF7, STAT1 and DDX58 were with higher degree in PPI networks during time series. Furthermore, the targets of six selected TFs were mainly enriched in screened DEGs. Conclusion In this study, screened DEGs including ISG15, IRF7 and CCL5 participated in OSKM-induced pluripotency might attenuate immune response post-transduction through RLR and TLR signaling pathways. Virtual slides The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/2503890341543007.
Collapse
Affiliation(s)
- Yanning Cai
- School of Information Science and Technology, Sun Yat-sen University, Higher Education Mega Center, No.132 East Outer Ring Road, Guangzhou, China. .,SYSU-CMU Shunde International Joint Research Institute (JRI), Shunde, Guangdong, China.
| | - Xianhua Dai
- School of Information Science and Technology, Sun Yat-sen University, Higher Education Mega Center, No.132 East Outer Ring Road, Guangzhou, China. .,SYSU-CMU Shunde International Joint Research Institute (JRI), Shunde, Guangdong, China.
| | - Qianhua Zhang
- School of Information Science and Technology, Sun Yat-sen University, Higher Education Mega Center, No.132 East Outer Ring Road, Guangzhou, China. .,SYSU-CMU Shunde International Joint Research Institute (JRI), Shunde, Guangdong, China.
| | - Zhiming Dai
- School of Information Science and Technology, Sun Yat-sen University, Higher Education Mega Center, No.132 East Outer Ring Road, Guangzhou, China. .,SYSU-CMU Shunde International Joint Research Institute (JRI), Shunde, Guangdong, China.
| |
Collapse
|
10
|
Affiliation(s)
- Benjamin Podbilewicz
- Department of Biology, Technion–Israel Institute of Technology, Haifa 32000, Israel;
| |
Collapse
|
11
|
Soufi A. Mechanisms for enhancing cellular reprogramming. Curr Opin Genet Dev 2014; 25:101-9. [PMID: 24607881 DOI: 10.1016/j.gde.2013.12.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 12/26/2013] [Indexed: 01/23/2023]
Abstract
During development, the genome adopts specific chromatin states to establish and maintain functionally distinct cell types in a well-controlled environment. A select group of transcription factors have the ability to drive the transition of the genome from a pluripotent to a more specialized chromatin state. The same set of factors can be used as reprogramming factors to reset the already established chromatin state back to pluripotency or directly to an alternative cell type. However, under the suboptimal reprogramming conditions, these factors fall short in guiding the majority of cells to their new fate. In this review, we visit the recent findings addressing the manipulation of chromatin structure to enhance the performance of transcription factors in reprogramming. The main emphasis is on the mechanisms underlying the conversion of somatic cells to pluripotency using OSKM. This review is intended to highlight the windows of opportunities for developing mechanistically based approaches to replace the phenotypically guided methods currently employed in reprogramming, in an attempt to move the field of cell conversion towards using next generation technologies.
Collapse
Affiliation(s)
- Abdenour Soufi
- Institute for Regenerative Medicine, Epigenetics Program, Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Smilow Center for Translational Research, Building 421, 3400 Civic Center Boulevard, Philadelphia, PA 19104-5157, USA.
| |
Collapse
|
12
|
Abstract
Morphogenesis is the remarkable process by which cells self-assemble into complex tissues and organs that exhibit specialized form and function during embryological development. Many of the genes and chemical cues that mediate tissue and organ formation have been identified; however, these signals alone are not sufficient to explain how tissues and organs are constructed that exhibit their unique material properties and three-dimensional forms. Here, we review work that has revealed the central role that physical forces and extracellular matrix mechanics play in the control of cell fate switching, pattern formation, and tissue development in the embryo and how these same mechanical signals contribute to tissue homeostasis and developmental control throughout adult life.
