1
|
Verde-Sesto E, Asenjo-Sanz I, Juranyi F, Pomposo JA, Maiz J. Probing the influence of composition and cross-linking degree on single-chain nanoparticles from poly(tetrahydrofuran-ran-epichlorohydrin) copolymers: Insights from neutron scattering, calorimetry, and dielectric spectroscopy. J Colloid Interface Sci 2024; 679:785-797. [PMID: 39393155 DOI: 10.1016/j.jcis.2024.10.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/20/2024] [Accepted: 10/05/2024] [Indexed: 10/13/2024]
Abstract
The industrial sector has made significant strides in the development of multicomponent and multiphasic polymer materials, including polymer blends, composites (such as nanocomposites), and various copolymers. Random copolymers, characterized by their statistical arrangement of repeating units, are particularly noteworthy due to their tunability from amorphous to semicrystalline states. In this study, we focus on poly(tetrahydrofuran-ran-epichlorohydrin) (P(THF-ran-ECH)) copolymers, which serve as precursors for single-chain nanoparticles (SCNPs). These SCNP-based materials are of particular interest as they bridge the gap between traditional polymers and colloids. This research comprehensively investigates how the type and degree of internal cross-linking influence the structure and dynamics of P(THF-ran-ECH) copolymers and their SCNPs. Techniques such as quasielastic neutron scattering (QENS), differential scanning calorimetry (DSC), and broadband dielectric spectroscopy (BDS) were employed to study copolymers with varying compositions and levels of cross-linking. By analyzing two samples with different epichlorohydrin (ECH) contents (13 mol% and 27 mol%), we aim to control crystallization and explore its effects on dynamic behavior. Our results show that both the composition and the degree of cross-linking significantly impact the dynamics of the SCNPs, with SCNPs exhibiting slower dynamics compared to their precursor copolymers. Furthermore, semicrystalline samples display faster dynamics in SCNPs than amorphous samples. These findings provide valuable insights for the design and optimization of advanced multicomponent polymer systems.
Collapse
Affiliation(s)
- Ester Verde-Sesto
- Centro de Física de Materiales (CFM) (CSIC-UPV/EHU)-Materials Physics Center (MPC), Paseo Manuel de Lardizábal 5, 20018 Donostia-San Sebastián, Spain; IKERBASQUE-Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain
| | - Isabel Asenjo-Sanz
- Centro de Física de Materiales (CFM) (CSIC-UPV/EHU)-Materials Physics Center (MPC), Paseo Manuel de Lardizábal 5, 20018 Donostia-San Sebastián, Spain
| | - Fanni Juranyi
- Laboratory for Neutron Scattering, Paul Scherrer Institut, CH-5232 Villigen, Switzerland
| | - José A Pomposo
- Centro de Física de Materiales (CFM) (CSIC-UPV/EHU)-Materials Physics Center (MPC), Paseo Manuel de Lardizábal 5, 20018 Donostia-San Sebastián, Spain; IKERBASQUE-Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain; Departamento de Polímeros y Materiales Avanzados: Física, Química y Tecnología, Universidad del País Vasco-Euskal Herriko Unibertsitatea (UPV/EHU), 20018 Donostia-San Sebastián, Spain
| | - Jon Maiz
- Centro de Física de Materiales (CFM) (CSIC-UPV/EHU)-Materials Physics Center (MPC), Paseo Manuel de Lardizábal 5, 20018 Donostia-San Sebastián, Spain; IKERBASQUE-Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain.
| |
Collapse
|
2
|
Grizzi VF, Lee SC, Z Y. First-Principles Investigation of the Effects of UF 4 and ThF 4 Fuels on the Structural, Dynamic, and Thermodynamic Properties of LiF-NaF. J Phys Chem B 2024; 128:5676-5684. [PMID: 38831744 DOI: 10.1021/acs.jpcb.4c01243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
An in-depth understanding and characterization of molten salt properties are necessary for the optimized design, efficient operation, and safety assurance of molten salt reactors (MSRs). Investigating molten salt properties in experimental settings can be challenging and time-consuming due to the high temperatures of interest, the salt's corrosiveness, purity and composition control, and health and safety concerns. Therefore, it is beneficial to perform computational screening to assist in the ultimate experimental measurements. Herein, we used first-principles molecular dynamics simulations to calculate several thermophysical, structural, and dynamic properties of eutectic LiF-NaF with fuel additives UF4 and ThF4. We found that with the incorporation of uranium or thorium, a prepeak appears in the structure factor, indicative of a medium-range structural ordering. Furthermore, we explore the mechanism through which these structural changes enhance shear stress correlations, thereby increasing the salt's viscosity. This work highlights the importance of studying the atomic-scale structure of molten salts and how the addition of fuel elements can substantially affect it.
Collapse
Affiliation(s)
- Vitor F Grizzi
- Department of Nuclear, Plasma, and Radiological Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Shao-Chun Lee
- Department of Nuclear, Plasma, and Radiological Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Y Z
- Department of Nuclear, Plasma, and Radiological Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Robotics, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
3
|
Ranieri U, Formisano F, Gorelli FA, Santoro M, Koza MM, De Francesco A, Bove LE. Crossover from gas-like to liquid-like molecular diffusion in a simple supercritical fluid. Nat Commun 2024; 15:4142. [PMID: 38755136 PMCID: PMC11099187 DOI: 10.1038/s41467-024-47961-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 04/15/2024] [Indexed: 05/18/2024] Open
Abstract
According to textbooks, no physical observable can be discerned allowing to distinguish a liquid from a gas beyond the critical point. Yet, several proposals have been put forward challenging this view and various transition boundaries between a gas-like and a liquid-like behaviour, including the so-called Widom and Frenkel lines, and percolation line, have been suggested to delineate the supercritical state space. Here we report observation of a crossover from gas-like (Gaussian) to liquid-like (Lorentzian) self-dynamic structure factor by incoherent quasi-elastic neutron scattering measurements on supercritical fluid methane as a function of pressure, along the 200 K isotherm. The molecular self-diffusion coefficient was derived from the best Gaussian (at low pressures) or Lorentzian (at high pressures) fits to the neutron spectra. The Gaussian-to-Lorentzian crossover is progressive and takes place at about the Widom line intercept (59 bar). At considerably higher pressures, a liquid-like jump diffusion mechanism properly describes the supercritical fluid on both sides of the Frenkel line. The present observation of a gas-like to liquid-like crossover in the self dynamics of a simple supercritical fluid confirms emerging views on the unexpectedly complex physics of the supercritical state, and could have planet-wide implications and possible industrial applications in green chemistry.
Collapse
Affiliation(s)
- Umbertoluca Ranieri
- Dipartimento di Fisica, Università di Roma La Sapienza, Piazzale Aldo Moro 5, Roma, 00187, Italy
- Centre for Science at Extreme Conditions and School of Physics and Astronomy, University of Edinburgh, Edinburgh, EH9 3FD, UK
| | - Ferdinando Formisano
- CNR - Istituto Officina dei Materiali (IOM), Grenoble, INSIDE@ILL, 71 Avenue des Martyrs, Grenoble, Cedex 9, France.
- Institut Laue-Langevin, 71 Avenue des Martyrs, Grenoble, Cedex 9, France.
| | - Federico A Gorelli
- Center for High Pressure Science and Technology Advanced Research (HPSTAR), 1690 Cailun Road, Shanghai, 201203, China.
- Shanghai Advanced Research in Physical Sciences (SHARPS), Pudong, Shanghai, 201203, China.
- Consiglio Nazionale delle Ricerche, Istituto Nazionale di Ottica, CNR-INO, Via Nello Carrara 1, Sesto Fiorentino (FI), 50019, Italy.
| | - Mario Santoro
- Consiglio Nazionale delle Ricerche, Istituto Nazionale di Ottica, CNR-INO, Via Nello Carrara 1, Sesto Fiorentino (FI), 50019, Italy
- European Laboratory for Nonlinear Spectroscopy, LENS, Via Nello Carrara 1, Sesto Fiorentino (FI), 50019, Italy
| | - Michael Marek Koza
- Institut Laue-Langevin, 71 Avenue des Martyrs, Grenoble, Cedex 9, France
| | - Alessio De Francesco
- CNR - Istituto Officina dei Materiali (IOM), Grenoble, INSIDE@ILL, 71 Avenue des Martyrs, Grenoble, Cedex 9, France
- Institut Laue-Langevin, 71 Avenue des Martyrs, Grenoble, Cedex 9, France
| | - Livia E Bove
- Dipartimento di Fisica, Università di Roma La Sapienza, Piazzale Aldo Moro 5, Roma, 00187, Italy
- Laboratory of Quantum Magnetism, Institute of Physics, École Polytechnique Fédérale de Lausanne, Lausanne, CH-1015, Switzerland
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, Sorbonne Université, UMR CNRS 7590, 5 Place Jussieu, Paris, 75005, France
| |
Collapse
|
4
|
Salvati Manni L, Wood K, Klapproth A, Warr GG. Inelastic neutron scattering and spectroscopy methods to characterize dynamics in colloidal and soft matter systems. Adv Colloid Interface Sci 2024; 326:103135. [PMID: 38520888 DOI: 10.1016/j.cis.2024.103135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/12/2024] [Accepted: 03/14/2024] [Indexed: 03/25/2024]
Abstract
Colloidal systems and soft materials are well suited to neutron scattering, and the community has readily adopted elastic scattering techniques to investigate their structure. Due to their unique properties, neutrons may also be used to characterize the dynamics of soft materials over a wide range of length and time scales in situ. Both static structures and an understanding of how molecules move about their equilibrium positions is essential if we are to deliver on the promise of rationally designing soft materials. In this review we introduce the basics of neutron spectroscopy and explore the ways in which inelastic neutron scattering can be used to study colloidal and soft materials. Illustrative examples are chosen that highlight the phenomena suitable for investigation using this suite of techniques.
Collapse
Affiliation(s)
- Livia Salvati Manni
- School of Chemistry, University of Sydney Nano Institute, The University of Sydney, Sydney, NSW 2006, Australia; School of Chemistry, Monash University, Wellington Road, Clayton, VIC 3800, Australia; School of Environmental and Life Sciences, University of Newcastle, Callaghan 2308, NSW, Australia; Australian Synchrotron, ANSTO, 800 Blackburn Rd, Clayton, VIC 3168, Australia
| | - Kathleen Wood
- Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organization, New Illawarra Road, Lucas Heights, NSW 2234, Australia
| | - Alice Klapproth
- Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organization, New Illawarra Road, Lucas Heights, NSW 2234, Australia
| | - Gregory G Warr
- School of Chemistry, University of Sydney Nano Institute, The University of Sydney, Sydney, NSW 2006, Australia.
| |
Collapse
|
5
|
Yang D, Rochat S, Krzystyniak M, Kulak A, Olivier J, Ting VP, Tian M. Investigation of the Dynamic Behaviour of H 2 and D 2 in a Kinetic Quantum Sieving System. ACS APPLIED MATERIALS & INTERFACES 2024; 16:12467-12478. [PMID: 38423989 PMCID: PMC10941075 DOI: 10.1021/acsami.3c17965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/14/2024] [Accepted: 02/20/2024] [Indexed: 03/02/2024]
Abstract
Porous organic cages (POCs) are nanoporous materials composed of discrete molecular units that have uniformly distributed functional pores. The intrinsic porosity of these structures can be tuned accurately at the nanoscale by altering the size of the porous molecules, particularly to an optimal size of 3.6 Å, to harness the kinetic quantum sieving effect. Previous research on POCs for isotope separation has predominantly centered on differences in the quantities of adsorbed isotopes. However, nuclear quantum effects also contribute significantly to the dynamics of the sorption process, offering additional opportunities for separating H2 and D2 at practical operational temperatures. In this study, our investigations into H2 and D2 sorption on POC samples revealed a higher uptake of D2 compared to that of H2 under identical conditions. We employed quasi-elastic neutron scattering to study the diffusion processes of D2 and H2 in the POCs across various temperature and pressure ranges. Additionally, neutron Compton scattering was utilized to measure the values of the nuclear zero-point energy of individual isotopic species in D2 and H2. The results indicate that the diffusion coefficient of D2 is approximately one-sixth that of H2 in the POC due to the nuclear quantum effect. Furthermore, the results reveal that at 77 K, D2 has longer residence times compared to H2 when moving from pore to pore. Consequently, using the kinetic difference of H2 and D2 in a porous POC system enables hydrogen isotope separation using a temperature or pressure swing system at around liquid nitrogen temperatures.
Collapse
Affiliation(s)
- Dankun Yang
- Department
of Mechanical Engineering, University of
Bristol, Bristol BS8 1TR, U.K.
| | - Sebastien Rochat
- School
of Engineering Mathematics and Technology, University of Bristol, Bristol BS8 1TW, U.K.
- School
of Chemistry, University of Bristol, Bristol BS8 1TS, U.K.
| | | | - Alexander Kulak
- School
of Chemistry, University of Leeds, Leeds LS2 9JT, U.K.
| | | | - Valeska P. Ting
- Department
of Mechanical Engineering, University of
Bristol, Bristol BS8 1TR, U.K.
