1
|
Lundt S, Ding S. Potential Therapeutic Interventions Targeting NAD + Metabolism for ALS. Cells 2024; 13:1509. [PMID: 39273079 PMCID: PMC11394323 DOI: 10.3390/cells13171509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 08/27/2024] [Accepted: 09/07/2024] [Indexed: 09/15/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease affecting both upper and lower motor neurons. While there have been many potential factors implicated for ALS development, such as oxidative stress and mitochondrial dysfunction, no exact mechanism has been determined at this time. Nicotinamide adenine dinucleotide (NAD+) is one of the most abundant metabolites in mammalian cells and is crucial for a broad range of cellular functions from DNA repair to energy homeostasis. NAD+ can be synthesized from three different intracellular pathways, but it is the NAD+ salvage pathway that generates the largest proportion of NAD+. Impaired NAD+ homeostasis has been connected to aging and neurodegenerative disease-related dysfunctions. In ALS mice, NAD+ homeostasis is potentially disrupted prior to the appearance of physical symptoms and is significantly reduced in the nervous system at the end stage. Treatments targeting NAD+ metabolism, either by administering NAD+ precursor metabolites or small molecules that alter NAD+-dependent enzyme activity, have shown strong beneficial effects in ALS disease models. Here, we review the therapeutic interventions targeting NAD+ metabolism for ALS and their effects on the most prominent pathological aspects of ALS in animal and cell models.
Collapse
Affiliation(s)
- Samuel Lundt
- Dalton Cardiovascular Research Center (DCRC), Columbia, MO 65203, USA
| | - Shinghua Ding
- Dalton Cardiovascular Research Center (DCRC), Columbia, MO 65203, USA
- Department of Chemical and Biomedical Engineering (ChBME), University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
2
|
Shen Z, Ratia K, Krider I, Ackerman-Berrier M, Penton C, Musku SR, Gordon-Blake JM, Laham MS, Christie N, Ma N, Fu J, Xiong R, Courey JM, Velma GR, Thatcher GRJ. Synthesis, Optimization, and Structure-Activity Relationships of Nicotinamide Phosphoribosyltransferase (NAMPT) Positive Allosteric Modulators (N-PAMs). J Med Chem 2023; 66:16704-16727. [PMID: 38096366 PMCID: PMC10758216 DOI: 10.1021/acs.jmedchem.3c01406] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/12/2023] [Accepted: 11/29/2023] [Indexed: 12/29/2023]
Abstract
Depletion of nicotinamide adenine dinucleotide (NAD+) is associated with aging and disease, spurring the study of dietary supplements to replenish NAD+. The catabolism of NAD+ to nicotinamide (NAM) requires the salvage of NAM to replenish cellular NAD+, which relies on the rate-limiting enzyme nicotinamide phosphoribosyltransferase (NAMPT). Pharmacological activation of NAMPT provides an alternative to dietary supplements. Screening for activators of NAMPT identified small molecule NAMPT positive allosteric modulators (N-PAMs). N-PAMs bind to the rear channel of NAMPT increasing enzyme activity and alleviating feedback inhibition by NAM and NAD+. Synthesis of over 70 N-PAMs provided an excellent correlation between rear channel binding affinity and potency for enzyme activation, confirming the mechanism of allosteric activation via binding to the rear channel. The mechanism accounts for higher binding affinity leading to loss of efficacy. Enzyme activation translated directly to elevation of NAD+ measured in cells. Optimization led to an orally bioavailable N-PAM.
Collapse
Affiliation(s)
- Zhengnan Shen
- Department
of Pharmacology and Toxicology, R. Ken Coit College of Pharmacy, University of Arizona, Tucson, Arizona 85721, United States
| | - Kiira Ratia
- Department
of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612, United States
- Research
Resources Center, University of Illinois
at Chicago, Chicago, Illinois 60612, United States
| | - Isabella Krider
- Department
of Chemistry & Biochemistry, Colleges of Science and Medicine, University of Arizona, Tucson, Arizona 85721, United States
| | - Martha Ackerman-Berrier
- Department
of Pharmacology and Toxicology, R. Ken Coit College of Pharmacy, University of Arizona, Tucson, Arizona 85721, United States
| | - Christopher Penton
- Department
of Pharmacology and Toxicology, R. Ken Coit College of Pharmacy, University of Arizona, Tucson, Arizona 85721, United States
| | - Soumya Reddy Musku
- Department
of Pharmacology and Toxicology, R. Ken Coit College of Pharmacy, University of Arizona, Tucson, Arizona 85721, United States
| | - Jesse M. Gordon-Blake
- Department
of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Megan S. Laham
- Department
of Chemistry & Biochemistry, Colleges of Science and Medicine, University of Arizona, Tucson, Arizona 85721, United States
| | - Nicholas Christie
- Department
of Chemistry & Biochemistry, Colleges of Science and Medicine, University of Arizona, Tucson, Arizona 85721, United States
| | - Nina Ma
- Department
of Pharmacology and Toxicology, R. Ken Coit College of Pharmacy, University of Arizona, Tucson, Arizona 85721, United States
| | - Jiqiang Fu
- Department
of Pharmacology and Toxicology, R. Ken Coit College of Pharmacy, University of Arizona, Tucson, Arizona 85721, United States
| | - Rui Xiong
- Department
of Pharmacology and Toxicology, R. Ken Coit College of Pharmacy, University of Arizona, Tucson, Arizona 85721, United States
| | - Jenna M. Courey
- Department
of Chemistry & Biochemistry, Colleges of Science and Medicine, University of Arizona, Tucson, Arizona 85721, United States