Collapse
Affiliation(s)
- Tadanori Mammoto
- Vascular Biology Program, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts 02115;
| | | | | |
Collapse
|
13
|
Induction of pluripotency. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 786:5-25. [PMID: 23696349 DOI: 10.1007/978-94-007-6621-1_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
The molecular and phenotypic irreversibility of mammalian cell differentiation was a fundamental principle of developmental biology at least until the 1980s, despite numerous reports dating back to the 1950s of the induction of pluripotency in amphibian cells by nuclear transfer (NT). Landmark reports in the 1980s and 1990s in sheep progressively challenged this dogmatic assumption; firstly, embryonic development of reconstructed embryos comprising whole (donor) blastomeres fused to enucleated oocytes, and famously, the cloning of Dolly from a terminally differentiated cell. Thus, the intrinsic ability of oocyte-derived factors to reverse the differentiated phenotype was confirmed. The concomitant elucidation of methods for human embryonic stem cell isolation and cultivation presented opportunities for therapeutic cell replacement strategies, particularly through NT of patient nuclei to enucleated oocytes for subsequent isolation of patient-specific (autologous), pluripotent cells from the resulting blastocysts. Associated logistical limitations of working with human oocytes, in addition to ethical and moral objections prompted exploration of alternative approaches to generate autologous stem cells for therapy, utilizing the full repertoire of factors characteristic of pluripotency, primarily through cell fusion and use of pluripotent cell extracts. Stunningly, in 2006, Japanese scientists described somatic cell reprogramming through delivery of four key factors (identified through a deductive approach from 24 candidate genes). Although less efficient than previous approaches, much of current stem cell research adopts this focused approach to cell reprogramming and (autologous) cell therapy. This chapter is a quasi-historical commentary of the various aforementioned approaches for the induction of pluripotency in lineage-committed cells, and introduces transcriptional and epigenetic changes occurring during reprogramming.
Collapse
|
14
|
Miyamoto K, Gurdon JB. Transcriptional regulation and nuclear reprogramming: roles of nuclear actin and actin-binding proteins. Cell Mol Life Sci 2013; 70:3289-302. [PMID: 23275942 PMCID: PMC3753470 DOI: 10.1007/s00018-012-1235-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Revised: 12/03/2012] [Accepted: 12/04/2012] [Indexed: 12/18/2022]
Abstract
Proper regulation of transcription is essential for cells to acquire and maintain cell identity. Transcriptional activation plays a central role in gene regulation and can be modulated by introducing transcriptional activators such as transcription factors. Activators act on their specific target genes to induce transcription. Reprogramming experiments have revealed that as cells become differentiated, some genes are highly silenced and even introduction of activators that target these silenced genes does not induce transcription. This can be explained by chromatin-based repression that restricts access of transcriptional activators to silenced genes. Transcriptional activation from these genes can be accomplished by opening chromatin, in addition to providing activators. Once a de novo transcription network is established, cells are differentiated or reprogrammed to a new cell type. Emerging evidence suggests that actin in the nucleus (nuclear actin) and nuclear actin-binding proteins are implicated in these transcriptional regulatory processes. This review summarizes roles of nuclear actin and actin-binding proteins in transcriptional regulation. We also discuss possible functions of nuclear actin during reprogramming in the context of transcription and chromatin remodeling.
Collapse
Affiliation(s)
- Kei Miyamoto
- The Wellcome Trust/Cancer Research UK Gurdon Institute, The Henry Wellcome Building of Cancer and Developmental Biology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK.
| | | |
Collapse
|
15
|
Abstract
Conversion of somatic cells to pluripotency by defined factors is a long and complex process that yields embryonic-stem-cell-like cells that vary in their developmental potential. To improve the quality of resulting induced pluripotent stem cells (iPSCs), which is important for potential therapeutic applications, and to address fundamental questions about control of cell identity, molecular mechanisms of the reprogramming process must be understood. Here we discuss recent discoveries regarding the role of reprogramming factors in remodelling the genome, including new insights into the function of MYC, and describe the different phases, markers and emerging models of reprogramming.