- .School
of Engineering, Computing and Cybernetics & Research School of
Chemistry, Australian National University, Canberra 0200, Australia
| | - Mi Tian
- .Department
of Engineering, University of Exeter, ExeterEX4 4QF, U.K.
| |
Collapse
|
6
|
Shinohara Y, Iwashita T, Nakanishi M, Osti NC, Kofu M, Nirei M, Dmowski W, Egami T. Proton Diffusion in Liquid 1,2,3-Triazole Studied by Incoherent Quasi-Elastic Neutron Scattering. J Phys Chem B 2024; 128:1544-1549. [PMID: 38306707 DOI: 10.1021/acs.jpcb.3c07685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2024]
Abstract
Improving the proton transport in polymer electrolytes impacts the performance of next-generation solid-state batteries. However, little is known about proton conductivity in nonaqueous systems due to the lack of an appropriate level of fundamental understanding. Here, we studied the proton transport in small molecules with dynamic hydrogen bonding, 1,2,3-triazole, as a model system of proton hopping in a nonaqueous environment using incoherent quasi-elastic neutron scattering. By using the jump-diffusion model, we identified the elementary jump-diffusion motion of protons at a much shorter length scale than those by nuclear magnetic resonance and impedance spectroscopy for the estimated long-range diffusion. In addition, a spatially restricted diffusive motion was observed, indicating that proton motion in 1,2,3-triazole is complex with various local correlated dynamics. These correlated dynamics will be important in elucidating the nature of the proton dynamics in nonaqueous systems.
Collapse
Affiliation(s)
- Yuya Shinohara
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Takuya Iwashita
- Department of Science and Engineering, Oita University, Dannoharu, Oita 870-1192, Japan
| | - Masahiro Nakanishi
- Department of Electrical Engineering, Fukuoka Institute of Technology, Fukuoka 811-0295, Japan
| | - Naresh C Osti
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Maiko Kofu
- Materials and Life Science Division, J-PARC Center, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195, Japan
| | - Masami Nirei
- Materials and Life Science Division, J-PARC Center, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195, Japan
| | - Wojciech Dmowski
- Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Takeshi Egami
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
- Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
- Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996, United States
| |
Collapse
|
7
|
Li H, Zheng YH, Gates WP, Villacorta FJ, Ohira-Kawamura S, Kawakita Y, Ikeda K, Bordallo HN. Role of Exchange Cations and Layer Charge on the Dynamics of Confined Water. J Phys Chem A 2024; 128:261-270. [PMID: 38135662 DOI: 10.1021/acs.jpca.3c05649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2023]
Abstract
Describing the dynamic behavior of water confined in clay minerals is a fascinating challenge and crucial in many research areas, ranging from materials science and geotechnical engineering to environmental sustainability. Water is the most abundant resource on Earth, and the high reactivity of naturally occurring hydrous clay minerals used since prehistoric times for a variety of applications means that water-clay interaction is a ubiquitous phenomenon in nature. We have attempted to experimentally distinguish the rotational dynamics and translational diffusion of two distinct populations of interlayer water, confined and ultraconfined, in the sodium (Na) forms of two smectite clay minerals, montmorillonite (Mt) and hectorite (Ht). Samples hydrated at a pseudo one-layer hydration (1LH) state under ambient conditions were studied with quasi-elastic neutron scattering (QENS) between 150 and 300 K. Using a simplified revised jump-diffusion and rotation-diffusion model (srJRM), we observed that while interlayer water near the ditrigonal cavity in Ht forms strong H-bonds to both adjacent surface O and structural OH, H-bonding of other more prevalent interlayer water with the surface O is weaker compared to Mt, inducing a higher temperature for dynamical changes of confined water. Given the lower layer charge and faster dynamics observed for Ht compared to Mt, we consider this strong evidence confirming the influence of the interlayer cation and surfaces on confined water dynamics.
Collapse
Affiliation(s)
- Hua Li
- Department of Physics, Jinan University, Guangzhou 510632, China
| | - Yin-Hao Zheng
- Department of Physics, Jinan University, Guangzhou 510632, China
| | - Will P Gates
- Institute for Frontier Materials, Deakin University, Melbourne-Burwood, 221 Burwood Highway, Burwood, Victoria 3125, Australia
| | - F J Villacorta
- ESS-Bilbao, Parque Científico y Tecnológico Bizkaia Nave 201, 48170 Zamudio, Spain
| | | | - Yukinobu Kawakita
- Neutron Science Section, MLF Division, J-PARC Center, Tokai 319-1106, Japan
| | - Kazutaka Ikeda
- Neutron Science Section, MLF Division, J-PARC Center, Tokai 319-1106, Japan
- Neutron Industrial Application Promotion Center, CROSS, 203-1 Shirakata, Tokai-mura, Naka-gun, Ibaraki 319-1106, Japan
| | - Heloisa N Bordallo
- The Niels Bohr Institute, University of Copenhagen, DK-2100 Copenhagen, Denmark
| |
Collapse
|
8
|
Peters J, Oliva R, Caliò A, Oger P, Winter R. Effects of Crowding and Cosolutes on Biomolecular Function at Extreme Environmental Conditions. Chem Rev 2023; 123:13441-13488. [PMID: 37943516 DOI: 10.1021/acs.chemrev.3c00432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
The extent of the effect of cellular crowding and cosolutes on the functioning of proteins and cells is manifold and includes the stabilization of the biomolecular systems, the excluded volume effect, and the modulation of molecular dynamics. Simultaneously, it is becoming increasingly clear how important it is to take the environment into account if we are to shed light on biological function under various external conditions. Many biosystems thrive under extreme conditions, including the deep sea and subseafloor crust, and can take advantage of some of the effects of crowding. These relationships have been studied in recent years using various biophysical techniques, including neutron and X-ray scattering, calorimetry, FTIR, UV-vis and fluorescence spectroscopies. Combining knowledge of the structure and conformational dynamics of biomolecules under extreme conditions, such as temperature, high hydrostatic pressure, and high salinity, we highlight the importance of considering all results in the context of the environment. Here we discuss crowding and cosolute effects on proteins, nucleic acids, membranes, and live cells and explain how it is possible to experimentally separate crowding-induced effects from other influences. Such findings will contribute to a better understanding of the homeoviscous adaptation of organisms and the limits of life in general.
Collapse
Affiliation(s)
- Judith Peters
- Univ. Grenoble Alpes, CNRS, LiPhy, 140 rue de la physique, 38400 St Martin d'Hères, France
- Institut Laue Langevin, 71 avenue des Martyrs, 38000 Grenoble, France
- Institut Universitaire de France, 75005 Paris, France
| | - Rosario Oliva
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 4, 80126 Naples, Italy
| | - Antonino Caliò
- European Synchrotron Radiation Facility, 71 avenue des Martyrs, 38000 Grenoble, France
| | - Philippe Oger
- INSA Lyon, Universite Claude Bernard Lyon1, CNRS, UMR5240, 69621 Villeurbanne, France
| | - Roland Winter
- Department of Chemistry and Chemical Biology, Biophysical Chemistry, TU Dortmund University, Dortmund, Otto-Hahn-Str. 4a, D-44227 Dortmund, Germany
| |
Collapse
|
9
|
Srinivasan H, Sharma VK, Sakai VG, Mukhopadhyay R, Mitra S. Noncanonical Relationship between Heterogeneity and the Stokes-Einstein Breakdown in Deep Eutectic Solvents. J Phys Chem Lett 2023; 14:9766-9773. [PMID: 37882461 DOI: 10.1021/acs.jpclett.3c02132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
The relationship between Stokes-Einstein breakdown (SEB) and dynamical heterogeneity (DH) is of paramount importance in the physical chemistry of complex fluids. In this work, we employ neutron scattering to probe the DH and SEB in a series of deep eutectic solvents (DESs) composed of acetamide and lithium salts. Quasielastic neutron scattering experiments reveal SEB in the jump diffusion of acetamide, represented by a fractional Stokes-Einstein relationship. Among these DESs, lithium perchlorate exhibits the most pronounced SEB while lithium bromide displays the weakest. Concurrently, elastic incoherent neutron scans identify that bromide DES is the most heterogeneous and perchlorate is the least. For the first time, our study unveils a counterintuitive incommensurate relationship between DH and SEB. Further, it reveals the intricate contrasting nature of the SEB-DH relationship when investigated in proximity to the glass-transition temperature and further away from it.
Collapse
Affiliation(s)
- H Srinivasan
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - V K Sharma
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - V García Sakai
- ISIS Neutron and Muon Source, Rutherford Appleton Laboratory, Didcot OX11 0QX, U.K
| | - R Mukhopadhyay
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - S Mitra
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| |
Collapse
|
10
|
Mosca I, Pounot K, Beck C, Colin L, Matsarskaia O, Grapentin C, Seydel T, Schreiber F. Biophysical Determinants for the Viscosity of Concentrated Monoclonal Antibody Solutions. Mol Pharm 2023; 20:4698-4713. [PMID: 37549226 DOI: 10.1021/acs.molpharmaceut.3c00440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
Monoclonal antibodies (mAbs) are particularly relevant for therapeutics due to their high specificity and versatility, and mAb-based drugs are hence used to treat numerous diseases. The increased patient compliance of self-administration motivates the formulation of products for subcutaneous (SC) administration. The associated challenge is to formulate highly concentrated antibody solutions to achieve a significant therapeutic effect, while limiting their viscosity and preserving their physicochemical stability. Protein-protein interactions (PPIs) are in fact the root cause of several potential problems concerning the stability, manufacturability, and delivery of a drug product. The understanding of macroscopic viscosity requires an in-depth knowledge on protein diffusion, PPIs, and self-association/aggregation. Here, we study the self-diffusion of different mAbs of the IgG1 subtype in aqueous solution as a function of the concentration and temperature by quasi-elastic neutron scattering (QENS). QENS allows us to probe the short-time self-diffusion of the molecules and therefore to determine the hydrodynamic mAb cluster size and to gain information on the internal mAb dynamics. Small-angle neutron scattering (SANS) is jointly employed to probe structural details and to understand the nature and intensity of PPIs. Complementary information is provided by molecular dynamics (MD) simulations and viscometry, thus obtaining a comprehensive picture of mAb diffusion.
Collapse
Affiliation(s)
- Ilaria Mosca
- Institut für Angewandte Physik, Universität Tübingen, Auf der Morgenstelle 10, Tübingen 72076, Germany
- Institut Max von Laue - Paul Langevin, 71 Av. des Martyrs, Grenoble 38042, France
| | - Kévin Pounot
- Institut für Angewandte Physik, Universität Tübingen, Auf der Morgenstelle 10, Tübingen 72076, Germany
- Institut Max von Laue - Paul Langevin, 71 Av. des Martyrs, Grenoble 38042, France
| | - Christian Beck
- Institut für Angewandte Physik, Universität Tübingen, Auf der Morgenstelle 10, Tübingen 72076, Germany
- Institut Max von Laue - Paul Langevin, 71 Av. des Martyrs, Grenoble 38042, France
| | - Louise Colin
- Institut für Angewandte Physik, Universität Tübingen, Auf der Morgenstelle 10, Tübingen 72076, Germany
- Institut Max von Laue - Paul Langevin, 71 Av. des Martyrs, Grenoble 38042, France
| | - Olga Matsarskaia
- Institut Max von Laue - Paul Langevin, 71 Av. des Martyrs, Grenoble 38042, France
| | | | - Tilo Seydel
- Institut Max von Laue - Paul Langevin, 71 Av. des Martyrs, Grenoble 38042, France
| | - Frank Schreiber
- Institut für Angewandte Physik, Universität Tübingen, Auf der Morgenstelle 10, Tübingen 72076, Germany
| |
Collapse
|
11
|
Arbe A, Nilsen GJ, Devonport M, Farago B, Alvarez F, Martínez González JA, Colmenero J. Collective dynamics and self-motions in the van der Waals liquid tetrahydrofuran from meso- to inter-molecular scales disentangled by neutron spectroscopy with polarization analysis. J Chem Phys 2023; 158:2889007. [PMID: 37154281 DOI: 10.1063/5.0147427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/18/2023] [Indexed: 05/10/2023] Open
Abstract
By using time-of-flight neutron spectroscopy with polarization analysis, we have separated coherent and incoherent contributions to the scattering of deuterated tetrahydrofuran in a wide scattering vector (Q)-range from meso- to inter-molecular length scales. The results are compared with those recently reported for water to address the influence of the nature of inter-molecular interactions (van der Waals vs hydrogen bond) on the dynamics. The phenomenology found is qualitatively similar in both systems. Both collective and self-scattering functions are satisfactorily described in terms of a convolution model that considers vibrations, diffusion, and a Q-independent mode. We observe a crossover in the structural relaxation from being dominated by the Q-independent mode at the mesoscale to being dominated by diffusion at inter-molecular length scales. The characteristic time of the Q-independent mode is the same for collective and self-motions and, contrary to water, faster and with a lower activation energy (≈1.4 Kcal/mol) than the structural relaxation time at inter-molecular length scales. This follows the macroscopic viscosity behavior. The collective diffusive time is well described by the de Gennes narrowing relation proposed for simple monoatomic liquids in a wide Q-range entering the intermediate length scales, in contraposition to the case of water.