| | - Ganga Reddy Velma
- Department
of Pharmacology and Toxicology, R. Ken Coit College of Pharmacy, University of Arizona, Tucson, Arizona 85721, United States
| | - Gregory R. J. Thatcher
- Department
of Pharmacology and Toxicology, R. Ken Coit College of Pharmacy, University of Arizona, Tucson, Arizona 85721, United States
- Department
of Chemistry & Biochemistry, Colleges of Science and Medicine, University of Arizona, Tucson, Arizona 85721, United States
| |
Collapse
|
3
|
Sridharan PS, Miller E, Pieper AA. Application of P7C3 Compounds to Investigating and Treating Acute and Chronic Traumatic Brain Injury. Neurotherapeutics 2023; 20:1616-1628. [PMID: 37651054 PMCID: PMC10684439 DOI: 10.1007/s13311-023-01427-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2023] [Indexed: 09/01/2023] Open
Abstract
Traumatic brain injury (TBI) is a leading worldwide cause of disability, and there are currently no medicines that prevent, reduce, or reverse acute or chronic neurodegeneration in TBI patients. Here, we review the target-agnostic discovery of nicotinamide adenine dinucleotide (NAD+)/NADH-stabilizing P7C3 compounds through a phenotypic screen in mice and describe how P7C3 compounds have been applied to advance understanding of the pathophysiology and potential treatment of TBI. We summarize how P7C3 compounds have been shown across multiple laboratories to mitigate disease progression safely and effectively in a broad range of preclinical models of disease related to impaired NAD+/NADH metabolism, including acute and chronic TBI, and note the reported safety and neuroprotective efficacy of P7C3 compounds in nonhuman primates. We also describe how P7C3 compounds facilitated the recent first demonstration that chronic neurodegeneration 1 year after TBI in mice, the equivalent of many decades in people, can be reversed to restore normal neuropsychiatric function. We additionally review how P7C3 compounds have facilitated discovery of new pathophysiologic mechanisms of neurodegeneration after TBI. This includes the role of rapid TBI-induced tau acetylation that drives axonal degeneration, and the discovery of brain-derived acetylated tau as the first blood-based biomarker of neurodegeneration after TBI that directly correlates with the abundance of a therapeutic target in the brain. We additionally review the identification of TBI-induced tau acetylation as a potential mechanistic link between TBI and increased risk of Alzheimer's disease. Lastly, we summarize historical accounts of other successful phenotypic-based drug discoveries that advanced medical care without prior recognition of the specific molecular target needed to achieve the desired therapeutic effect.
Collapse
Affiliation(s)
- Preethy S Sridharan
- Brain Health Medicines Center, Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
- Department of Psychiatry, Case Western Reserve University, Cleveland, OH, USA
- Geriatric Psychiatry, GRECC, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA
- Institute for Transformative Molecular Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Emiko Miller
- Brain Health Medicines Center, Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
- Department of Psychiatry, Case Western Reserve University, Cleveland, OH, USA
- Geriatric Psychiatry, GRECC, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA
- Institute for Transformative Molecular Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Andrew A Pieper
- Brain Health Medicines Center, Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA.
- Department of Psychiatry, Case Western Reserve University, Cleveland, OH, USA.
- Geriatric Psychiatry, GRECC, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA.
- Institute for Transformative Molecular Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
4
|
Rahman MT, Bailey EM, Gansemer BM, Pieper AA, Manak JR, Green SH. Anti-inflammatory Therapy Protects Spiral Ganglion Neurons After Aminoglycoside Antibiotic-Induced Hair Cell Loss. Neurotherapeutics 2023; 20:578-601. [PMID: 36697994 PMCID: PMC10121993 DOI: 10.1007/s13311-022-01336-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2022] [Indexed: 01/26/2023] Open
Abstract
Destruction of cochlear hair cells by aminoglycoside antibiotics leads to gradual death of the spiral ganglion neurons (SGNs) that relay auditory information to the brain, potentially limiting the efficacy of cochlear implants. Because the reasons for this cochlear neurodegeneration are unknown, there are no neuroprotective strategies for patients. To investigate this problem, we assessed transcriptomic changes in the rat spiral ganglion following aminoglycoside antibiotic (kanamycin)-induced hair cell destruction. We observed selectively increased expression of immune and inflammatory response genes and increased abundance of activated macrophages in spiral ganglia by postnatal day 32 in kanamycin-deafened rats, preceding significant SGN degeneration. Treatment with the anti-inflammatory medications dexamethasone and ibuprofen diminished long-term SGN degeneration. Ibuprofen and dexamethasone also diminished macrophage activation. Efficacy of ibuprofen treatment was augmented by co-administration of the nicotinamide adenine dinucleotide-stabilizing agent P7C3-A20. Our results support a critical role of neuroinflammation in SGN degeneration after aminoglycoside antibiotic-mediated cochlear hair cell loss, as well as a neuroprotective strategy that could improve cochlear implant efficacy.