Collapse
|
16
|
Mammoto A, Mammoto T, Ingber DE. Mechanosensitive mechanisms in transcriptional regulation. J Cell Sci 2012; 125:3061-73. [PMID: 22797927 DOI: 10.1242/jcs.093005] [Citation(s) in RCA: 282] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Transcriptional regulation contributes to the maintenance of pluripotency, self-renewal and differentiation in embryonic cells and in stem cells. Therefore, control of gene expression at the level of transcription is crucial for embryonic development, as well as for organogenesis, functional adaptation, and regeneration in adult tissues and organs. In the past, most work has focused on how transcriptional regulation results from the complex interplay between chemical cues, adhesion signals, transcription factors and their co-regulators during development. However, chemical signaling alone is not sufficient to explain how three-dimensional (3D) tissues and organs are constructed and maintained through the spatiotemporal control of transcriptional activities. Accumulated evidence indicates that mechanical cues, which include physical forces (e.g. tension, compression or shear stress), alterations in extracellular matrix (ECM) mechanics and changes in cell shape, are transmitted to the nucleus directly or indirectly to orchestrate transcriptional activities that are crucial for embryogenesis and organogenesis. In this Commentary, we review how the mechanical control of gene transcription contributes to the maintenance of pluripotency, determination of cell fate, pattern formation and organogenesis, as well as how it is involved in the control of cell and tissue function throughout embryogenesis and adult life. A deeper understanding of these mechanosensitive transcriptional control mechanisms should lead to new approaches to tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Akiko Mammoto
- Vascular Biology Program, Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | | | | |
Collapse
|
17
|
Treatment of Nuclear-Donor Cells or Cloned Zygotes with Chromatin-Modifying Agents Increases Histone Acetylation But Does Not Improve Full-Term Development of Cloned Cattle. Cell Reprogram 2012; 14:235-47. [DOI: 10.1089/cell.2011.0079] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
|
18
|
Pasque V, Jullien J, Miyamoto K, Halley-Stott RP, Gurdon J. Epigenetic factors influencing resistance to nuclear reprogramming. Trends Genet 2011; 27:516-25. [PMID: 21940062 PMCID: PMC3814186 DOI: 10.1016/j.tig.2011.08.002] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Revised: 08/16/2011] [Accepted: 08/22/2011] [Indexed: 12/16/2022]
Abstract
Patient-specific somatic cell reprogramming is likely to have a large impact on medicine by providing a source of cells for disease modelling and regenerative medicine. Several strategies can be used to reprogram cells, yet they are generally characterised by a low reprogramming efficiency, reflecting the remarkable stability of the differentiated state. Transcription factors, chromatin modifications, and noncoding RNAs can increase the efficiency of reprogramming. However, the success of nuclear reprogramming is limited by epigenetic mechanisms that stabilise the state of gene expression in somatic cells and thereby resist efficient reprogramming. We review here the factors that influence reprogramming efficiency, especially those that restrict the natural reprogramming mechanisms of eggs and oocytes. We see this as a step towards understanding the mechanisms by which nuclear reprogramming takes place.
Collapse
Affiliation(s)
- Vincent Pasque
- Wellcome Trust/Cancer Research UK Gurdon Institute, The Henry Wellcome Building of Cancer and Developmental Biology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK
| | - Jerome Jullien
- Wellcome Trust/Cancer Research UK Gurdon Institute, The Henry Wellcome Building of Cancer and Developmental Biology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK
- These authors contributed equally to this work
| | - Kei Miyamoto
- Wellcome Trust/Cancer Research UK Gurdon Institute, The Henry Wellcome Building of Cancer and Developmental Biology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK
- These authors contributed equally to this work
| | - Richard P. Halley-Stott
- Wellcome Trust/Cancer Research UK Gurdon Institute, The Henry Wellcome Building of Cancer and Developmental Biology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK
- These authors contributed equally to this work
| | - J.B. Gurdon
- Wellcome Trust/Cancer Research UK Gurdon Institute, The Henry Wellcome Building of Cancer and Developmental Biology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK
| |
Collapse
|
19
|
Wang W, Yang J, Liu H, Lu D, Chen X, Zenonos Z, Campos LS, Rad R, Guo G, Zhang S, Bradley A, Liu P. Rapid and efficient reprogramming of somatic cells to induced pluripotent stem cells by retinoic acid receptor gamma and liver receptor homolog 1. Proc Natl Acad Sci U S A 2011; 108:18283-8. [PMID: 21990348 PMCID: PMC3215025 DOI: 10.1073/pnas.1100893108] [Citation(s) in RCA: 196] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Somatic cells can be reprogrammed to induced pluripotent stem cells (iPSCs) by expressing four transcription factors: Oct4, Sox2, Klf4, and c-Myc. Here we report that enhancing RA signaling by expressing RA receptors (RARs) or by RA agonists profoundly promoted reprogramming, but inhibiting it using a RAR-α dominant-negative form completely blocked it. Coexpressing Rarg (RAR-γ) and Lrh-1 (liver receptor homologue 1; Nr5a2) with the four factors greatly accelerated reprogramming so that reprogramming of mouse embryonic fibroblast cells to ground-state iPSCs requires only 4 d induction of these six factors. The six-factor combination readily reprogrammed primary human neonatal and adult fibroblast cells to exogenous factor-independent iPSCs, which resembled ground-state mouse ES cells in growth properties, gene expression, and signaling dependency. Our findings demonstrate that signaling through RARs has critical roles in molecular reprogramming and that the synergistic interaction between Rarg and Lrh1 directs reprogramming toward ground-state pluripotency. The human iPSCs described here should facilitate functional analysis of the human genome.