Collapse
Affiliation(s)
- Arantxa Arbe
- Centro de Física de Materiales (CFM) (CSIC-UPV/EHU) - Materials Physics Center (MPC), Paseo Manuel de Lardizabal 5, 20018 San Sebastián, Spain
| | - Gøran J Nilsen
- ISIS Neutron and Muon Source, Rutherford Appleton Laboratory, Didcot OX11 0QX, United Kingdom
| | - Mark Devonport
- ISIS Neutron and Muon Source, Rutherford Appleton Laboratory, Didcot OX11 0QX, United Kingdom
| | - Bela Farago
- Institut Laue-Langevin, 71 avenue des Martyrs, Grenoble Cedex 9, 38042, France
| | - Fernando Alvarez
- Centro de Física de Materiales (CFM) (CSIC-UPV/EHU) - Materials Physics Center (MPC), Paseo Manuel de Lardizabal 5, 20018 San Sebastián, Spain
- Departamento de Polímeros y Materiales Avanzados: Física, Química y Tecnología (UPV/EHU), Apartado 1072, E-20080 San Sebastián, Spain
| | | | - Juan Colmenero
- Centro de Física de Materiales (CFM) (CSIC-UPV/EHU) - Materials Physics Center (MPC), Paseo Manuel de Lardizabal 5, 20018 San Sebastián, Spain
- Departamento de Polímeros y Materiales Avanzados: Física, Química y Tecnología (UPV/EHU), Apartado 1072, E-20080 San Sebastián, Spain
- Donostia International Physics Center, Paseo Manuel de Lardizabal 4, 20018 San Sebastián, Spain
| |
Collapse
|
12
|
Rescigno M, Lucioli M, Alabarse FG, Ranieri U, Frick B, Coasne B, Bove LE. Low-Temperature Dynamics of Water Confined in Unidirectional Hydrophilic Zeolite Nanopores. J Phys Chem B 2023; 127:4570-4576. [PMID: 37172261 DOI: 10.1021/acs.jpcb.3c00681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The dynamical properties of water molecules confined in the unidirectional hydrophilic nanopores of AlPO4-54 are investigated with quasi-elastic neutron scattering as a function of temperature down to 118 K. AlPO4-54 has among the largest pores known for aluminophosphates and zeolites (about 1.3 nm), though they are small enough to prevent water crystallization due to the high degree of confinement. Water molecular diffusion into the pore is here measured down to 258 K. Diffusion is slower than in bulk water and has an activation energy of Ea = (20.8 ± 2.8) kJ/mol, in agreement with previous studies on similar confining media. Surprisingly, local hydrogen dynamics associated with water reorientation is measured down to temperatures (118 K), i.e., well below the expected glass transition temperature of bulk water. The reorientational time scale shows the well-known non-Arrhenius behavior down to the freezing of water mass diffusion, while it shows a feeble temperature dependence below. This fast local dynamics, of the order of fractions of nanoseconds, is believed to take place in the dense, highly disordered amorphous water occupying the pore center, indicating its possible plastic nature.
Collapse
Affiliation(s)
- Maria Rescigno
- Dipartimento di Fisica, Università di Roma La Sapienza, 00185 Roma, RM, Italy
| | - Matilde Lucioli
- Dipartimento di Fisica, Università di Roma La Sapienza, 00185 Roma, RM, Italy
| | | | - Umbertoluca Ranieri
- Dipartimento di Fisica, Università di Roma La Sapienza, 00185 Roma, RM, Italy
| | | | - Benoit Coasne
- Université Grenoble Alpes, CNRS, LIPhy, 38000 Grenoble, France
| | - Livia E Bove
- Dipartimento di Fisica, Università di Roma La Sapienza, 00185 Roma, RM, Italy
- Sorbonne Université, UMR CNRS 7590, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), 75252 Paris, France
- Laboratory of Quantum Magnetism, Institute of Physics, École Polytechnique Fedeerale de Lausanne, Lausanne CH-1015, Switzerland
| |
Collapse
|
13
|
Popov I, Zhu Z, Young-Gonzales AR, Sacci RL, Mamontov E, Gainaru C, Paddison SJ, Sokolov AP. Search for a Grotthuss mechanism through the observation of proton transfer. Commun Chem 2023; 6:77. [PMID: 37087505 PMCID: PMC10122652 DOI: 10.1038/s42004-023-00878-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 04/04/2023] [Indexed: 04/24/2023] Open
Abstract
The transport of protons is critical in a variety of bio- and electro-chemical processes and technologies. The Grotthuss mechanism is considered to be the most efficient proton transport mechanism, generally implying a transfer of protons between 'chains' of host molecules via elementary reactions within the hydrogen bonds. Although Grotthuss proposed this concept more than 200 years ago, only indirect experimental evidence of the mechanism has been observed. Here we report the first experimental observation of proton transfer between the molecules in pure and 85% aqueous phosphoric acid. Employing dielectric spectroscopy, quasielastic neutron, and light scattering, and ab initio molecular dynamic simulations we determined that protons move by surprisingly short jumps of only ~0.5-0.7 Å, much smaller than the typical ion jump length in ionic liquids. Our analysis confirms the existence of correlations in these proton jumps. However, these correlations actually reduce the conductivity, in contrast to a desirable enhancement, as is usually assumed by a Grotthuss mechanism. Furthermore, our analysis suggests that the expected Grotthuss-like enhancement of conductivity cannot be realized in bulk liquids where ionic correlations always decrease conductivity.
Collapse
Affiliation(s)
- Ivan Popov
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
- Department of Chemistry, University of Tennessee, Knoxville, TN, USA
| | - Zhenghao Zhu
- Department of Chemical & Biomolecular Engineering, University of Tennessee, Knoxville, TN, USA
| | | | - Robert L Sacci
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Eugene Mamontov
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Catalin Gainaru
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Stephen J Paddison
- Department of Chemical & Biomolecular Engineering, University of Tennessee, Knoxville, TN, USA.
| | - Alexei P Sokolov
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA.
- Department of Chemistry, University of Tennessee, Knoxville, TN, USA.
| |
Collapse
|
14
|
Das M, Ray DS. Critical and scaling behavior of delayed bifurcations in nonlinear systems with dynamic disorder. J CHEM SCI 2023. [DOI: 10.1007/s12039-023-02148-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
15
|
Di Bari D, Timr S, Guiral M, Giudici-Orticoni MT, Seydel T, Beck C, Petrillo C, Derreumaux P, Melchionna S, Sterpone F, Peters J, Paciaroni A. Diffusive Dynamics of Bacterial Proteome as a Proxy of Cell Death. ACS CENTRAL SCIENCE 2023; 9:93-102. [PMID: 36712493 PMCID: PMC9881203 DOI: 10.1021/acscentsci.2c01078] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Indexed: 05/30/2023]
Abstract
Temperature variations have a big impact on bacterial metabolism and death, yet an exhaustive molecular picture of these processes is still missing. For instance, whether thermal death is determined by the deterioration of the whole or a specific part of the proteome is hotly debated. Here, by monitoring the proteome dynamics of E. coli, we clearly show that only a minor fraction of the proteome unfolds at the cell death. First, we prove that the dynamical state of the E. coli proteome is an excellent proxy for temperature-dependent bacterial metabolism and death. The proteome diffusive dynamics peaks at about the bacterial optimal growth temperature, then a dramatic dynamical slowdown is observed that starts just below the cell's death temperature. Next, we show that this slowdown is caused by the unfolding of just a small fraction of proteins that establish an entangling interprotein network, dominated by hydrophobic interactions, across the cytoplasm. Finally, the deduced progress of the proteome unfolding and its diffusive dynamics are both key to correctly reproduce the E. coli growth rate.
Collapse
Affiliation(s)
- Daniele Di Bari
- Università
degli Studi di Perugia, Dipartimento di
Fisica e Geologia, Via
A. Pascoli, 06123Perugia PG, Italy
- Université
Grenoble Alpes, CNRS, Laboratoire Interdisciplinaire de Physique, 38400Saint-Martin-d’Héres, France
- Institut
Laue-Langevin, 38000Grenoble, France
| | - Stepan Timr
- Laboratoire
de Biochimie Théorique (UPR9080), CNRS, Université de Paris Cité, 13 Rue Pierre et Marie Curie, 75005Paris, France
- Institut
de Biologie Physico-Chimique, Fondation Edmond de Rothschild, 13 Rue Pierre et Marie Curie, 75005Paris, France
- J.
Heyrovský
Institute of Physical Chemistry, Czech Academy
of Sciences, 182 23Prague 8, Czechia
| | - Marianne Guiral
- Laboratoire
de Bioénergétique et Ingénierie des Protéines, BIP, CNRS, Aix-Marseille Université, 13400Marseille, France
| | | | - Tilo Seydel
- Institut
Laue-Langevin, 38000Grenoble, France
| | | | - Caterina Petrillo
- Università
degli Studi di Perugia, Dipartimento di
Fisica e Geologia, Via
A. Pascoli, 06123Perugia PG, Italy
| | - Philippe Derreumaux
- Laboratoire
de Biochimie Théorique (UPR9080), CNRS, Université de Paris Cité, 13 Rue Pierre et Marie Curie, 75005Paris, France
- Institut
de Biologie Physico-Chimique, Fondation Edmond de Rothschild, 13 Rue Pierre et Marie Curie, 75005Paris, France
- Institut Universitaire de France, 75005Paris, France
| | - Simone Melchionna
- ISC-CNR,
Dipartimento di Fisica, Università
Sapienza, 00185Rome, Italy
- Lexma
Technology1337 Massachusetts
Avenue, Arlington, Massachusetts02476, United States
| | - Fabio Sterpone
- Laboratoire
de Biochimie Théorique (UPR9080), CNRS, Université de Paris Cité, 13 Rue Pierre et Marie Curie, 75005Paris, France
- Institut
de Biologie Physico-Chimique, Fondation Edmond de Rothschild, 13 Rue Pierre et Marie Curie, 75005Paris, France
| | - Judith Peters
- Université
Grenoble Alpes, CNRS, Laboratoire Interdisciplinaire de Physique, 38400Saint-Martin-d’Héres, France
- Institut
Laue-Langevin, 38000Grenoble, France
- Institut Universitaire de France, 75005Paris, France
| | - Alessandro Paciaroni
- Università
degli Studi di Perugia, Dipartimento di
Fisica e Geologia, Via
A. Pascoli, 06123Perugia PG, Italy
| |
Collapse
|
16
|
Kuznetsov V, Lu L, Koza MM, Rogalla D, Foteinou V, Becker HW, Nefedov A, Traeger F, Fouquet P. Microscopic Diffusion of Atomic Hydrogen and Water in HER Catalyst MoS 2 Revealed by Neutron Scattering. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2022; 126:21667-21680. [PMID: 36605782 PMCID: PMC9806838 DOI: 10.1021/acs.jpcc.2c03848] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 11/10/2022] [Indexed: 06/17/2023]
Abstract
The design of novel and abundant catalytic materials for electrolysis is crucial for reaching carbon neutrality of the global energy system. A deliberate approach to catalyst design requires both theoretical and experimental knowledge not only of the target reactions but also of the supplementary mechanisms affecting the catalytic activity. In this study, we focus on the interplay of hydrogen mobility and reactivity in the hydrogen evolution reaction catalyst MoS2. We have studied the diffusion of atomic hydrogen and water by means of neutron and X-ray photoelectron spectroscopies combined with classical molecular dynamics simulations. The observed interaction of water with single-crystal MoS2 shows the possibility of intercalation within volume defects, where it can access edge sites of the material. Our surface studies also demonstrate that atomic hydrogen can be inserted into MoS2, where it then occupies various adsorption sites, possibly favoring defect vicinities. The motion of H atoms parallel to the layers of MoS2 is fast with D ≈ 1 × 10-9 m2/s at room temperature and exhibits Brownian diffusion behavior with little dependence on temperature, i.e., with a very low diffusion activation barrier.
Collapse
Affiliation(s)
- Vitalii Kuznetsov
- Institut
Laue-Langevin, CS 20156, 38042Grenoble Cedex 9, France
- Westfälische
Hochschule, Gelsenkirchen, Bocholt, Recklinghausen, August-Schmidt-Ring 10, 45665Recklinghausen, Germany
| | - Leran Lu
- Institut
Laue-Langevin, CS 20156, 38042Grenoble Cedex 9, France
- Université
de Lyon, 92, rue Pasteur, 69361Lyon Cedex 07, France
| | - Michael M. Koza
- Institut
Laue-Langevin, CS 20156, 38042Grenoble Cedex 9, France
| | - Detlef Rogalla
- RUBION, Ruhr-Universität
Bochum, Universitätsstr. 150, 44801Bochum, Germany
| | - Varvara Foteinou
- RUBION, Ruhr-Universität
Bochum, Universitätsstr. 150, 44801Bochum, Germany
| | - Hans-Werner Becker
- RUBION, Ruhr-Universität
Bochum, Universitätsstr. 150, 44801Bochum, Germany
| | - Alexei Nefedov
- Institut
für Funktionelle Grenzflächen (IFG), Karlsruher Institut für Technologie (KIT), Hermann-von-Helmholtz-Platz 1, 76344Eggenstein-Leopoldshafen, Germany
| | - Franziska Traeger
- Westfälische
Hochschule, Gelsenkirchen, Bocholt, Recklinghausen, August-Schmidt-Ring 10, 45665Recklinghausen, Germany
| | - Peter Fouquet
- Institut
Laue-Langevin, CS 20156, 38042Grenoble Cedex 9, France
| |
Collapse
|
17
|
Srinivasan H, Sharma VK, Mitra S. Modulation of Diffusion Mechanism and Its Correlation with Complexation in Aqueous Deep Eutectic Solvents. J Phys Chem B 2022; 126:9026-9037. [PMID: 36315464 DOI: 10.1021/acs.jpcb.2c05312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Aqueous mixtures of deep eutectic solvents (DESs) have gained traction recently as an effective template to tailor their physicochemical properties. But detailed microscopic insights into the effects of water on the molecular relaxation phenomenon in DESs are not entirely understood. DESs are strong network-forming liquids due to the extensive hydrogen bonding and complex formation between their species, and therefore, water can behave as a controlled disruptor altering the microscopic structure and dynamics in DESs. In this study, the role of water in the diffusion mechanism of acetamide in the aqueous mixtures of DESs synthesized using acetamide and lithium perchlorate is investigated using molecular dynamics (MD) simulation and quasielastic neutron scattering (QENS). The acetamide dynamics comprises localized diffusion within transient cages and a jump diffusion process across cages. The jump diffusion process is observed to be strongly enhanced by about a factor of 10 as the water content in the system is increased. Meanwhile, the geometry of the localized dynamics is unaltered by addition of water, but the localized diffusion becomes significantly faster and more heterogeneous with increasing water concentration. The accelerating effects of water on localized diffusion are also substantiated by QENS experiments. The water concentration in the DES is observed to control the solvation structure of lithium ions, with the ions becoming significantly hydrated at 20 wt % water. The formation of interwater and water-acetamide hydrogen bonds is observed. The increase in water concentration is found to increase the number of H-bonds; however, their lifetimes are found to decrease substantially. Similarly, the lifetimes of acetamide-lithium complexes are also found to be diminished by increasing water concentration. A power-law scaling relationship between lifetimes and diffusion constants is established, elucidating the extent of coupling between diffusive processes and hydrogen bonding and microscopic complexation. This study demonstrates the ability to use water as an agent to probe the role of structural relaxation and complex lifetimes of diffusive processes at different time and length scales.