Collapse
Affiliation(s)
- Muhammad T Rahman
- Department of Biology, University of Iowa, Iowa City, IA, 52242, USA
| | - Erin M Bailey
- Department of Biology, University of Iowa, Iowa City, IA, 52242, USA
| | | | - Andrew A Pieper
- Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, 44106, USA
- Department of Psychiatry, Case Western Reserve University, Cleveland, OH, 44106, USA
- Geriatric Psychiatry, GRECC, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, 44106, USA
- Institute for Transformative Molecular Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - J Robert Manak
- Department of Biology, University of Iowa, Iowa City, IA, 52242, USA
- Department of Pediatrics, University of Iowa, Iowa City, IA, 52242, USA
| | - Steven H Green
- Department of Biology, University of Iowa, Iowa City, IA, 52242, USA.
| |
Collapse
|
5
|
Ratia KM, Shen Z, Gordon-Blake J, Lee H, Laham MS, Krider IS, Christie N, Ackerman-Berrier M, Penton C, Knowles NG, Musku SR, Fu J, Velma GR, Xiong R, Thatcher GRJ. Mechanism of Allosteric Modulation of Nicotinamide Phosphoribosyltransferase to Elevate Cellular NAD . Biochemistry 2023; 62:923-933. [PMID: 36746631 DOI: 10.1021/acs.biochem.2c00655] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In aging and disease, cellular nicotinamide adenine dinucleotide (NAD+) is depleted by catabolism to nicotinamide (NAM). NAD+ supplementation is being pursued to enhance human healthspan and lifespan. Activation of nicotinamide phosphoribosyltransferase (NAMPT), the rate-limiting step in NAD+ biosynthesis, has the potential to increase the salvage of NAM. Novel NAMPT-positive allosteric modulators (N-PAMs) were discovered in addition to the demonstration of NAMPT activation by biogenic phenols. The mechanism of activation was revealed through the synthesis of novel chemical probes, new NAMPT co-crystal structures, and enzyme kinetics. Binding to a rear channel in NAMPT regulates NAM binding and turnover, with biochemical observations being replicated by NAD+ measurements in human cells. The mechanism of action of N-PAMs identifies, for the first time, the role of the rear channel in the regulation of NAMPT turnover coupled to productive and nonproductive NAM binding. The tight regulation of cellular NAMPT via feedback inhibition by NAM, NAD+, and adenosine 5'-triphosphate (ATP) is differentially regulated by N-PAMs and other activators, indicating that different classes of pharmacological activators may be engineered to restore or enhance NAD+ levels in affected tissues.
Collapse
Affiliation(s)
- Kiira M Ratia
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago (UIC), Chicago, Illinois 60612, United States
- Research Resources Center, University of Illinois at Chicago (UIC), Chicago, Illinois 60612, United States
| | - Zhengnan Shen
- Department of Pharmacology & Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona 85721, United States
| | - Jesse Gordon-Blake
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago (UIC), Chicago, Illinois 60612, United States
| | - Hyun Lee
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago (UIC), Chicago, Illinois 60612, United States
- Research Resources Center, University of Illinois at Chicago (UIC), Chicago, Illinois 60612, United States
| | - Megan S Laham
- Department of Chemistry & Biochemistry, Colleges of Science and Medicine, University of Arizona, Tucson, Arizona 85721, United States
| | - Isabella S Krider
- Department of Chemistry & Biochemistry, Colleges of Science and Medicine, University of Arizona, Tucson, Arizona 85721, United States
| | - Nicholas Christie
- Department of Chemistry & Biochemistry, Colleges of Science and Medicine, University of Arizona, Tucson, Arizona 85721, United States
| | - Martha Ackerman-Berrier
- Department of Pharmacology & Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona 85721, United States
| | - Christopher Penton
- Department of Pharmacology & Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona 85721, United States
| | - Natalie G Knowles
- Department of Pharmacology & Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona 85721, United States
| | - Soumya Reddy Musku
- Department of Pharmacology & Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona 85721, United States
| | - Jiqiang Fu
- Department of Pharmacology & Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona 85721, United States
| | - Ganga Reddy Velma
- Department of Pharmacology & Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona 85721, United States
| | - Rui Xiong
- Department of Pharmacology & Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona 85721, United States
| | - Gregory R J Thatcher
- Department of Pharmacology & Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona 85721, United States
- Department of Chemistry & Biochemistry, Colleges of Science and Medicine, University of Arizona, Tucson, Arizona 85721, United States
| |
Collapse
|
6
|
Van Bergen NJ, Walvekar AS, Patraskaki M, Sikora T, Linster CL, Christodoulou J. Clinical and biochemical distinctions for a metabolite repair disorder caused by NAXD or NAXE deficiency. J Inherit Metab Dis 2022; 45:1028-1038. [PMID: 35866541 PMCID: PMC9804276 DOI: 10.1002/jimd.12541] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/17/2022] [Accepted: 07/19/2022] [Indexed: 01/05/2023]
Abstract
The central cofactors NAD(P)H are prone to damage by hydration, resulting in formation of redox-inactive derivatives designated NAD(P)HX. The highly conserved enzymes NAD(P)HX dehydratase (NAXD) and NAD(P)HX epimerase (NAXE) function to repair intracellular NAD(P)HX. Recently, pathogenic variants in both the NAXD and NAXE genes were associated with rapid deterioration and death after an otherwise trivial fever, infection, or illness in young patients. As more patients are identified, distinct clinical features are emerging depending on the location of the pathogenic variant. In this review, we carefully catalogued the clinical features of all published NAXD deficiency patients and found distinct patterns in clinical presentations depending on which subcellular compartment is affected by the enzymatic deficiency. Exon 1 of NAXD contains a mitochondrial propeptide, and a unique cytosolic isoform is initiated from an alternative start codon in exon 2. NAXD deficiency patients with variants that affect both the cytosolic and mitochondrial isoforms present with neurological defects, seizures and skin lesions. Interestingly, patients with NAXD variants exclusively affecting the mitochondrial isoform present with myopathy, moderate neuropathy and a cardiac presentation, without the characteristic skin lesions, seizures or neurological degeneration. This suggests that cytosolic NAD(P)HX repair may protect from neurological damage, whereas muscle fibres may be more sensitive to mitochondrial NAD(P)HX damage. A deeper understanding of the clinical phenotype may facilitate rapid identification of new cases and allow earlier therapeutic intervention. Niacin-based therapies are promising, but advances in disease modelling for both NAXD and NAXE deficiency may identify more specific compounds as targeted treatments. In this review, we found distinct patterns in the clinical presentations of NAXD deficiency patients based on the location of the pathogenic variant, which determines the subcellular compartment that is affected by the enzymatic deficiency.