Collapse
Affiliation(s)
- Wei Wang
- Wellcome Trust Sanger Institute, Hinxton CB10 1HH, United Kingdom
| | - Jian Yang
- Wellcome Trust Sanger Institute, Hinxton CB10 1HH, United Kingdom
| | - Hui Liu
- Wellcome Trust Sanger Institute, Hinxton CB10 1HH, United Kingdom
- College of Animal Science and Technology, Huazhong Agriculture University, Wuhan 430070, China
| | - Dong Lu
- Wellcome Trust Sanger Institute, Hinxton CB10 1HH, United Kingdom
| | - Xiongfeng Chen
- Science Applications International Corporation–Frederick, Frederick, MD 21701
- National Cancer Institute–Frederick, Frederick, MD 21701
| | - Zenon Zenonos
- Wellcome Trust Sanger Institute, Hinxton CB10 1HH, United Kingdom
| | - Lia S. Campos
- Wellcome Trust Sanger Institute, Hinxton CB10 1HH, United Kingdom
| | - Roland Rad
- Wellcome Trust Sanger Institute, Hinxton CB10 1HH, United Kingdom
| | - Ge Guo
- Wellcome Trust Centre for Stem Cell Research, University of Cambridge, Cambridge CB2 1QR, United Kingdom
| | - Shujun Zhang
- College of Animal Science and Technology, Huazhong Agriculture University, Wuhan 430070, China
| | - Allan Bradley
- Wellcome Trust Sanger Institute, Hinxton CB10 1HH, United Kingdom
| | - Pentao Liu
- Wellcome Trust Sanger Institute, Hinxton CB10 1HH, United Kingdom
| |
Collapse
|
20
|
Pasque V, Halley-Stott RP, Gillich A, Garrett N, Gurdon JB. Epigenetic stability of repressed states involving the histone variant macroH2A revealed by nuclear transfer to Xenopus oocytes. Nucleus 2011; 2:533-9. [PMID: 22064467 PMCID: PMC3324342 DOI: 10.4161/nucl.2.6.17799] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
How various epigenetic mechanisms restrict chromatin plasticity to determine the stability of repressed genes is poorly understood. Nuclear transfer to Xenopus oocytes induces the transcriptional reactivation of previously silenced genes. Recent work suggests that it can be used to analyze the epigenetic stability of repressed states. The notion that the epigenetic state of genes is an important determinant of the efficiency of nuclear reprogramming is supported by the differential reprogramming of given genes from different starting epigenetic configurations. After nuclear transfer, transcription from the inactive X chromosome of post-implantation-derived epiblast stem cells is reactivated. However, the same chromosome is resistant to reactivation when embryonic fibroblasts are used. Here, we discuss different kinds of evidence that link the histone variant macroH2A to the increased stability of repressed states. We focus on developmentally regulated X chromosome inactivation and repression of autosomal pluripotency genes, where macroH2A may help maintain the long-term stability of the differentiated state of somatic cells.
Collapse
Affiliation(s)
- Vincent Pasque
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, UK.
| | | | | | | | | |
Collapse
|
21
|
Jullien J, Gurdon J. Reprogramming of gene expression following nuclear transfer to the Xenopus oocyte. Biol Aujourdhui 2011; 205:105-10. [PMID: 21831341 DOI: 10.1051/jbio/2011013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Indexed: 11/14/2022]
Abstract
Transplantation of Xenopus laevis cell nucleus to enucleated Xenopus egg leads to the generation of cloned animal. This exemplifies the process of nuclear reprogramming by which the nucleus of a specialized cell is reset to an embryonic state from which it can generate all the cells of an organism. Using the precursor of the egg, the oocyte, it is also possible to reprogram somatic cell. The advantage of this approach is the direct reprogramming of gene expression in the absence of cell division. Using this strategy it is possible to investigate the mechanism leading to transcriptional reprogramming of somatic nuclei. By combining real time monitoring of chromatin protein exchange and gene expression analysis, we have observed that a simultaneous loss of somatic H1 linker histone and incorporation of the oocyte-specific linker histone B4 precede transcriptional reprogramming. The loss of H1 is not required for gene reprogramming. We have demonstrated both by antibody injection experiments and by dominant negative interference that the incorporation of B4 linker histone is required for pluripotency gene reactivation during nuclear reprogramming. We suggest that the binding of oocyte specific B4 linker histone to chromatin is a key primary event in the reprogramming of somatic nuclei transplanted to amphibian oocytes.