Collapse
Affiliation(s)
- H Srinivasan
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai400085, India.,Homi Bhabha National Institute, Anushaktinagar, Mumbai400094, India
| | - V K Sharma
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai400085, India.,Homi Bhabha National Institute, Anushaktinagar, Mumbai400094, India
| | - S Mitra
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai400085, India.,Homi Bhabha National Institute, Anushaktinagar, Mumbai400094, India
| |
Collapse
|
18
|
Volkov AA, Chuchupal SV. Dielectric spectra of liquid water: Ultrabroadband modeling and interpretation. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
19
|
Beilinson Y, Rassabina A, Lunev I, Faizullin D, Greenbaum A, Salnikov V, Zuev Y, Minibayeva F, Feldman Y. The dielectric response of hydrated water as a structural signature of nanoconfined lichen melanins. Phys Chem Chem Phys 2022; 24:22624-22633. [PMID: 36102934 DOI: 10.1039/d2cp01383e] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Lichens are unique symbiotic organisms from a mutually beneficial alliance of fungi and algae/cyanobacteria that successfully survive extreme temperatures and drought conditions. Most probably such extraordinary vitality of lichens is underlain by melanins, one of the main structural and chemical lichen components, and their mutual relationship with residual water. In this paper, we propose mechanisms, which allow lichens to store up the extra water in their structure. Melanins that are constituents of the cortical lichen layer and presumably contribute to unique water-lichen interactions are chosen for physical experiments in a wide temperature domain. Two melanin pigments extracted from different lichens are studied here - eumelanin from Lobaria pulmonaria and allomelanin from Cetraria islandica. To investigate the inner melanin structure and water-melanin interactions, FTIR and BDS techniques are applied. The BDS technique was used in a wide temperature region of 123-293 K for melanins with various hydration levels. The relaxation processes related to the confinement of supercooled water - in melanins are observed and discussed in details. At medium and high hydration levels, the relaxation process in two melanins of different chemical compositions and supramolecular structures exhibits a well-known crossover that was already observed in many types of confinements. The analysis of FTIR and BDS results helps to clarify the lichen-water interaction processes.
Collapse
Affiliation(s)
- Yael Beilinson
- Department of Applied Physics, Soft Condensed Matter Laboratory, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem, 9190401, Israel.
| | - Anna Rassabina
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Lobachevsky str. 2/31, Kazan, 420111, Russian Federation.
| | - Ivan Lunev
- Kazan Federal University, Institute of Physics, Kremlevskaya str.18, Kazan, 420008, Russian Federation
| | - Dzhigangir Faizullin
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Lobachevsky str. 2/31, Kazan, 420111, Russian Federation.
| | - Anna Greenbaum
- Department of Applied Physics, Soft Condensed Matter Laboratory, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem, 9190401, Israel. .,Racah Institute of Physics, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem, 9190401, Israel
| | - Vadim Salnikov
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Lobachevsky str. 2/31, Kazan, 420111, Russian Federation.
| | - Yuriy Zuev
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Lobachevsky str. 2/31, Kazan, 420111, Russian Federation.
| | - Farida Minibayeva
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Lobachevsky str. 2/31, Kazan, 420111, Russian Federation.
| | - Yuri Feldman
- Department of Applied Physics, Soft Condensed Matter Laboratory, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem, 9190401, Israel.
| |
Collapse
|
20
|
Cisse A, Matsuo T, Plazanet M, Natali F, Koza MM, Ollivier J, Bicout DJ, Peters J. The dynamical Matryoshka model: 2. Modeling of local lipid dynamics at the sub-nanosecond timescale in phospholipid membranes. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:183950. [PMID: 35525301 DOI: 10.1016/j.bbamem.2022.183950] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 04/06/2022] [Accepted: 04/25/2022] [Indexed: 12/12/2022]
Abstract
Biological membranes are generally formed by lipids and proteins. Often, the membrane properties are studied through model membranes formed by phospholipids only. They are molecules composed by a hydrophilic head group and hydrophobic tails, which can present a panoply of various motions, including small localized movements of a few atoms up to the diffusion of the whole lipid or collective motions of many of them. In the past, efforts were made to measure these motions experimentally by incoherent neutron scattering and to quantify them, but with upcoming modern neutron sources and instruments, such models can now be improved. In the present work, we expose a quantitative and exhaustive study of lipid dynamics on DMPC and DMPG membranes, using the Matryoshka model recently developed by our group. The model is confronted here to experimental data collected on two different membrane samples, at three temperatures and two instruments. Despite such complexity, the model describes reliably the data and permits to extract a series of parameters. The results compare also very well to other values found in the literature.
Collapse
Affiliation(s)
- Aline Cisse
- Univ. Grenoble Alpes, CNRS, LiPhy, 38000 Grenoble, France; Institut Laue-Langevin, 71 avenue des Martyrs, CS 20156, 38042 Grenoble Cedex 9, 7, France
| | - Tatsuhito Matsuo
- Univ. Grenoble Alpes, CNRS, LiPhy, 38000 Grenoble, France; Institut Laue-Langevin, 71 avenue des Martyrs, CS 20156, 38042 Grenoble Cedex 9, 7, France; Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, 2-4 Shirakata, Tokai, Ibaraki 319-1106, Japan
| | - Marie Plazanet
- Univ. Grenoble Alpes, CNRS, LiPhy, 38000 Grenoble, France
| | - Francesca Natali
- Institut Laue-Langevin, 71 avenue des Martyrs, CS 20156, 38042 Grenoble Cedex 9, 7, France; CNR-IOM and INSIDE@ILL, c/o OGG, 38042 Grenoble Cedex 9, France
| | - Michael Marek Koza
- Institut Laue-Langevin, 71 avenue des Martyrs, CS 20156, 38042 Grenoble Cedex 9, 7, France
| | - Jacques Ollivier
- Institut Laue-Langevin, 71 avenue des Martyrs, CS 20156, 38042 Grenoble Cedex 9, 7, France
| | - Dominique J Bicout
- Institut Laue-Langevin, 71 avenue des Martyrs, CS 20156, 38042 Grenoble Cedex 9, 7, France; Univ. Grenoble Alpes, CNRS, Grenoble INP, VetAgro Sup, TIMC, 38000 Grenoble, France
| | - Judith Peters
- Univ. Grenoble Alpes, CNRS, LiPhy, 38000 Grenoble, France; Institut Laue-Langevin, 71 avenue des Martyrs, CS 20156, 38042 Grenoble Cedex 9, 7, France; Institut Universitaire de France, France.
| |
Collapse
|
21
|
Li Y, Han Z, Ma C, Hong L, Ding Y, Chen Y, Zhao J, Liu D, Sun G, Zuo T, Cheng H, Han CC. Structure and dynamics of supercooled water in the hydration layer of poly(ethylene glycol). STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2022; 9:054901. [PMID: 36090796 PMCID: PMC9462885 DOI: 10.1063/4.0000158] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 08/11/2022] [Indexed: 06/15/2023]
Abstract
The statics and dynamics of supercooled water in the hydration layer of poly(ethylene glycol) (PEG) were studied by a combination of quasi-elastic neutron scattering (QENS) and molecular dynamics (MD) simulations. Two samples, that is, hydrogenated PEG/deuterated water (h-PEG/D2O) and fully deuterated PEG/hydrogenated water (d-PEG/H2O) with the same molar ratio of ethylene glycol (EG) monomer to water, 1:1, are compared. The QENS data of h-PEG/D2O show the dynamics of PEG, and that of d-PEG/H2O reveals the motion of water. The temperature-dependent elastic scattering intensity of both samples has shown transitions at supercooled temperature, and these transition temperatures depend on the energy resolution of the instruments. Therefore, neither one is a phase transition, but undergoes dynamic process. The dynamic of water can be described as an Arrhenius to super-Arrhenius transition, and it reveals the hydrogen bonding network relaxation of hydration water around PEG at supercooled temperature. Since the PEG-water hydrogen bond structural relaxation time from MD is in good agreement with the average relaxation time from QENS (d-PEG/H2O), MD may further reveal the atomic pictures of the supercooled hydration water. It shows that hydration water molecules form a series of pools around the hydrophilic oxygen atom of PEG. At supercooled temperature, they have a more bond ordered structure than bulk water, proceed a trapping sites diffusion on the PEG surface, and facilitate the structural relaxation of PEG backbone.
Collapse
Affiliation(s)
| | | | | | - Liang Hong
- School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yanwei Ding
- Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Ye Chen
- Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Junpeng Zhao
- Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Dong Liu
- Key Laboratory of Neutron Physics, Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621999, China
| | - Guangai Sun
- Key Laboratory of Neutron Physics, Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621999, China
| | | | - He Cheng
- Author to whom correspondence should be addressed: . Tel.: +86-769-8915-6445. Fax: +86-769-8915-6441
| | - Charles C. Han
- Institute for Advanced Study, Shenzhen University, Shenzhen 508060, China
| |
Collapse
|
22
|
Raskar T, Niebling S, Devos JM, Yorke BA, Härtlein M, Huse N, Forsyth VT, Seydel T, Pearson AR. Structure and diffusive dynamics of aspartate α-decarboxylase (ADC) liganded with D-serine in aqueous solution. Phys Chem Chem Phys 2022; 24:20336-20347. [PMID: 35980136 PMCID: PMC9429672 DOI: 10.1039/d2cp02063g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Incoherent neutron spectroscopy, in combination with dynamic light scattering, was used to investigate the effect of ligand binding on the center-of-mass self-diffusion and internal diffusive dynamics of Escherichia coli aspartate α-decarboxylase (ADC). The X-ray crystal structure of ADC in complex with the d-serine inhibitor was also determined, and molecular dynamics simulations were used to further probe the structural rearrangements that occur as a result of ligand binding. These experiments reveal that d-serine forms hydrogen bonds with some of the active site residues, that higher order oligomers of the ADC tetramer exist on ns–ms time-scales, and also show that ligand binding both affects the ADC internal diffusive dynamics and appears to further increase the size of the higher order oligomers. Neutron spectroscopy, dynamic light scattering, X-ray diffraction, and MD-simulations were used to investigate the effect of ligand binding on the structure and diffusive dynamics of Escherichia coli aspartate alpha-decarboxylase.![]()
Collapse
Affiliation(s)
- Tushar Raskar
- Institut Max von Laue - Paul Langevin, 71 Avenue des Martyrs, Grenoble 38000, France. .,Partnership for Structural Biology, 71 Avenue des Martyrs, Grenoble 38000, France.,Institute for Nanostructure and Solid State Physics, Hamburg Centre for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, Hamburg, 22761, Germany.
| | - Stephan Niebling
- Institute for Nanostructure and Solid State Physics, Hamburg Centre for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, Hamburg, 22761, Germany. .,European Molecular Biology Laboratory, Hamburg, Notkestr. 85, 22607 Hamburg, Germany
| | - Juliette M Devos
- Institut Max von Laue - Paul Langevin, 71 Avenue des Martyrs, Grenoble 38000, France. .,Partnership for Structural Biology, 71 Avenue des Martyrs, Grenoble 38000, France
| | - Briony A Yorke
- School of Chemistry and Bioscience, University of Bradford, Bradford, BD7 1DP, UK
| | - Michael Härtlein
- Institut Max von Laue - Paul Langevin, 71 Avenue des Martyrs, Grenoble 38000, France. .,Partnership for Structural Biology, 71 Avenue des Martyrs, Grenoble 38000, France
| | - Nils Huse
- Institute for Nanostructure and Solid State Physics, Hamburg Centre for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, Hamburg, 22761, Germany.
| | - V Trevor Forsyth
- Institut Max von Laue - Paul Langevin, 71 Avenue des Martyrs, Grenoble 38000, France. .,Partnership for Structural Biology, 71 Avenue des Martyrs, Grenoble 38000, France.,Faculty of Natural Sciences, Keele University, Staffordshire, ST5 5BG, UK
| | - Tilo Seydel
- Institut Max von Laue - Paul Langevin, 71 Avenue des Martyrs, Grenoble 38000, France.
| | - Arwen R Pearson
- Institute for Nanostructure and Solid State Physics, Hamburg Centre for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, Hamburg, 22761, Germany.
| |
Collapse
|
23
|
Matsuo T, Peters J. Sub-Nanosecond Dynamics of Pathologically Relevant Bio-Macromolecules Observed by Incoherent Neutron Scattering. LIFE (BASEL, SWITZERLAND) 2022; 12:life12081259. [PMID: 36013438 PMCID: PMC9410404 DOI: 10.3390/life12081259] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/09/2022] [Accepted: 08/12/2022] [Indexed: 01/22/2023]
Abstract
Incoherent neutron scattering (iNS) is one of the most powerful techniques to study the dynamical behavior of bio-macromolecules such as proteins and lipid molecules or whole cells. This technique has widely been used to elucidate the fundamental aspects of molecular motions that manifest in the bio-macromolecules in relation to their intrinsic molecular properties and biological functions. Furthermore, in the last decade, iNS studies focusing on a possible relationship between molecular dynamics and biological malfunctions, i.e., human diseases and disorders, have gained importance. In this review, we summarize recent iNS studies on pathologically relevant proteins and lipids and discuss how the findings are of importance to elucidate the molecular mechanisms of human diseases and disorders that each study targets. Since some diseases such as amyloidosis have become more relevant in the aging society, research in this field will continue to develop further and be more important in the current increasing trend for longevity worldwide.