Collapse
Affiliation(s)
- Nicole J. Van Bergen
- Brain and Mitochondrial Research Group, Murdoch Children's Research InstituteRoyal Children's HospitalMelbourneVictoriaAustralia
- Department of PaediatricsUniversity of MelbourneMelbourneVictoriaAustralia
| | - Adhish S. Walvekar
- Luxembourg Centre for Systems BiomedicineUniversity of LuxembourgBelvauxLuxembourg
| | - Myrto Patraskaki
- Luxembourg Centre for Systems BiomedicineUniversity of LuxembourgBelvauxLuxembourg
| | - Tim Sikora
- Brain and Mitochondrial Research Group, Murdoch Children's Research InstituteRoyal Children's HospitalMelbourneVictoriaAustralia
| | - Carole L. Linster
- Luxembourg Centre for Systems BiomedicineUniversity of LuxembourgBelvauxLuxembourg
| | - John Christodoulou
- Brain and Mitochondrial Research Group, Murdoch Children's Research InstituteRoyal Children's HospitalMelbourneVictoriaAustralia
- Department of PaediatricsUniversity of MelbourneMelbourneVictoriaAustralia
- Victorian Clinical Genetics ServicesRoyal Children's HospitalMelbourneVictoriaAustralia
| |
Collapse
|
7
|
Manickam R, Tur J, Badole SL, Chapalamadugu KC, Sinha P, Wang Z, Russ DW, Brotto M, Tipparaju SM. Nampt activator P7C3 ameliorates diabetes and improves skeletal muscle function modulating cell metabolism and lipid mediators. J Cachexia Sarcopenia Muscle 2022; 13:1177-1196. [PMID: 35060352 PMCID: PMC8977983 DOI: 10.1002/jcsm.12887] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 10/22/2021] [Accepted: 11/22/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Nicotinamide phosphoribosyltransferase (Nampt), a key enzyme in NAD salvage pathway is decreased in metabolic diseases, and its precise role in skeletal muscle function is not known. We tested the hypothesis, Nampt activation by P7C3 (3,6-dibromo-α-[(phenylamino)methyl]-9H-carbazol-9-ethanol) ameliorates diabetes and muscle function. METHODS We assessed the functional, morphometric, biochemical, and molecular effects of P7C3 treatment in skeletal muscle of type 2 diabetic (db/db) mice. Nampt+/- mice were utilized to test the specificity of P7C3. RESULTS Insulin resistance increased 1.6-fold in diabetic mice compared with wild-type mice and after 4 weeks treatment with P7C3 rescued diabetes (P < 0.05). In the db-P7C3 mice fasting blood glucose levels decreased to 0.96-fold compared with C57Bl/6J wild-type naïve control mice. The insulin and glucose tolerance tests blood glucose levels were decreased to 0.6-fold and 0.54-folds, respectively, at 120 min along with an increase in insulin secretion (1.76-fold) and pancreatic β-cells (3.92-fold) in db-P7C3 mice. The fore-limb and hind-limb grip strengths were increased to 1.13-fold and 1.17-fold, respectively, together with a 14.2-fold increase in voluntary running wheel distance in db-P7C3 mice. P7C3 treatment resulted in a 1.4-fold and 7.1-fold increase in medium-sized and larger-sized myofibres cross-sectional area, with a concomitant 0.5-fold decrease in smaller-sized myofibres of tibialis anterior (TA) muscle. The transmission electron microscopy images also displayed a 1.67-fold increase in myofibre diameter of extensor digitorum longus muscle along with 2.9-fold decrease in mitochondrial area in db-P7C3 mice compared with db-Veh mice. The number of SDH positive myofibres were increased to 1.74-fold in db-P7C3 TA muscles. The gastrocnemius and TA muscles displayed a decrease in slow oxidative myosin heavy chain type1 (MyHC1) myofibres expression (0.46-fold) and immunostaining (6.4-fold), respectively. qPCR analysis displayed a 2.9-fold and 1.3-fold increase in Pdk4 and Cpt1, and 0.55-fold and 0.59-fold decrease in Fgf21 and 16S in db-P7C3 mice. There was also a 3.3-fold and 1.9-fold increase in Fabp1 and CD36 in db-Veh mice. RNA-seq differential gene expression volcano plot displayed 1415 genes to be up-regulated and 1726 genes down-regulated (P < 0.05) in db-P7C3 mice. There was 1.02-fold increase in serum HDL, and 0.9-fold decrease in low-density lipoprotein/very low-density lipoprotein ratio in db-P7C3 mice. Lipid profiling of gastrocnemius muscle displayed a decrease in inflammatory lipid mediators n-6; AA (0.83-fold), and n-3; DHA (0.69-fold) and EPA (0.81-fold), and a 0.66-fold decrease in endocannabinoid 2-AG and 2.0-fold increase in AEA in db-P7C3 mice. CONCLUSIONS Overall, we demonstrate that P7C3 activates Nampt, improves type 2 diabetes and skeletal muscle function in db/db mice.