Collapse
Affiliation(s)
- Jérôme Jullien
- The Wellcome trust/Cancer Research UK Gurdon Institute, Cambridge CB2 1QN, United Kingdom.
| | | |
Collapse
|
22
|
Miyamoto K, Pasque V, Jullien J, Gurdon JB. Nuclear actin polymerization is required for transcriptional reprogramming of Oct4 by oocytes. Genes Dev 2011; 25:946-58. [PMID: 21536734 DOI: 10.1101/gad.615211] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Amphibian oocytes can rapidly and efficiently reprogram the transcription of transplanted somatic nuclei. To explore the factors and mechanisms involved, we focused on nuclear actin, an especially abundant component of the oocyte's nucleus (the germinal vesicle). The existence and significance of nuclear actin has long been debated. Here, we found that nuclear actin polymerization plays an essential part in the transcriptional reactivation of the pluripotency gene Oct4 (also known as Pou5f1). We also found that an actin signaling protein, Toca-1, enhances Oct4 reactivation by regulating nuclear actin polymerization. Toca-1 overexpression has an effect on the chromatin state of transplanted nuclei, including the enhanced binding of nuclear actin to gene regulatory regions. This is the first report showing that naturally stored actin in an oocyte nucleus helps transcriptional reprogramming in a polymerization-dependent manner.
Collapse
Affiliation(s)
- Kei Miyamoto
- Wellcome Trust, Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, United Kingdom
| | | | | | | |
Collapse
|
23
|
Jullien J, Pasque V, Halley-Stott RP, Miyamoto K, Gurdon JB. Mechanisms of nuclear reprogramming by eggs and oocytes: a deterministic process? Nat Rev Mol Cell Biol 2011; 12:453-9. [PMID: 21697902 PMCID: PMC3657683 DOI: 10.1038/nrm3140] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Differentiated cells can be experimentally reprogrammed back to pluripotency by nuclear transfer, cell fusion or induced pluripotent stem cell technology. Nuclear transfer and cell fusion can lead to efficient reprogramming of gene expression. The egg and oocyte reprogramming process includes the exchange of somatic proteins for oocyte proteins, the post-translational modification of histones and the demethylation of DNA. These events occur in an ordered manner and on a defined timescale, indicating that reprogramming by nuclear transfer and by cell fusion rely on deterministic processes.
Collapse
Affiliation(s)
- Jerome Jullien
- Wellcome Trust/Cancer Research UK Gurdon Institute, The Henry Wellcome Building of Cancer and Developmental Biology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | | | | | | | | |
Collapse
|
24
|
Pasque V, Gillich A, Garrett N, Gurdon JB. Histone variant macroH2A confers resistance to nuclear reprogramming. EMBO J 2011; 30:2373-87. [PMID: 21552206 PMCID: PMC3116279 DOI: 10.1038/emboj.2011.144] [Citation(s) in RCA: 124] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Accepted: 04/13/2011] [Indexed: 01/31/2023] Open
Abstract
Gurdon and collaborators report reversible X chromosome inactivation in epiblast stem cells (EpiSCs) that seems to be determined by macroH2A1 deposition. These findings are of rather general interest as they highlight the epigenetic state of repressed loci as determinant for reprogramming efficiency. How various layers of epigenetic repression restrict somatic cell nuclear reprogramming is poorly understood. The transfer of mammalian somatic cell nuclei into Xenopus oocytes induces transcriptional reprogramming of previously repressed genes. Here, we address the mechanisms that restrict reprogramming following nuclear transfer by assessing the stability of the inactive X chromosome (Xi) in different stages of inactivation. We find that the Xi of mouse post-implantation-derived epiblast stem cells (EpiSCs) can be reversed by nuclear transfer, while the Xi of differentiated or extraembryonic cells is irreversible by nuclear transfer to oocytes. After nuclear transfer, Xist RNA is lost from chromatin of the Xi. Most epigenetic marks such as DNA methylation and Polycomb-deposited H3K27me3 do not explain the differences between reversible and irreversible Xi. Resistance to reprogramming is associated with incorporation of the histone variant macroH2A, which is retained on the Xi of differentiated cells, but absent from the Xi of EpiSCs. Our results uncover the decreased stability of the Xi in EpiSCs, and highlight the importance of combinatorial epigenetic repression involving macroH2A in restricting transcriptional reprogramming by oocytes.
Collapse
Affiliation(s)
- Vincent Pasque
- Wellcome Trust Cancer Research UK Gurdon Institute, Cambridge, UK.
| | | | | | | |
Collapse
|