Collapse
Affiliation(s)
- Tatsuhito Matsuo
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, 2-4 Shirakata, Tokai 319-1106, Ibaraki, Japan
- Dept. of Physics, Univ. Grenoble Alpes, CNRS, LiPhy, 38000 Grenoble, France
- Institut Laue-Langevin, 71 Avenue des Martyrs, CEDEX 9, 38042 Grenoble, France
- Correspondence: (T.M.); (J.P.)
| | - Judith Peters
- Dept. of Physics, Univ. Grenoble Alpes, CNRS, LiPhy, 38000 Grenoble, France
- Institut Laue-Langevin, 71 Avenue des Martyrs, CEDEX 9, 38042 Grenoble, France
- Institut Universitaire de France, 75231 Paris, France
- Correspondence: (T.M.); (J.P.)
| |
Collapse
|
24
|
Unravelling the Adaptation Mechanisms to High Pressure in Proteins. Int J Mol Sci 2022; 23:ijms23158469. [PMID: 35955607 PMCID: PMC9369236 DOI: 10.3390/ijms23158469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 02/06/2023] Open
Abstract
Life is thought to have appeared in the depth of the sea under high hydrostatic pressure. Nowadays, it is known that the deep biosphere hosts a myriad of life forms thriving under high-pressure conditions. However, the evolutionary mechanisms leading to their adaptation are still not known. Here, we show the molecular bases of these mechanisms through a joint structural and dynamical study of two orthologous proteins. We observed that pressure adaptation involves the decoupling of protein–water dynamics and the elimination of cavities in the protein core. This is achieved by rearranging the charged residues on the protein surface and using bulkier hydrophobic residues in the core. These findings will be the starting point in the search for a complete genomic model explaining high-pressure adaptation.
Collapse
|
25
|
Popov I, Khamzin A, Matsumoto RA, Zhao W, Lin X, Cummings PT, Sokolov AP. Controlling the Ion Transport Number in Solvent-in-Salt Solutions. J Phys Chem B 2022; 126:4572-4583. [PMID: 35687852 DOI: 10.1021/acs.jpcb.2c02218] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Solvent-in-salt (SIS) systems present promising materials for the next generation of energy storage applications. The ion dynamics is significantly different in these systems from that of ionic liquids and diluted salt solutions. In this study, we analyze the ion dynamics of two salts, Li-TFSI and Li-FSI, in highly concentrated aqueous and acetonitrile solutions. We performed high-frequency dielectric measurements covering the range of up to 50 GHz and molecular dynamics simulations. The analysis of the conductivity spectra provides the characteristic crossover time between individual charge rearrangements and the normal charge diffusion regime resulting in DC conductivity. Analysis revealed that the onset of normal charge diffusion occurs at the scale of ∼1.5-3.5 Å, comparable to the average distance between the ions. Based on the idea of momentum conservation, distinct ion correlations were estimated experimentally and computationally. The analysis revealed that cation-anion correlations can be suppressed by changing the solvent concentration in SIS systems, leading to an increase of the light ion (Li+ in our case) transport number. This discovery suggests a way for improving the light cation transport number in SIS systems by tuning the solvent concentration.
Collapse
Affiliation(s)
- Ivan Popov
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States.,Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Airat Khamzin
- Institute of Physics, Kazan Federal University, Kazan, Tatarstan 420008, Russia
| | - Ray A Matsumoto
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Wei Zhao
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Xiaobo Lin
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Peter T Cummings
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Alexei P Sokolov
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States.,Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| |
Collapse
|
26
|
Misuraca L, Matsuo T, Cisse A, LoRicco J, Caliò A, Zanotti JM, Demé B, Oger P, Peters J. High temperature molecular motions within a model protomembrane architecture. Phys Chem Chem Phys 2022; 24:15083-15090. [PMID: 35698855 DOI: 10.1039/d2cp01205g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Modern phospholipid membranes are known to be in a functional, physiological state, corresponding to the liquid crystalline phase, only under very precise external conditions. The phase is characterised by specific lipid motions, which seem mandatory to permit sufficient flexibility and stability for the membrane. It can be assumed that similar principles hold for proto-membranes at the origin of life although they were likely composed of simpler, single chain fatty acids and alcohols. In the present study we investigated molecular motions of four types of model membranes to shed light on the variations of dynamics and structure from low to high temperature as protocells might have existed close to hot vents. We find a clear hierarchy among the flexibilities of the samples, where some structural parameters seem to depend on the lipid type used while others do not.
Collapse
Affiliation(s)
- Loreto Misuraca
- Univ. Grenoble Alpes, CNRS, LIPhy, 38000 Grenoble, France. .,Institut Laue Langevin, F-38042 Grenoble Cedex 9, France
| | - Tatsuhito Matsuo
- Univ. Grenoble Alpes, CNRS, LIPhy, 38000 Grenoble, France. .,Institut Laue Langevin, F-38042 Grenoble Cedex 9, France.,Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, 2-4 Shirakata, Tokai, Ibaraki, 319-1106, Japan
| | - Aline Cisse
- Univ. Grenoble Alpes, CNRS, LIPhy, 38000 Grenoble, France. .,Institut Laue Langevin, F-38042 Grenoble Cedex 9, France
| | | | - Antonio Caliò
- INSA Lyon, Université de Lyon, CNRS, UMR5240, Villeurbanne, France.
| | - Jean-Marc Zanotti
- Laboratoire Léon Brillouin, CEA, CNRS, Université Paris-Saclay, CEA Saclay, 91191 Gif-sur-Yvette Cedex, France
| | - Bruno Demé
- Institut Laue Langevin, F-38042 Grenoble Cedex 9, France
| | - Philippe Oger
- INSA Lyon, Université de Lyon, CNRS, UMR5240, Villeurbanne, France.
| | - Judith Peters
- Univ. Grenoble Alpes, CNRS, LIPhy, 38000 Grenoble, France. .,Institut Laue Langevin, F-38042 Grenoble Cedex 9, France.,Institut Universitaire de France, France
| |
Collapse
|
27
|
Xu S, Noguere G. Generation of thermal scattering files with the CINEL code. EPJ NUCLEAR SCIENCES & TECHNOLOGIES 2022. [DOI: 10.1051/epjn/2022004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The CINEL code dedicated to generate the thermal neutron scattering files in ENDF-6 format for solid crystalline, free gas materials and liquid water is presented. Compared to the LEAPR module of the NJOY code, CINEL is able to calculate the coherent and incoherent elastic scattering cross sections for any solid crystalline materials. Specific material properties such as anharmonicity and texture can be taken into account in CINEL. The calculation of the thermal scattering laws can be accelerated by using graphics processing unit (GPU), which enables to remove the short collision time approximation for large values of momentum transfer. CINEL is able to generate automatically the grids of dimensionless momentum and energy transfers. The Sampling the Velocity of the Target nucleus (SVT) algorithm capable of determining the scattered neutron distributions is implemented in CINEL. The obtained distributions for free target nuclei such as hydrogen and oxygen are in good agreement with analytical results and Monte-Carlo simulations when incident neutron energies are above a few eV. The introduction of the effective temperature and the rejection step to the SVT algorithm shows improvements to the neutron up-scattering treatment of hydrogen bound in liquid water.
Collapse
|
28
|
Lee G, Kageyama Y, Takeda S. Site-Selective Spin-Probe with a Photocleavable Macrocyclic Linker for Measuring the Dynamics of Water Surrounding a Liposomal Assembly. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2022. [DOI: 10.1246/bcsj.20220027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Gyeorye Lee
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Kita-10 Nishi-8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| | - Yoshiyuki Kageyama
- Faculty of Science, Hokkaido University, Kita-10 Nishi-8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| | - Sadamu Takeda
- Faculty of Science, Hokkaido University, Kita-10 Nishi-8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| |
Collapse
|
29
|
Liu S, Li R, Tyagi M, Akcora P. Confinement Effects in Dynamics of Ionic Liquids with Polymer-Grafted Nanoparticles. Chemphyschem 2022; 23:e202200219. [PMID: 35676199 DOI: 10.1002/cphc.202200219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/07/2022] [Indexed: 11/07/2022]
Abstract
Ionic liquid mixed with poly(methyl methacrylate)-grafted nanoparticle aggregates at low particle concentrations was shown to exhibit different dynamics and ionic conductivity than that of pure ionic liquid in our previous studies. In this work, we report on the quasi-elastic neutron scattering results on ionic liquid containing polymer-grafted nanoparticles at the higher particle concentration. The diffusivity of imidazolium (HMIM + ) cations of 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (HMIM-TFSI) in the presence of poly(methyl methacrylate)-grafted iron oxide nanoparticles and the ionic conductivity of solutions were discussed through the confinement. Analysis of the elastic incoherent structure factor suggested the confinement radius decreased with the addition of grafted particles in HMIM-TFSI/solvent mixture, indicating the confinement that is induced by the high concentration of grafted particles, shrinks the HMIM-TFSI restricted volume. We further conjecture that this enhanced diffusivity occurs as a result of the local ordering of cations within aggregates of poly(methyl methacrylate)-grafted particles.
Collapse
Affiliation(s)
- Siqi Liu
- 1 Castle Point on Hudson, Department of Chemical Engineering and Materials Science, Stevens Institute of Technology, McLean Hall 415, 07030, Hoboken, NJ, USA
| | - Ruhao Li
- 1 Castle Point on Hudson, Department of Chemical Engineering and Materials Science, Stevens Institute of Technology, McLean Hall 415, 07030, Hoboken, NJ, USA
| | - Madhusudan Tyagi
- NIST Center for Neutron Research, 100 Bureau Dr, 20899, Gaithersburg, MD, USA
- Department of Materials Science and Engineering, University of Maryland, College Park, 20742, Maryland, MD, USA
| | - Pinar Akcora
- 1 Castle Point on Hudson, Department of Chemical Engineering and Materials Science, Stevens Institute of Technology, McLean Hall 415, 07030, Hoboken, NJ, USA
| |
Collapse
|
30
|
Uncovering the hydride ion diffusion pathway in barium hydride via neutron spectroscopy. Sci Rep 2022; 12:6194. [PMID: 35418572 PMCID: PMC9007959 DOI: 10.1038/s41598-022-10199-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 03/02/2022] [Indexed: 11/20/2022] Open
Abstract
Solid state materials possessing the ability for fast ionic diffusion of hydrogen have immense appeal for a wide range of energy-related applications. Ionic hydrogen transport research is dominated by proton conductors, but recently a few examples of hydride ion conductors have been observed as well. Barium hydride, BaH2, undergoes a structural phase transition around 775 K that leads to an order of magnitude increase in the ionic conductivity. This material provides a prototypical system to understand hydride ion diffusion and how the altered structure produced by the phase transition can have an enormous impact on the diffusion. We employ quasielastic and inelastic neutron scattering to probe the atomic scale diffusion mechanism and vibrational dynamics of hydride ions in both the low- and high-temperature phases. Jump lengths, residence times, diffusion coefficients, and activation energies are extracted and compared to the crystal structure to uncover the diffusion pathways. We find that the hydrogen jump distances, residence times, and energy barriers become reduced following the phase transition, allowing for the efficient conduction of hydride ions through a series of hydrogen jumps of length L = 3.1 Å.
Collapse
|
31
|
Maiz J, Verde-Sesto E, Asenjo-Sanz I, Mangin-Thro L, Frick B, Pomposo JA, Arbe A, Colmenero J. Disentangling Component Dynamics in an All-Polymer Nanocomposite Based on Single-Chain Nanoparticles by Quasielastic Neutron Scattering. Macromolecules 2022; 55:2320-2332. [PMID: 35355834 PMCID: PMC8945772 DOI: 10.1021/acs.macromol.1c02382] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 02/11/2022] [Indexed: 11/30/2022]
Abstract
![]()
We
have investigated an all-polymer nanocomposite (NC) consisting
of single-chain nanoparticles (SCNPs) immersed in a matrix of linear
chains of their precursors (25/75% composition in weight). The SCNPs
were previously synthesized via “click” chemistry, which
induces intramolecular cross-links in the individual macromolecules
accompanied by a slight shift (5–8 K) of the glass transition
temperature toward higher values and a broadening of the dynamic response
with respect to the raw precursor material. The selective investigation
of the dynamics of the NC components has been possible by using properly
isotopically labeled materials and applying quasielastic neutron scattering
techniques. Results have been analyzed in the momentum transfer range
where the coherent scattering contribution is minimal, as determined
by complementary neutron diffraction experiments with polarization
analysis. We observe the development of dynamic heterogeneity in the
intermediate scattering function of the NC components, which grows
with increasing time. Local motions in the precursor matrix of the
NC are accelerated with respect to the reference bulk behavior, while
the displacements of SCNPs’ hydrogens show enhanced deviations
from Gaussian and exponential behavior compared with the pure melt
of SCNPs. The resulting averaged behavior in the NC coincides with
that of the pure precursor, in accordance with the macroscopic observations
by differential scanning calorimetry (DSC) experiments.