Collapse
Affiliation(s)
- Ravikumar Manickam
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, Tampa, FL, USA
| | - Jared Tur
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, Tampa, FL, USA
| | - Sachin L Badole
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, Tampa, FL, USA
| | - Kalyan C Chapalamadugu
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, Tampa, FL, USA
| | - Puja Sinha
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, Tampa, FL, USA
| | - Zhiying Wang
- Bone-Muscle Research Center, College of Nursing & Health Innovation, University of Texas-Arlington (UTA), Arlington, TX, USA
| | - David W Russ
- School of Physical Therapy and Rehabilitation Sciences, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Marco Brotto
- Bone-Muscle Research Center, College of Nursing & Health Innovation, University of Texas-Arlington (UTA), Arlington, TX, USA
| | - Srinivas M Tipparaju
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, Tampa, FL, USA
| |
Collapse
|
8
|
Schroeder R, Nguyen L, Pieper AA, Stevens HE. Maternal treatment with P7C3-A20 protects from impaired maternal care after chronic gestational stress. Behav Brain Res 2022; 416:113558. [PMID: 34453970 PMCID: PMC8573727 DOI: 10.1016/j.bbr.2021.113558] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/04/2021] [Accepted: 08/23/2021] [Indexed: 01/09/2023]
Abstract
Chronic stress during pregnancy harms both the mother and developing child, and there is an urgent unmet need to understand this process in order to develop protective treatments. Here, we report that chronic gestational stress (CGS) causes aberrant maternal care behavior in the form of increased licking and grooming, decreased nursing, and increased time spent nest building. Treatment of CGS-exposed dams with the NAD+-stabilizing agent P7C3-A20 during pregnancy and postpartum, however, preserved normal maternal care behavior. CGS also caused abnormally low weight gain during gestation and postpartum, which was partially ameliorated by maternal treatment with P7C3-A20. Dams also displayed hyperactive locomotion after CGS, which was not affected by P7C3-A20. Although dams did not display a classic depressive-like phenotype after CGS, some changes in anxiety- and depressive-like behaviors were observed. Our results highlight the need for further characterization of the effects of chronic gestational stress on maternal care behavior and provide clues to possible protective mechanisms.
Collapse
Affiliation(s)
- Rachel Schroeder
- Department of Psychiatry, University of Iowa, Iowa City, IA,Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, IA
| | - Lynn Nguyen
- Department of Psychiatry, University of Iowa, Iowa City, IA
| | - Andrew A. Pieper
- Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106 USA,Department of Psychiatry, Case Western Reserve University,Department of Neuroscience, Case Western Reserve University, Cleveland, OH 44106 USA,University of Texas Southwestern Medical Center, Dallas, Texas USA,Institute for Transformative Molecular Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH, USA,Geriatric Research Education and Clinical Centers, Louis Stokes Cleveland VAMC, Cleveland, OH 44106 USA,Weill Cornell Autism Research Program, Weill Cornell Medicine of Cornell University, NY, NY, USA
| | - Hanna E. Stevens
- Department of Psychiatry, University of Iowa, Iowa City, IA,Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, IA
| |
Collapse
|
9
|
Lundt S, Ding S. NAD + Metabolism and Diseases with Motor Dysfunction. Genes (Basel) 2021; 12:1776. [PMID: 34828382 PMCID: PMC8625820 DOI: 10.3390/genes12111776] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/04/2021] [Accepted: 11/05/2021] [Indexed: 12/12/2022] Open
Abstract
Neurodegenerative diseases result in the progressive deterioration of the nervous system, with motor and cognitive impairments being the two most observable problems. Motor dysfunction could be caused by motor neuron diseases (MNDs) characterized by the loss of motor neurons, such as amyotrophic lateral sclerosis and Charcot-Marie-Tooth disease, or other neurodegenerative diseases with the destruction of brain areas that affect movement, such as Parkinson's disease and Huntington's disease. Nicotinamide adenine dinucleotide (NAD+) is one of the most abundant metabolites in the human body and is involved with numerous cellular processes, including energy metabolism, circadian clock, and DNA repair. NAD+ can be reversibly oxidized-reduced or directly consumed by NAD+-dependent proteins. NAD+ is synthesized in cells via three different paths: the de novo, Preiss-Handler, or NAD+ salvage pathways, with the salvage pathway being the primary producer of NAD+ in mammalian cells. NAD+ metabolism is being investigated for a role in the development of neurodegenerative diseases. In this review, we discuss cellular NAD+ homeostasis, looking at NAD+ biosynthesis and consumption, with a focus on the NAD+ salvage pathway. Then, we examine the research, including human clinical trials, focused on the involvement of NAD+ in MNDs and other neurodegenerative diseases with motor dysfunction.