Collapse
Affiliation(s)
- Jon Maiz
- Centro de Física de Materiales (CFM) (CSIC-UPV/EHU)-Materials Physics Center (MPC), Paseo Manuel de Lardizábal 5, 20018 Donostia-San Sebastián, Spain
- IKERBASQUE-Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain
| | - Ester Verde-Sesto
- Centro de Física de Materiales (CFM) (CSIC-UPV/EHU)-Materials Physics Center (MPC), Paseo Manuel de Lardizábal 5, 20018 Donostia-San Sebastián, Spain
| | - Isabel Asenjo-Sanz
- Centro de Física de Materiales (CFM) (CSIC-UPV/EHU)-Materials Physics Center (MPC), Paseo Manuel de Lardizábal 5, 20018 Donostia-San Sebastián, Spain
| | - Lucile Mangin-Thro
- Institut Laue-Langevin, 71 Avenue des Martyrs, 38042 Grenoble Cedex 9, France
| | - Bernhard Frick
- Institut Laue-Langevin, 71 Avenue des Martyrs, 38042 Grenoble Cedex 9, France
| | - José A. Pomposo
- Centro de Física de Materiales (CFM) (CSIC-UPV/EHU)-Materials Physics Center (MPC), Paseo Manuel de Lardizábal 5, 20018 Donostia-San Sebastián, Spain
- IKERBASQUE-Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain
- Departamento de Polímeros y Materiales Avanzados: Física, Química y Tecnología, Universidad del País Vasco-Euskal Herriko Unibertsitatea (UPV/EHU), 20018 Donostia-San Sebastián, Spain
| | - Arantxa Arbe
- Centro de Física de Materiales (CFM) (CSIC-UPV/EHU)-Materials Physics Center (MPC), Paseo Manuel de Lardizábal 5, 20018 Donostia-San Sebastián, Spain
| | - Juan Colmenero
- Centro de Física de Materiales (CFM) (CSIC-UPV/EHU)-Materials Physics Center (MPC), Paseo Manuel de Lardizábal 5, 20018 Donostia-San Sebastián, Spain
- Departamento de Polímeros y Materiales Avanzados: Física, Química y Tecnología, Universidad del País Vasco-Euskal Herriko Unibertsitatea (UPV/EHU), 20018 Donostia-San Sebastián, Spain
- Donostia International Physics Center, Paseo Manuel de Lardizábal 4, 20018 Donostia-San Sebastián, Spain
| |
Collapse
|
32
|
Santamaria A, Batchu KC, Matsarskaia O, Prévost SF, Russo D, Natali F, Seydel T, Hoffmann I, Laux V, Haertlein M, Darwish TA, Russell RA, Corucci G, Fragneto G, Maestro A, Zaccai NR. Strikingly Different Roles of SARS-CoV-2 Fusion Peptides Uncovered by Neutron Scattering. J Am Chem Soc 2022; 144:2968-2979. [PMID: 35157798 PMCID: PMC8862744 DOI: 10.1021/jacs.1c09856] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Indexed: 02/02/2023]
Abstract
Coronavirus disease-2019 (COVID-19), a potentially lethal respiratory illness caused by the coronavirus SARS-CoV-2, emerged in the end of 2019 and has since spread aggressively across the globe. A thorough understanding of the molecular mechanisms of cellular infection by coronaviruses is therefore of utmost importance. A critical stage in infection is the fusion between viral and host membranes. Here, we present a detailed investigation of the role of selected SARS-CoV-2 Spike fusion peptides, and the influence of calcium and cholesterol, in this fusion process. Structural information from specular neutron reflectometry and small angle neutron scattering, complemented by dynamics information from quasi-elastic and spin-echo neutron spectroscopy, revealed strikingly different functions encoded in the Spike fusion domain. Calcium drives the N-terminal of the Spike fusion domain to fully cross the host plasma membrane. Removing calcium, however, reorients the peptide back to the lipid leaflet closest to the virus, leading to significant changes in lipid fluidity and rigidity. In conjunction with other regions of the fusion domain, which are also positioned to bridge and dehydrate viral and host membranes, the molecular events leading to cell entry by SARS-CoV-2 are proposed.
Collapse
Affiliation(s)
- Andreas Santamaria
- Institut
Laue-Langevin, 38042 Grenoble, France
- Departamento
de Química Física, Universidad
Complutense de Madrid, 28040 Madrid, Spain
| | | | | | | | - Daniela Russo
- Institut
Laue-Langevin, 38042 Grenoble, France
- CNR-IOM
& INSIDE@ILL, 38042 Grenoble, France
| | - Francesca Natali
- Institut
Laue-Langevin, 38042 Grenoble, France
- CNR-IOM
& INSIDE@ILL, 38042 Grenoble, France
| | - Tilo Seydel
- Institut
Laue-Langevin, 38042 Grenoble, France
| | | | | | | | - Tamim A. Darwish
- National
Deuteration Facility, ANSTO-Sidney, Lucas Heights, NSW 2234, Australia
| | - Robert A. Russell
- National
Deuteration Facility, ANSTO-Sidney, Lucas Heights, NSW 2234, Australia
| | - Giacomo Corucci
- Institut
Laue-Langevin, 38042 Grenoble, France
- École
Doctorale de Physique, Université
Grenoble Alpes, 38400 Saint-Martin-d’Héres, France
| | - Giovanna Fragneto
- Institut
Laue-Langevin, 38042 Grenoble, France
- École
Doctorale de Physique, Université
Grenoble Alpes, 38400 Saint-Martin-d’Héres, France
| | - Armando Maestro
- Institut
Laue-Langevin, 38042 Grenoble, France
- Centro
de Física de Materiales (CSIC, UPV/EHU) − Materials
Physics Center MPC, Paseo
Manuel de Lardizabal 5, E-20018 San Sebastián, Spain
- IKERBASQUE
− Basque Foundation for Science, Plaza Euskadi 5, E-48009 Bilbao, Spain
| | - Nathan R. Zaccai
- Cambridge
Institute for Medical Research, University
of Cambridge, Cambridge CB22 7QQ, United Kingdom
| |
Collapse
|
33
|
Fagerberg E, Lenton S, Nylander T, Seydel T, Skepö M. Self-Diffusive Properties of the Intrinsically Disordered Protein Histatin 5 and the Impact of Crowding Thereon: A Combined Neutron Spectroscopy and Molecular Dynamics Simulation Study. J Phys Chem B 2022; 126:789-801. [PMID: 35044776 PMCID: PMC8819652 DOI: 10.1021/acs.jpcb.1c08976] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
![]()
Intrinsically disordered
proteins (IDPs) are proteins that, in
comparison with globular/structured proteins, lack a distinct tertiary
structure. Here, we use the model IDP, Histatin 5, for studying its
dynamical properties under self-crowding conditions with quasi-elastic
neutron scattering in combination with full atomistic molecular dynamics
(MD) simulations. The aim is to determine the effects of crowding
on the center-of-mass diffusion as well as the internal diffusive
behavior. The diffusion was found to decrease significantly, which
we hypothesize can be attributed to some degree of aggregation at
higher protein concentrations, (≥100 mg/mL), as indicated by
recent small-angle X-ray scattering studies. Temperature effects are
also considered and found to, largely, follow Stokes–Einstein
behavior. Simple geometric considerations fail to accurately predict
the rates of diffusion, while simulations show semiquantitative agreement
with experiments, dependent on assumptions of the ratio between translational
and rotational diffusion. A scaling law that previously was found
to successfully describe the behavior of globular proteins was found
to be inadequate for the IDP, Histatin 5. Analysis of the MD simulations
show that the width of the distribution with respect to diffusion
is not a simplistic mirroring of the distribution of radius of gyration,
hence, displaying the particular features of IDPs that need to be
accounted for.
Collapse
Affiliation(s)
- Eric Fagerberg
- Theoretical Chemistry, Lund University, POB 124, SE-221 00 Lund, Sweden
| | - Samuel Lenton
- Physical Chemistry, Lund University, POB 124, SE-221 00 Lund, Sweden
| | - Tommy Nylander
- Physical Chemistry, Lund University, POB 124, SE-221 00 Lund, Sweden
| | - Tilo Seydel
- Institut Max von Laue - Paul Langevin, 71 avenue des Martyrs, CS 20156, F-38042 Grenoble, France
| | - Marie Skepö
- Theoretical Chemistry, Lund University, POB 124, SE-221 00 Lund, Sweden.,LINXS - Lund Institute of Advanced Neutron and X-ray Science, Scheelevägen 19, SE-223 70 Lund, Sweden
| |
Collapse
|
34
|
Maiz J, Verde-Sesto E, Asenjo-Sanz I, Juranyi F, Pomposo JA, Arbe A, Colmenero J. Impact of composition on the crystal texture and on the dynamics of P(THF- co-ECH) copolymers. EPJ WEB OF CONFERENCES 2022. [DOI: 10.1051/epjconf/202227201005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We present a combined study by quasielastic neutron scattering (QENS), differential scanning calorimetry (DSC) and wide angle X-ray scattering (WAXS) on poly(tetrahydrofuran-co-epichlorohydrin) copolymers, to see how their composition can be used to tune their crystallizability and to elucidate the impact of this factor on the dynamical properties. QENS reveals a strong effect on the local dynamics upon cooling down, where the local motions of a sample that remains in the supercooled state at lower temperatures are less Gaussian and slower than those in a sample that crystallizes a few degrees below. This can be attributed to the enhancement of local heterogeneities in the former, which could be a determining factor preventing crystallization.
Collapse
|
35
|
Cisse A, Schachner-Nedherer AL, Appel M, Beck C, Ollivier J, Leitinger G, Prassl R, Kornmueller K, Peters J. Dynamics of Apolipoprotein B-100 in Interaction with Detergent Probed by Incoherent Neutron Scattering. J Phys Chem Lett 2021; 12:12402-12410. [PMID: 34939807 DOI: 10.1021/acs.jpclett.1c03141] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Apolipoprotein B-100 (apo B-100) is the protein moiety of both low- and very-low-density lipoproteins, whose role is crucial to cholesterol and triglyceride transport. Aiming at the molecular dynamics' details of apo B-100, scarcely studied, we performed elastic and quasi-elastic incoherent neutron scattering (EINS, QENS) experiments combining different instruments and time scales. Similar to classical membrane proteins, the solubilization results in remaining detergent, here Nonidet P-40 (NP40). Therefore, we propose a framework for QENS studies of protein-detergent complexes, with the introduction of a combined model, including the experimental apo B-100/NP40 ratio. Relying on the simultaneous analysis of all QENS amplitudes, this approach is sensitive enough to separate both contributions. Its application identified two points: (i) apo B-100 slow dynamics and (ii) the acceleration of NP40 dynamics in the presence of apo B-100. Direct translation of the exposed methodology now makes the investigation of more membrane proteins by neutron spectroscopy achievable.
Collapse
Affiliation(s)
- Aline Cisse
- Université Grenoble Alpes, CNRS, LiPhy, 38000 Grenoble, France
- Institut Laue Langevin, 38042 Grenoble, France
| | | | | | - Christian Beck
- Institut Laue Langevin, 38042 Grenoble, France
- Institut of Applied Physics, University of Tübingen, 72076 Tübingen, Germany
| | | | | | | | | | - Judith Peters
- Université Grenoble Alpes, CNRS, LiPhy, 38000 Grenoble, France
- Institut Laue Langevin, 38042 Grenoble, France
- Institut Universitaire de France, 75231 Paris, France
| |
Collapse
|
36
|
The charge transport mechanism in Brønsted-acidic protic ionic liquid/water systems – An NMR and QENS study. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117712] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
37
|
Srinivasan H, Sharma VK, Mitra S. Can the microscopic and macroscopic transport phenomena in deep eutectic solvents be reconciled? Phys Chem Chem Phys 2021; 23:22854-22873. [PMID: 34505589 DOI: 10.1039/d1cp02413b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Deep eutectic solvents (DESs) have become ubiquitous in a variety of industrial and pharmaceutical applications since their discovery. However, the fundamental understanding of their physicochemical properties and their emergence from the microscopic features is still being explored fervently. Particularly, the knowledge of transport mechanisms in DESs is essential to tune their properties, which shall aid in expanding the territory of their applications. This perspective presents the current state of understanding of the bulk/macroscopic transport properties and microscopic relaxation processes in DESs. The dependence of these properties on the components and composition of the DES is explored, highlighting the role of hydrogen bonding (H-bonding) interactions. Modulation of these interactions by water and other additives, and their subsequent effect on the transport mechanisms, is also discussed. Various models (e.g. hole theory, free volume theory, etc.) have been proposed to explain the macroscopic transport phenomena from a microscopic origin. But the formation of H-bond networks and clusters in the DES reveals the insufficiency of these models, and establishes an antecedent for dynamic heterogeneity. Even significantly above the glass transition, the microscopic relaxation processes in DESs are rife with temporal and spatial heterogeneity, which causes a substantial decoupling between the viscosity and microscopic diffusion processes. However, we propose that a thorough understanding of the structural relaxation associated to the H-bond dynamics in DESs will provide the necessary framework to interpret the emergence of bulk transport properties from their microscopic counterparts.
Collapse
Affiliation(s)
- H Srinivasan
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, India. .,Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - V K Sharma
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, India. .,Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - S Mitra
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, India. .,Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| |
Collapse
|
38
|
Vasin AA, Volkov AA. The Current Understanding of the Properties of Liquid Water: A Possible Alternative Solution. Biophysics (Nagoya-shi) 2021. [DOI: 10.1134/s0006350921050262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
39
|
Miyatsu S, Kofu M, Shigematsu A, Yamada T, Kitagawa H, Lohstroh W, Simeoni G, Tyagi M, Yamamuro O. Quasielastic neutron scattering study on proton dynamics assisted by water and ammonia molecules confined in MIL-53. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2021; 8:054501. [PMID: 34660845 PMCID: PMC8514252 DOI: 10.1063/4.0000122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 09/16/2021] [Indexed: 06/13/2023]
Abstract
Dynamics of water and other small molecules confined in nanoporous materials is one of the current topics in condensed matter physics. One popular host material is a benzenedicarboxylate-bridging metal (III) complex abbreviated to MIL-53, whose chemical formula is M(OH)[C6H2(CO2)2R2] where M = Cr, Al, Fe and R = H, OH, NH2, COOH. These materials absorb not only water but also ammonia molecules. We have measured the quasi-elastic neutron scattering of MIL-53(Fe)-(COOH)2·2H2O and MIL-53(Fe)-(COOH)2·3NH3 which have full guest occupancy and exhibit the highest proton conductivity in the MIL-53 family. In a wide relaxation time region (τ = 10-12-10-8 s), two relaxations with Arrhenius temperature dependence were found in each sample. It is of interest that their activation energies are smaller than those of bulk H2O and NH3 liquids. The momentum transfer dependence of the relaxation time and the temperature dependence of the relaxation intensity suggest that the proton conduction is due to the Grotthuss mechanism with thermally excited H2O and NH3 molecules.
Collapse
Affiliation(s)
- Satoshi Miyatsu
- Institute for Solid State Physics, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581, Japan
| | - Maiko Kofu
- Institute for Solid State Physics, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581, Japan
| | - Akihito Shigematsu
- Division of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Teppei Yamada
- Division of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Hiroshi Kitagawa
- Division of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Wiebke Lohstroh
- Heinz Maier-Leibnitz Zentrum (MLZ), Technische Universität München, D-85747 Garching, Germany
| | - Giovanna Simeoni
- Heinz Maier-Leibnitz Zentrum (MLZ), Technische Universität München, D-85747 Garching, Germany
| | | | - Osamu Yamamuro
- Institute for Solid State Physics, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581, Japan
| |
Collapse
|
40
|
Noguere G, Scotta JP, Xu S, Farhi E, Ollivier J, Calzavarra Y, Rols S, Koza M, Marquez Damian JI. Temperature-dependent dynamic structure factors for liquid water inferred from inelastic neutron scattering measurements. J Chem Phys 2021; 155:024502. [PMID: 34266266 DOI: 10.1063/5.0055779] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Temperature-dependent dynamic structure factors S(Q, ω) for liquid water have been calculated using a composite model, which is based on the decoupling approximation of the mean square displacement of the water molecules into diffusion and solid-like vibrational parts. The solid-like vibrational part Svib(Q, ω) is calculated with the phonon expansion method established in the framework of the incoherent Gaussian approximation. The diffusion part Sdiff(Q, ω) relies on the Egelstaff-Schofield translational diffusion model corrected for jump diffusions and rotational diffusions with the Singwi-Sjölander random model and Sears expansion, respectively. Systematics of the model parameters as a function of temperature were deduced from quasi-elastic neutron scattering data analysis reported in the literature and from molecular dynamics (MD) simulations relying on the TIP4P/2005f model. The resulting S(Q, ω) values are confronted by means of Monte Carlo simulations to inelastic neutron scattering data measured with IN4, IN5, and IN6 time-of-flight spectrometers of the Institut Laue-Langevin (ILL) (Grenoble, France). A modest range of temperatures (283-494 K) has been investigated with neutron wavelengths corresponding to incident neutron energies ranging from 0.57 to 67.6 meV. The neutron-weighted multiphonon spectra deduced from the ILL data indicate a slight overestimation by the MD simulations of the frequency shift and broadening of the librational band. The descriptive power of the composite model was suited for improving the comparison to experiments via Bayesian updating of prior model parameters inferred from MD simulations. The reported posterior temperature-dependent densities of state of hydrogen in H2O would represent valuable insights for studying the collective coupling interactions in the water molecule between the inter- and intramolecular degrees of freedom.
Collapse
Affiliation(s)
- G Noguere
- CEA, DES, IRESNE, Cadarache, F-13108 Saint Paul Les Durance, France
| | - J P Scotta
- CEA, DES, IRESNE, Cadarache, F-13108 Saint Paul Les Durance, France
| | - S Xu
- CEA, DES, IRESNE, Cadarache, F-13108 Saint Paul Les Durance, France
| | - E Farhi
- Institut Laue-Langevin, F-38042 Grenoble, France
| | - J Ollivier
- Institut Laue-Langevin, F-38042 Grenoble, France
| | - Y Calzavarra
- Institut Laue-Langevin, F-38042 Grenoble, France
| | - S Rols
- Institut Laue-Langevin, F-38042 Grenoble, France
| | - M Koza
- Institut Laue-Langevin, F-38042 Grenoble, France
| | - J I Marquez Damian
- Neutron Physics Departement and Instituto Balseiro, Centro Atomico Bariloche, CNEA, Bariloche, Argentina
| |
Collapse
|
41
|
Szabó S, Yang F, Lohstroh W, Petry W. Self-diffusion in single component liquid metals: a case study of mercury. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:375101. [PMID: 34241596 DOI: 10.1088/1361-648x/ac0d83] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 06/22/2021] [Indexed: 06/13/2023]
Abstract
We report the temperature dependent atomic dynamics in mercury investigated with quasi-elastic neutron scattering between 240 and 350 K. The self-diffusivity follows an Arrhenius behavior over the entire investigated temperature range, with an activation energy of 41.8 ± 1.4 meV. The standard deviation is in the order of 5%, significantly more precise than previously reported measurements in the literature. Similar to alkali metal melts, the self-diffusion coefficient close to the melting point can be predicted with an effective atom radius of 1.37 Å. This shows a dominant contribution from the repulsive part of the interatomic potential to the mass transport. We observed deviations from the Stokes/Sutherland-Einstein relation and indications of an increasing collective nature of the dynamics with decreasing temperature. Thus, a transport mechanism of uncorrelated binary collisions cannot fully describe the temperature dependence of the self-diffusion.
Collapse
Affiliation(s)
- Sandro Szabó
- Heinz Maier-Leibnitz Zentrum (MLZ) and Physik Department, Technische Universität München, Lichtenbergstrasse 1, 85748 Garching, Germany
- Institut für Materialphysik im Weltraum, Deutsches Zentrum für Luft- und Raumfahrt (DLR), 51170 Köln, Germany
| | - Fan Yang
- Institut für Materialphysik im Weltraum, Deutsches Zentrum für Luft- und Raumfahrt (DLR), 51170 Köln, Germany
| | - Wiebke Lohstroh
- Heinz Maier-Leibnitz Zentrum (MLZ) and Physik Department, Technische Universität München, Lichtenbergstrasse 1, 85748 Garching, Germany
| | - Winfried Petry
- Heinz Maier-Leibnitz Zentrum (MLZ) and Physik Department, Technische Universität München, Lichtenbergstrasse 1, 85748 Garching, Germany
| |
Collapse
|
42
|
Mitra S, Sharma VK, Mukhopadhyay R. Diffusion of confined fluids in microporous zeolites and clay materials. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2021; 84:066501. [PMID: 33740783 DOI: 10.1088/1361-6633/abf085] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 03/19/2021] [Indexed: 06/12/2023]
Abstract
Fluids exhibit remarkable variation in their structural and dynamic properties when they are confined at the nanoscopic scale. Various factors, including geometric restriction, the size and shape of the guest molecules, the topology of the host, and guest-host interactions, are responsible for the alterations in these properties. Due to their porous structures, aluminosilicates provide a suitable host system for studying the diffusion of sorbates in confinement. Zeolites and clays are two classes of the aluminosilicate family, comprising very ordered porous or layered structures. Zeolitic materials are important due to their high catalytic activity and molecular sieving properties. Guest molecules adsorbed by zeolites display many interesting features including unidimensional diffusion, non-isotropic rotation, preferred orientation and levitation effects, depending on the guest and host characteristics. These are useful for the separation of hydrocarbons which commonly exist as mixtures in nature. Similarly, clay materials have found application in catalysis, desalination, enhanced oil recovery, and isolation barriers used in radioactive waste disposal. It has been shown that the bonding interactions, level of hydration, interlayer spacing, and number of charge-balancing cations are the important factors that determine the nature of diffusion of water molecules in clays. Here, we present a review of the current status of the diffusion mechanisms of various adsorbed species in different microporous zeolites and clays, as investigated using quasielastic neutron scattering and classical molecular dynamics simulation techniques. It is impossible to write an exhaustive review of the subject matter, as it has been explored over several decades and involves many research topics. However, an effort is made to cover the relevant issues specific to the dynamics of different molecules in microporous zeolites and clay materials and to highlight a variety of interesting features that are important for both practical applications and fundamental aspects.
Collapse
Affiliation(s)
- S Mitra
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - V K Sharma
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - R Mukhopadhyay
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| |
Collapse
|
43
|
Sepulveda-Medina PI, Tyagi M, Wang C, Vogt BD. Water dynamics within nanostructured amphiphilic statistical copolymers from quasielastic neutron scattering. J Chem Phys 2021; 154:154903. [PMID: 33887940 DOI: 10.1063/5.0045341] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Understanding the properties of water under either soft or hard confinement has been an area of great interest, but nanostructured amphiphilic polymers that provide a secondary confinement have garnered significantly less attention. Here, a series of statistical copolymers of 2-hydroxyethyl acrylate (HEA) and 2-(N-ethylperfluorooctane sulfonamido)ethyl methacrylate (FOSM) are swollen to equilibrium in water to form nanostructured physically cross-linked hydrogels to probe the effect of soft confinement on the dynamics of water. Changing the composition of the copolymer from 10 to 21 mol. % FOSM decreases the average size of the assembled FOSM cross-link, but also the spacing between the cross-links in the hydrogels with the mean distance between the FOSM aggregates decreasing from 3.9 to 2.7 nm. The dynamics of water within the hydrogels were assessed with quasielastic neutron scattering. These hydrogels exhibit superior performance for inhibition of water crystallization on supercooling in comparison to analogous hydrogels with different hydrophilic copolymer chemistries. Despite the lower water crystallinity, the self-diffusion coefficient for these hydrogels from the copolymers of HEA and FOSM decreases precipitously below 260 K, which is a counter to the nearly temperature invariant water dynamics reported previously with an analogous hydrogel [Wiener et al., J. Phys. Chem. B 120, 5543 (2016)] that exhibits nearly temperature invariant dynamics to 220 K. These results point to chemistry dependent dynamics of water that is confined within amphiphilic hydrogels, where the interactions of water with the hydrophilic segments can qualitatively alter the temperature dependent dynamics of water in the supercooled state.
Collapse
Affiliation(s)
| | - Madhusudan Tyagi
- Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| | - Chao Wang
- School of Polymer Science and Polymer Engineering, University of Akron, Akron, Ohio 44325, USA
| | - Bryan D Vogt
- School of Polymer Science and Polymer Engineering, University of Akron, Akron, Ohio 44325, USA
| |
Collapse
|
44
|
Kuznetsov V, Lohstroh W, Rogalla D, Becker HW, Strunskus T, Nefedov A, Kovacevic E, Traeger F, Fouquet P. Neutron spectroscopy study of the diffusivity of hydrogen in MoS 2. Phys Chem Chem Phys 2021; 23:7961-7973. [PMID: 33459737 DOI: 10.1039/d0cp05136e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The diffusion of hydrogen adsorbed inside layered MoS2 crystals has been studied by means of quasi-elastic neutron scattering, neutron spin-echo spectroscopy, nuclear reaction analysis, and X-ray photoelectron spectroscopy. The neutron time-of-flight and neutron spin-echo measurements demonstrate fast diffusion of hydrogen molecules parallel to the basal planes of the two dimensional crystal planes. At room temperature and above, this intra-layer diffusion is of a similar speed to the surface diffusion that has been observed in earlier studies for hydrogen atoms on Pt surfaces. A significantly slower hydrogen diffusion was observed perpendicular to the basal planes using nuclear reaction analysis.
Collapse
|
45
|
Diffusion in dense supercritical methane from quasi-elastic neutron scattering measurements. Nat Commun 2021; 12:1958. [PMID: 33785748 PMCID: PMC8009954 DOI: 10.1038/s41467-021-22182-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 02/26/2021] [Indexed: 11/08/2022] Open
Abstract
Methane, the principal component of natural gas, is an important energy source and raw material for chemical reactions. It also plays a significant role in planetary physics, being one of the major constituents of giant planets. Here, we report measurements of the molecular self-diffusion coefficient of dense supercritical CH4 reaching the freezing pressure. We find that the high-pressure behaviour of the self-diffusion coefficient measured by quasi-elastic neutron scattering at 300 K departs from that expected for a dense fluid of hard spheres and suggests a density-dependent molecular diameter. Breakdown of the Stokes-Einstein-Sutherland relation is observed and the experimental results suggest the existence of another scaling between self-diffusion coefficient D and shear viscosity η, in such a way that Dη/ρ=constant at constant temperature, with ρ the density. These findings underpin the lack of a simple model for dense fluids including the pressure dependence of their transport properties.