Collapse
Affiliation(s)
- Samuel Lundt
- Dalton Cardiovascular Research Center, University of Missouri-Columbia, Columbia, MO 65211, USA;
- Interdisciplinary Neuroscience Program, University of Missouri-Columbia, Columbia, MO 65211, USA
| | - Shinghua Ding
- Dalton Cardiovascular Research Center, University of Missouri-Columbia, Columbia, MO 65211, USA;
- Department of Biomedical, Biological and Chemical Engineering, University of Missouri-Columbia, Columbia, MO 65211, USA
| |
Collapse
|
10
|
Schroeder R, Sridharan P, Nguyen L, Loren A, Williams NS, Kettimuthu KP, Cintrón-Pérez CJ, Vázquez-Rosa E, Pieper AA, Stevens HE. Maternal P7C3-A20 Treatment Protects Offspring from Neuropsychiatric Sequelae of Prenatal Stress. Antioxid Redox Signal 2021; 35:511-530. [PMID: 33501899 PMCID: PMC8388250 DOI: 10.1089/ars.2020.8227] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Aims: Impaired embryonic cortical interneuron development from prenatal stress is linked to adult neuropsychiatric impairment, stemming in part from excessive generation of reactive oxygen species in the developing embryo. Unfortunately, there are no preventive medicines that mitigate the risk of prenatal stress to the embryo, as the underlying pathophysiologic mechanisms are poorly understood. Our goal was to interrogate the molecular basis of prenatal stress-mediated damage to the embryonic brain to identify a neuroprotective strategy. Results: Chronic prenatal stress in mice dysregulated nicotinamide adenine dinucleotide (NAD+) synthesis enzymes and cortical interneuron development in the embryonic brain, leading to axonal degeneration in the hippocampus, cognitive deficits, and depression-like behavior in adulthood. Offspring were protected from these deleterious effects by concurrent maternal administration of the NAD+-modulating agent P7C3-A20, which crossed the placenta to access the embryonic brain. Prenatal stress also produced axonal degeneration in the adult corpus callosum, which was not prevented by maternal P7C3-A20. Innovation: Prenatal stress dysregulates gene expression of NAD+-synthesis machinery and GABAergic interneuron development in the embryonic brain, which is associated with adult cognitive impairment and depression-like behavior. We establish a maternally directed treatment that protects offspring from these effects of prenatal stress. Conclusion: NAD+-synthesis machinery and GABAergic interneuron development are critical to proper embryonic brain development underlying postnatal neuropsychiatric functioning, and these systems are highly susceptible to prenatal stress. Pharmacologic stabilization of NAD+ in the stressed embryonic brain may provide a neuroprotective strategy that preserves normal embryonic development and protects offspring from neuropsychiatric impairment. Antioxid. Redox Signal. 35, 511-530.
Collapse
Affiliation(s)
- Rachel Schroeder
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA.,Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, Iowa, USA
| | - Preethy Sridharan
- Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA.,Department of Psychiatry and Case Western Reserve University, Cleveland, Ohio, USA.,Department of Neuroscience, Case Western Reserve University, Cleveland, Ohio, USA
| | - Lynn Nguyen
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Alexandra Loren
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Noelle S Williams
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Kavitha P Kettimuthu
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Coral J Cintrón-Pérez
- Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA.,Department of Psychiatry and Case Western Reserve University, Cleveland, Ohio, USA
| | - Edwin Vázquez-Rosa
- Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA.,Department of Psychiatry and Case Western Reserve University, Cleveland, Ohio, USA
| | - Andrew A Pieper
- Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA.,Department of Psychiatry and Case Western Reserve University, Cleveland, Ohio, USA.,Department of Neuroscience, Case Western Reserve University, Cleveland, Ohio, USA.,Institute for Transformative Molecular Medicine, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA.,Geriatric Research Education and Clinical Centers, Louis Stokes Cleveland VAMC, Cleveland, Ohio, USA.,Weill Cornell Autism Research Program, Weill Cornell Medicine of Cornell University, New York, New York, USA
| | - Hanna E Stevens
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA.,Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
11
|
Ryu SW, Kim YO, Kim HB, Oh SB, Choi JI, Yoon MH. Antinociceptive effect of intrathecal P7C3 via GABA in a rat model of inflammatory pain. Eur J Pharmacol 2021; 899:174029. [PMID: 33727053 DOI: 10.1016/j.ejphar.2021.174029] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 03/09/2021] [Accepted: 03/11/2021] [Indexed: 02/06/2023]
Abstract
The recently identified molecule P7C3 has been highlighted in the field of pain research. We examined the effect of intrathecal P7C3 in tissue injury pain evoked by formalin injection and determined the role of the GABA system in the activity of P7C3 at the spinal level. Male Sprague-Dawley rats with intrathecal catheters implanted for experimental drug delivery were studied. The effects of intrathecal P7C3 and nicotinamide phosphoribosyltransferase (NAMPT) administered 10 min before the formalin injection were examined. Animals were pretreated with bicuculline, a GABA-A receptor antagonist; saclofen, a GABA-B receptor antagonist; L-allylglycine, a glutamic acid decarboxylase (GAD) blocker; and CHS 828, an NAMPT inhibitor; to observe involvement in the effects of P7C3. The effects of P7C3 alone and the mixture of P7C3 with GABA receptor antagonists on KCl-induced calcium transients were examined in rat dorsal root ganglion (DRG) neurons. The expression of GAD and the concentration of GABA in the spinal cord were evaluated. Intrathecal P7C3 and NAMPT produced an antinociceptive effect in the formalin test. Intrathecal bicuculline, saclofen, L-allylglycine, and CHS 828 reversed the antinociception of P7C3 in both phases. P7C3 decreased the KCl-induced calcium transients in DRG neurons. Both bicuculline and saclofen reversed the blocking effect of P7C3. The levels of GAD expression and GABA concentration decreased after formalin injection and were increased by P7C3. These results suggest that P7C3 increases GAD activity and then increases the GABA concentration in the spinal cord, which in turn may act on GABA receptors causing the antinociceptive effect against pain evoked by formalin injection.