Collapse
|
46
|
Khairy Y, Alvarez F, Arbe A, Colmenero J. Disentangling Self-Atomic Motions in Polyisobutylene by Molecular Dynamics Simulations. Polymers (Basel) 2021; 13:polym13040670. [PMID: 33672368 PMCID: PMC7927061 DOI: 10.3390/polym13040670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/08/2021] [Accepted: 02/17/2021] [Indexed: 01/16/2023] Open
Abstract
We present fully atomistic molecular dynamics simulations on polyisobutylene (PIB) in a wide temperature range above the glass transition. The cell is validated by direct comparison of magnitudes computed from the simulation and measured by neutron scattering on protonated samples reported in previous works. Once the reliability of the simulation is assured, we exploit the information in the atomic trajectories to characterize the dynamics of the different kinds of atoms in PIB. All of them, including main-chain carbons, show a crossover from Gaussian to non-Gaussian behavior in the intermediate scattering function that can be described in terms of the anomalous jump diffusion model. The full characterization of the methyl-group hydrogen motions requires accounting for rotational motions. We show that the usually assumed statistically independence of rotational and segmental motions fails in this case. We apply the rotational rate distribution model to correlation functions calculated for the relative positions of methyl-group hydrogens with respect to the carbon atom at which they are linked. The contributions to the vibrational density of states are also discussed. We conclude that methyl-group rotations are coupled with the main-chain dynamics. Finally, we revise in the light of the simulations the hypothesis and conclusions made in previously reported neutron scattering investigations on protonated samples trying to address the origin of the dielectric β-process.
Collapse
Affiliation(s)
- Yasmin Khairy
- Physics Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt;
- Centro de Física de Materiales (CSIC, UPV/EHU), Paseo Manuel de Lardizabal 5, E-20018 San Sebastián, Spain; (F.A.); (A.A.)
| | - Fernando Alvarez
- Centro de Física de Materiales (CSIC, UPV/EHU), Paseo Manuel de Lardizabal 5, E-20018 San Sebastián, Spain; (F.A.); (A.A.)
- Materials Physics Center MPC, Paseo Manuel de Lardizabal 5, E-20018 San Sebastián, Spain
- Departamento de Polímeros y Materiales Avanzados: Física, Química y Tecnología (UPV/EHU), Apartado 1072, E-20080 San Sebastián, Spain
| | - Arantxa Arbe
- Centro de Física de Materiales (CSIC, UPV/EHU), Paseo Manuel de Lardizabal 5, E-20018 San Sebastián, Spain; (F.A.); (A.A.)
- Materials Physics Center MPC, Paseo Manuel de Lardizabal 5, E-20018 San Sebastián, Spain
| | - Juan Colmenero
- Centro de Física de Materiales (CSIC, UPV/EHU), Paseo Manuel de Lardizabal 5, E-20018 San Sebastián, Spain; (F.A.); (A.A.)
- Materials Physics Center MPC, Paseo Manuel de Lardizabal 5, E-20018 San Sebastián, Spain
- Departamento de Polímeros y Materiales Avanzados: Física, Química y Tecnología (UPV/EHU), Apartado 1072, E-20080 San Sebastián, Spain
- Donostia International Physics Center (DIPC), Paseo Manuel de Lardizabal 4, E-20018 San Sebastián, Spain
- Correspondence:
| |
Collapse
|
47
|
Le Caër S, Pignié MC, Berrod Q, Grzimek V, Russina M, Carteret C, Thill A, Zanotti JM, Teixeira J. Dynamics in hydrated inorganic nanotubes studied by neutron scattering: towards nanoreactors in water. NANOSCALE ADVANCES 2021; 3:789-799. [PMID: 36133838 PMCID: PMC9417873 DOI: 10.1039/d0na00765j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 12/19/2020] [Indexed: 05/08/2023]
Abstract
Water dynamics in inorganic nanotubes is studied by neutron scattering technique. Two types of aluminosilicate nanotubes are investigated: one is completely hydrophilic on the external and internal surfaces (IMO-OH) while the second possesses an internal cavity which is hydrophobic due to the replacement of Si-OH bonds by Si-CH3 ones (IMO-CH3), the external surface being still hydrophilic. The samples have internal radii equal to 7.5 and 9.8 Å, respectively. By working under well-defined relative humidity (RH) values, water dynamics in IMO-OH was revealed by quasi-elastic spectra as a function of the filling of the interior of the tubes. When one water monolayer is present on the inner surface of the tube, water molecules can jump between neighboring Si-OH sites on the circumference by 2.7 Å. A self-diffusion is then measured with a value (D = 1.4 × 10-5 cm2 s-1) around half of that in bulk water. When water molecules start filling also the interior of the tubes, a strong confinement effect is observed, with a confinement diameter (6 Å) of the same order of magnitude as the radius of the nanotube (7.5 Å). When IMO-OH is filled with water, the H-bond network is very rigid, and water molecules are immobile on the timescale of the experiment. For IMO-OH and IMO-CH3, motions of the hydroxyl groups are also evidenced. The associated relaxation time is of the order of 0.5 ps and is due to hindered rotations of these groups. In the case of IMO-CH3, quasi-elastic spectra and elastic scans are dominated by the motions of methyl groups, making the effect of the water content on the evolution of the signals negligible. It was however possible to describe torsions of methyl groups, with a corresponding rotational relaxation time of 2.6 ps. The understanding of the peculiar behavior of water inside inorganic nanotubes has implications in research areas such as nanoreactors. In particular, the locking of motions inside IMO-OH when it is filled with water prevents its use under these conditions as a nanoreactor, while the interior of the IMO-CH3 cavity is certainly a favorable place for confined chemical reactions to take place.
Collapse
Affiliation(s)
- Sophie Le Caër
- NIMBE, UMR 3685 CEA, CNRS, Université Paris-Saclay, CEA Saclay 91191 Gif-sur-Yvette Cedex France
| | - Marie-Claire Pignié
- NIMBE, UMR 3685 CEA, CNRS, Université Paris-Saclay, CEA Saclay 91191 Gif-sur-Yvette Cedex France
| | - Quentin Berrod
- CNRS, CEA, Université Grenoble Alpes SyMMES 38000 Grenoble France
| | - Veronika Grzimek
- Helmholtz-Zentrum Berlin für Materialien und Energie Hahn-Meitner-Platz 1 14109 Berlin Germany
| | - Margarita Russina
- Helmholtz-Zentrum Berlin für Materialien und Energie Hahn-Meitner-Platz 1 14109 Berlin Germany
| | | | - Antoine Thill
- NIMBE, UMR 3685 CEA, CNRS, Université Paris-Saclay, CEA Saclay 91191 Gif-sur-Yvette Cedex France
| | - Jean-Marc Zanotti
- Laboratoire Léon Brillouin, CEA-CNRS (UMR-12), CEA Saclay, Université Paris-Saclay 91191 Gif-sur-Yvette Cedex France
| | - José Teixeira
- Laboratoire Léon Brillouin, CEA-CNRS (UMR-12), CEA Saclay, Université Paris-Saclay 91191 Gif-sur-Yvette Cedex France
| |
Collapse
|
48
|
Arbe A, Alvarez F, Colmenero J. Insight into the Structure and Dynamics of Polymers by Neutron Scattering Combined with Atomistic Molecular Dynamics Simulations. Polymers (Basel) 2020; 12:E3067. [PMID: 33371357 PMCID: PMC7767341 DOI: 10.3390/polym12123067] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/04/2020] [Accepted: 12/11/2020] [Indexed: 11/23/2022] Open
Abstract
Combining neutron scattering and fully atomistic molecular dynamics simulations allows unraveling structural and dynamical features of polymer melts at different length scales, mainly in the intermolecular and monomeric range. Here we present the methodology developed by us and the results of its application during the last years in a variety of polymers. This methodology is based on two pillars: (i) both techniques cover approximately the same length and time scales and (ii) the classical van Hove formalism allows easily calculating the magnitudes measured by neutron scattering from the simulated atomic trajectories. By direct comparison with experimental results, the simulated cell is validated. Thereafter, the information of the simulations can be exploited, calculating magnitudes that are experimentally inaccessible or extending the parameters range beyond the experimental capabilities. We show how detailed microscopic insight on structural features and dynamical processes of various kinds has been gained in polymeric systems with different degrees of complexity, and how intriguing questions as the collective behavior at intermediate length scales have been faced.
Collapse
Affiliation(s)
- Arantxa Arbe
- Centro de Física de Materiales (CSIC, UPV/EHU) and Materials Physics Center MPC, Paseo Manuel de Lardizabal 5, E-20018 San Sebastián, Spain; (A.A.); (F.A.)
| | - Fernando Alvarez
- Centro de Física de Materiales (CSIC, UPV/EHU) and Materials Physics Center MPC, Paseo Manuel de Lardizabal 5, E-20018 San Sebastián, Spain; (A.A.); (F.A.)
- Departamento de Polímeros y Materiales Avanzados, Física, Química y Tecnología (UPV/EHU), Apartado 1072, E-20080 San Sebastián, Spain
| | - Juan Colmenero
- Centro de Física de Materiales (CSIC, UPV/EHU) and Materials Physics Center MPC, Paseo Manuel de Lardizabal 5, E-20018 San Sebastián, Spain; (A.A.); (F.A.)
- Departamento de Polímeros y Materiales Avanzados, Física, Química y Tecnología (UPV/EHU), Apartado 1072, E-20080 San Sebastián, Spain
- Donostia International Physics Center (DIPC), Paseo Manuel de Lardizabal 4, E-20018 San Sebastián, Spain
| |
Collapse
|
49
|
Lushchekina SV, Inidjel G, Martinez N, Masson P, Trovaslet-Leroy M, Nachon F, Koza MM, Seydel T, Peters J. Impact of Sucrose as Osmolyte on Molecular Dynamics of Mouse Acetylcholinesterase. Biomolecules 2020; 10:biom10121664. [PMID: 33322722 PMCID: PMC7763276 DOI: 10.3390/biom10121664] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/01/2020] [Accepted: 12/11/2020] [Indexed: 01/28/2023] Open
Abstract
The enzyme model, mouse acetylcholinesterase, which exhibits its active site at the bottom of a narrow gorge, was investigated in the presence of different concentrations of sucrose to shed light on the protein and water dynamics in cholinesterases. The study was conducted by incoherent neutron scattering, giving access to molecular dynamics within the time scale of sub-nano to nanoseconds, in comparison with molecular dynamics simulations. With increasing sucrose concentration, we found non-linear effects, e.g., first a decrease in the dynamics at 5 wt% followed by a gain at 10 wt% sucrose. Direct comparisons with simulations permitted us to understand the following findings: at 5 wt%, sugar molecules interact with the protein surface through water molecules and damp the motions to reduce the overall protein mobility, although the motions inside the gorge are enhanced due to water depletion. When going to 10 wt% of sucrose, some water molecules at the protein surface are replaced by sugar molecules. By penetrating the protein surface, they disrupt some of the intra-protein contacts, and induce new ones, creating new pathways for correlated motions, and therefore, increasing the dynamics. This exhaustive study allowed for an explanation of the detail interactions leading to the observed non-linear behavior.
Collapse
Affiliation(s)
- Sofya V. Lushchekina
- N.M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 119334 Moscow, Russia;
| | - Gaetan Inidjel
- Institut Laue Langevin, 38000 Grenoble, France; (G.I.); (N.M.); (M.M.K.); (T.S.)
- Université Grenoble Alpes, UFR PhITEM, LiPhy, CNRS, 38000 Grenoble, France
| | - Nicolas Martinez
- Institut Laue Langevin, 38000 Grenoble, France; (G.I.); (N.M.); (M.M.K.); (T.S.)
- Université Grenoble Alpes, UFR PhITEM, LiPhy, CNRS, 38000 Grenoble, France
| | - Patrick Masson
- Neuropharmacology Laboratory, Kazan Federal University, Kremlevskaya str 18, 480002 Kazan, Russia;
| | - Marie Trovaslet-Leroy
- Institut de Recherche Biomédicale des Armées, 91223 Brétigny sur Orge, France; (M.T.-L.); (F.N.)
| | - Florian Nachon
- Institut de Recherche Biomédicale des Armées, 91223 Brétigny sur Orge, France; (M.T.-L.); (F.N.)
| | - Michael Marek Koza
- Institut Laue Langevin, 38000 Grenoble, France; (G.I.); (N.M.); (M.M.K.); (T.S.)
| | - Tilo Seydel
- Institut Laue Langevin, 38000 Grenoble, France; (G.I.); (N.M.); (M.M.K.); (T.S.)
| | - Judith Peters
- Institut Laue Langevin, 38000 Grenoble, France; (G.I.); (N.M.); (M.M.K.); (T.S.)
- Université Grenoble Alpes, UFR PhITEM, LiPhy, CNRS, 38000 Grenoble, France
- Correspondence: ; Tel.: +33-4-7620-7560
| |
Collapse
|
50
|
Srinivasan H, Sharma VK, Mukhopadhyay R, Mitra S. Solvation and transport of lithium ions in deep eutectic solvents. J Chem Phys 2020; 153:104505. [DOI: 10.1063/5.0018510] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- H. Srinivasan
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - V. K. Sharma
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - R. Mukhopadhyay
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - S. Mitra
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| |
Collapse
|