Collapse
Affiliation(s)
- Sang Wan Ryu
- Department of Anesthesiology and Pain Medicine, Chonnam National University, Medical School, Gwangju, Republic of Korea
| | - Yeo Ok Kim
- Department of Anesthesiology and Pain Medicine, Chonnam National University, Medical School, Gwangju, Republic of Korea
| | - Han-Byul Kim
- Department of Neurobiology and Physiology, School of Dentistry Seoul National University, Seoul, Republic of Korea; Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, Republic of Korea
| | - Seog Bae Oh
- Department of Neurobiology and Physiology, School of Dentistry Seoul National University, Seoul, Republic of Korea; Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, Republic of Korea
| | - Jeong Il Choi
- Department of Anesthesiology and Pain Medicine, Chonnam National University, Medical School, Gwangju, Republic of Korea; The Brain Korea 21 Project, Center for Biomedical Human Resources at Chonnam National University, Gwangju, Republic of Korea
| | - Myung Ha Yoon
- Department of Anesthesiology and Pain Medicine, Chonnam National University, Medical School, Gwangju, Republic of Korea; The Brain Korea 21 Project, Center for Biomedical Human Resources at Chonnam National University, Gwangju, Republic of Korea.
| |
Collapse
|
12
|
Shin MK, Vázquez-Rosa E, Koh Y, Dhar M, Chaubey K, Cintrón-Pérez CJ, Barker S, Miller E, Franke K, Noterman MF, Seth D, Allen RS, Motz CT, Rao SR, Skelton LA, Pardue MT, Fliesler SJ, Wang C, Tracy TE, Gan L, Liebl DJ, Savarraj JPJ, Torres GL, Ahnstedt H, McCullough LD, Kitagawa RS, Choi HA, Zhang P, Hou Y, Chiang CW, Li L, Ortiz F, Kilgore JA, Williams NS, Whitehair VC, Gefen T, Flanagan ME, Stamler JS, Jain MK, Kraus A, Cheng F, Reynolds JD, Pieper AA. Reducing acetylated tau is neuroprotective in brain injury. Cell 2021; 184:2715-2732.e23. [PMID: 33852912 PMCID: PMC8491234 DOI: 10.1016/j.cell.2021.03.032] [Citation(s) in RCA: 104] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 01/21/2021] [Accepted: 03/15/2021] [Indexed: 10/21/2022]
Abstract
Traumatic brain injury (TBI) is the largest non-genetic, non-aging related risk factor for Alzheimer's disease (AD). We report here that TBI induces tau acetylation (ac-tau) at sites acetylated also in human AD brain. This is mediated by S-nitrosylated-GAPDH, which simultaneously inactivates Sirtuin1 deacetylase and activates p300/CBP acetyltransferase, increasing neuronal ac-tau. Subsequent tau mislocalization causes neurodegeneration and neurobehavioral impairment, and ac-tau accumulates in the blood. Blocking GAPDH S-nitrosylation, inhibiting p300/CBP, or stimulating Sirtuin1 all protect mice from neurodegeneration, neurobehavioral impairment, and blood and brain accumulation of ac-tau after TBI. Ac-tau is thus a therapeutic target and potential blood biomarker of TBI that may represent pathologic convergence between TBI and AD. Increased ac-tau in human AD brain is further augmented in AD patients with history of TBI, and patients receiving the p300/CBP inhibitors salsalate or diflunisal exhibit decreased incidence of AD and clinically diagnosed TBI.
Collapse
Affiliation(s)
- Min-Kyoo Shin
- Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA; Department of Psychiatry, Case Western Reserve University, Cleveland, OH, USA; Geriatric Psychiatry, GRECC, Louis Stokes Cleveland VA Medical Center; Cleveland, OH, USA; Institute for Transformative Molecular Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Edwin Vázquez-Rosa
- Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA; Department of Psychiatry, Case Western Reserve University, Cleveland, OH, USA; Geriatric Psychiatry, GRECC, Louis Stokes Cleveland VA Medical Center; Cleveland, OH, USA; Institute for Transformative Molecular Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Yeojung Koh
- Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA; Department of Psychiatry, Case Western Reserve University, Cleveland, OH, USA; Geriatric Psychiatry, GRECC, Louis Stokes Cleveland VA Medical Center; Cleveland, OH, USA; Institute for Transformative Molecular Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Matasha Dhar
- Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA; Department of Psychiatry, Case Western Reserve University, Cleveland, OH, USA; Geriatric Psychiatry, GRECC, Louis Stokes Cleveland VA Medical Center; Cleveland, OH, USA; Institute for Transformative Molecular Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Kalyani Chaubey
- Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA; Department of Psychiatry, Case Western Reserve University, Cleveland, OH, USA; Geriatric Psychiatry, GRECC, Louis Stokes Cleveland VA Medical Center; Cleveland, OH, USA; Institute for Transformative Molecular Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Coral J Cintrón-Pérez
- Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA; Department of Psychiatry, Case Western Reserve University, Cleveland, OH, USA; Geriatric Psychiatry, GRECC, Louis Stokes Cleveland VA Medical Center; Cleveland, OH, USA; Institute for Transformative Molecular Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Sarah Barker
- Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA; Department of Psychiatry, Case Western Reserve University, Cleveland, OH, USA; Geriatric Psychiatry, GRECC, Louis Stokes Cleveland VA Medical Center; Cleveland, OH, USA; Institute for Transformative Molecular Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Emiko Miller
- Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA; Department of Psychiatry, Case Western Reserve University, Cleveland, OH, USA; Geriatric Psychiatry, GRECC, Louis Stokes Cleveland VA Medical Center; Cleveland, OH, USA; Institute for Transformative Molecular Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Kathryn Franke
- Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA; Department of Psychiatry, Case Western Reserve University, Cleveland, OH, USA; Geriatric Psychiatry, GRECC, Louis Stokes Cleveland VA Medical Center; Cleveland, OH, USA; Institute for Transformative Molecular Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Maria F Noterman
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Divya Seth
- Institute for Transformative Molecular Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH, USA; Department of Medicine, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Rachael S Allen
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Healthcare System, Atlanta, GA, USA; Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, US
| | - Cara T Motz
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Healthcare System, Atlanta, GA, USA; Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, US
| | - Sriganesh Ramachandra Rao
- Departments of Ophthalmology and Biochemistry, and the Neuroscience Graduate Program, SUNY-University at Buffalo, Buffalo, NY, USA; Research Service, VA Western NY Healthcare System, Buffalo, NY, USA
| | - Lara A Skelton
- Departments of Ophthalmology and Biochemistry, and the Neuroscience Graduate Program, SUNY-University at Buffalo, Buffalo, NY, USA; Research Service, VA Western NY Healthcare System, Buffalo, NY, USA
| | - Machelle T Pardue
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Healthcare System, Atlanta, GA, USA; Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, US
| | - Steven J Fliesler
- Departments of Ophthalmology and Biochemistry, and the Neuroscience Graduate Program, SUNY-University at Buffalo, Buffalo, NY, USA; Research Service, VA Western NY Healthcare System, Buffalo, NY, USA
| | - Chao Wang
- Gladstone Institute of Neurological Disease, San Francisco, CA, USA
| | | | - Li Gan
- Helen and Robert Appel Alzheimer's Disease Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Daniel J Liebl
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Jude P J Savarraj
- Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Glenda L Torres
- Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Hilda Ahnstedt
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Louise D McCullough
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Ryan S Kitagawa
- Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - H Alex Choi
- Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Pengyue Zhang
- Department of Biomedical Informatics, College of Medicine, Ohio State University, Columbus, OH, USA
| | - Yuan Hou
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Chien-Wei Chiang
- Department of Biomedical Informatics, College of Medicine, Ohio State University, Columbus, OH, USA
| | - Lang Li
- Department of Biomedical Informatics, College of Medicine, Ohio State University, Columbus, OH, USA
| | - Francisco Ortiz
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, TX, USA
| | - Jessica A Kilgore
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, TX, USA
| | - Noelle S Williams
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, TX, USA
| | - Victoria C Whitehair
- MetroHealth Rehabilitation Institute, The MetroHealth System, Cleveland, OH; Department of Physical Medicine and Rehabilitation, Case Western Reserve University, School of Medicine, Cleveland, OH USA
| | - Tamar Gefen
- Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Margaret E Flanagan
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Department of Pathology, Northwestern University, Chicago, IL, USA
| | - Jonathan S Stamler
- Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA; Institute for Transformative Molecular Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH, USA; Department of Medicine, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Mukesh K Jain
- Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA; Department of Medicine, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Allison Kraus
- Department of Pathology, Case Western Reserve University, School of Medicine, Cleveland, OH, USA
| | - Feixiong Cheng
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA; Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA; Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - James D Reynolds
- Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA; Institute for Transformative Molecular Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH, USA; Departments of Anesthesiology & Perioperative Medicine, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Andrew A Pieper
- Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA; Department of Psychiatry, Case Western Reserve University, Cleveland, OH, USA; Geriatric Psychiatry, GRECC, Louis Stokes Cleveland VA Medical Center; Cleveland, OH, USA; Institute for Transformative Molecular Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH, USA; Weill Cornell Autism Research Program, Weill Cornell Medicine of Cornell University, New York, NY, USA; Department of Neuroscience, Case Western Reserve University, School of Medicine, Cleveland, OH, USA.
| |
Collapse
|
13
|
P7C3-A20 treatment one year after TBI in mice repairs the blood-brain barrier, arrests chronic neurodegeneration, and restores cognition. Proc Natl Acad Sci U S A 2020; 117:27667-27675. [PMID: 33087571 PMCID: PMC7959512 DOI: 10.1073/pnas.2010430117] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Chronic neurodegeneration, a major cause of the long-term disabilities that afflict survivors of traumatic brain injury (TBI), is linked to an increased risk for late-life neurodegenerative disorders, including Alzheimer’s disease, Parkinson’s disease, vascular dementia, and chronic traumatic encephalopathy. Here, we report on the restoration of blood–brain barrier (BBB) structure and function by P7C3-A20 when administered 12 mo after TBI. This pharmacotherapy was associated with cessation of chronic neurodegeneration and recovery of normal cognitive function, benefits that persisted long after treatment cessation. Pharmacologic renewal of BBB integrity may thus provide a new treatment option for patients who have suffered a remote TBI, or other neurological conditions associated with BBB deterioration. Chronic neurodegeneration in survivors of traumatic brain injury (TBI) is a major cause of morbidity, with no effective therapies to mitigate this progressive and debilitating form of nerve cell death. Here, we report that pharmacologic restoration of the blood–brain barrier (BBB), 12 mo after murine TBI, is associated with arrested axonal neurodegeneration and cognitive recovery, benefits that persisted for months after treatment cessation. Recovery was achieved by 30 d of once-daily administration of P7C3-A20, a compound that stabilizes cellular energy levels. Four months after P7C3-A20, electron microscopy revealed full repair of TBI-induced breaks in cortical and hippocampal BBB endothelium. Immunohistochemical staining identified additional benefits of P7C3-A20, including restoration of normal BBB endothelium length, increased brain capillary pericyte density, increased expression of BBB tight junction proteins, reduced brain infiltration of immunoglobulin, and attenuated neuroinflammation. These changes were accompanied by cessation of TBI-induced chronic axonal degeneration. Specificity for P7C3-A20 action on the endothelium was confirmed by protection of cultured human brain microvascular endothelial cells from hydrogen peroxide-induced cell death, as well as preservation of BBB integrity in mice after exposure to toxic levels of lipopolysaccharide. P7C3-A20 also protected mice from BBB degradation after acute TBI. Collectively, our results provide insights into the pathophysiologic mechanisms behind chronic neurodegeneration after TBI, along with a putative treatment strategy. Because TBI increases the risks of other forms of neurodegeneration involving BBB deterioration (e.g., Alzheimer’s disease, Parkinson’s disease, vascular dementia, chronic traumatic encephalopathy), P7C3-A20 may have widespread clinical utility in the setting of neurodegenerative conditions.
Collapse
|