1
|
Schüler L, Sievers Y, Roddatis V, Ross U, Moshnyaga V, Lyzwa F. Nanoscale engineering of electronic and magnetic modulations in gradient functional oxide heterostructures. NANOSCALE 2025; 17:12260-12269. [PMID: 40265334 DOI: 10.1039/d5nr00533g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
Advanced interface engineering provides a way to control the ground state of correlated oxide heterostructures, which enables the shaping of future electronic and magnetic nanodevices with enhanced performance. An especially promising and rather new avenue is to find and explore low-dimensional phases of structural, ferroic and superconducting origin. In this multimodal study, we present a novel dynamic growth control method that enables the synthesis of compositionally graded superlattices (SLs) of (LaMnO3)10/(SrMnO3)10 (LMO/SMO), in which the layers gradually change their composition between LMO and SMO with gradient G values ranging from 0 to 100%. This leads to strong modulations in the material's electronic properties and of the two-phase ferromagnetic (FM) behavior. In particular, we observe that G surprisingly has almost no impact on the emergent high-temperature FM phase; in contrast, the low-temperature volume-like FM phase increases drastically with higher G-factors and thus can serve as a precise marker for chemical composition on a nanoscale. Focusing on the interfacial charge transfer found at sharp SMO/LMO interfaces (G = 0), we observe that for higher G-factors a long-range charge modulation develops, which is accompanied by an insulator-to-metal transition. These findings showcase G as a crucial control parameter that can shape a superlattice's intrinsic properties and provide a perspective for designing functional oxide heterostructures with artificially disordered interfaces.
Collapse
Affiliation(s)
- Leonard Schüler
- I. Physikalisches Institut, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany.
| | - Yannik Sievers
- I. Physikalisches Institut, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany.
| | - Vladimir Roddatis
- GFZ Helmholtz Centre for Geosciences, Telegrafenberg, 14473 Potsdam, Germany
| | - Ulrich Ross
- IV. Physikalisches Institut, Georg-August-Universität-Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - Vasily Moshnyaga
- I. Physikalisches Institut, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany.
| | - Fryderyk Lyzwa
- Department of Physics, Photon Factory, University of Auckland, 38 Princes Street, Auckland 1010, New Zealand.
- Te Whai Ao Dodd-Walls Centre for Photonic and Quantum Technologies, New Zealand
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, New Zealand
| |
Collapse
|
2
|
Fourmont P, Cho E, Cloutier SG, Ross CA. Exchange Bias in La 0.67Sr 0.33MnO 3/YFeO 3 Ferromagnet/Antiferromagnet Multilayer Heterostructures. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2501644. [PMID: 40223394 DOI: 10.1002/smll.202501644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 03/19/2025] [Indexed: 04/15/2025]
Abstract
Exchange bias (EB), manifested as a hysteresis-loop offset after field-cooling, is demonstrated in perovskite-structured ferromagnet/antiferromagnet (La0.67Sr0.33MnO3/YFeO3)n heterostructures grown on (100) SrTiO3 substrates. Bilayer samples show an EB of 306 Oe at 50 K, whereas multilayers with five layers exhibit an exchange bias of up to 424 Oe at 50 K. A spin valve consisting of La0.67Sr0.33MnO3/SrTiO3/La0.67Sr0.33MnO3/YFeO3 shows stable remanent configurations resulting from pinning of the upper La0.67Sr0.33MnO3 layer by the YFeO3. In contrast, EB is not observed on (111)-oriented SrTiO3 substrates due to interface roughening. These results demonstrate YFeO3 as an alternative orthoferrite antiferromagnet compared to BiFeO3 and LaFeO3 for incorporation into exchange-biased heterostructures.
Collapse
Affiliation(s)
- Paul Fourmont
- École de Technologie Supérieure, Department of Electrical Engineering, 1100 Notre Dame Street West, Montreal, Quebec, H3C 1K3, Canada
- Massachusetts Institute of Technology, Department of Materials Science and Engineering, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Eunsoo Cho
- Massachusetts Institute of Technology, Department of Materials Science and Engineering, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Sylvain G Cloutier
- École de Technologie Supérieure, Department of Electrical Engineering, 1100 Notre Dame Street West, Montreal, Quebec, H3C 1K3, Canada
| | - Caroline A Ross
- Massachusetts Institute of Technology, Department of Materials Science and Engineering, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| |
Collapse
|
3
|
Hao Y, Li T, Hong X. Interface phenomena and emerging functionalities in ferroelectric oxide based heterostructures. Chem Commun (Camb) 2025; 61:4924-4950. [PMID: 40062386 DOI: 10.1039/d4cc05836d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
Capitalizing on the nonvolatile, nanoscale controllable polarization, ferroelectric perovskite oxides can be integrated with various functional materials for designing emergent phenomena enabled by charge, lattice, and polar symmetry mediated interfacial coupling, as well as for constructing novel energy-efficient electronics and nanophotonics with programmable functionalities. When prepared in thin film or membrane forms, the ferroelectric instability of these materials is highly susceptible to the interfacial electrostatic and mechanical boundary conditions, resulting in tunable polarization fields and Curie temperatures and domain formation. This review focuses on two types of ferroelectric oxide-based heterostructures: the epitaxial perovskite oxide heterostructures and the ferroelectric oxides interfaced with two-dimensional van der Waals materials. The topics covered include the basic synthesis methods for ferroelectric oxide thin films, membranes, and heterostructures, characterization of their properties, and various emergent phenomena hosted by the heterostructures, including the polarization-controlled metal-insulator transition and magnetic anisotropy, negative capacitance effect, domain-imposed one-dimensional graphene superlattices, programmable second harmonic generation, and interface-enhanced polar alignment and piezoelectric response, as well as their applications in nonvolatile memory, logic, and reconfigurable optical devices. Possible future research directions are also outlined, encompassing the synthesis via remote epitaxy and oxide moiré engineering, incorporation of binary ferroelectric oxides, realization of topological properties, and functional design of oxygen octahedral rotation.
Collapse
Affiliation(s)
- Yifei Hao
- Department of Physics and Astronomy & Nebraska Center for Materials and Nanoscience, University of Nebraska-Lincoln, Lincoln, NE, 68588-0299, USA.
| | - Tianlin Li
- Department of Physics and Astronomy & Nebraska Center for Materials and Nanoscience, University of Nebraska-Lincoln, Lincoln, NE, 68588-0299, USA.
| | - Xia Hong
- Department of Physics and Astronomy & Nebraska Center for Materials and Nanoscience, University of Nebraska-Lincoln, Lincoln, NE, 68588-0299, USA.
| |
Collapse
|
4
|
Vitayaya O, Kurniawan B, Nehan PZZ, Munazat DR, Sudiro T, Imaduddin A, Nugraha H, Yudanto SD, Manawan MTE. Enhanced magnetoresistance properties of K-site deficient La 0.85K 0.1□ 0.05MnO 3 manganites synthesized via sol-gel, wet-mixing, and solid-state reaction methods. RSC Adv 2024; 14:38615-38633. [PMID: 39650848 PMCID: PMC11622788 DOI: 10.1039/d4ra07105k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 11/18/2024] [Indexed: 12/11/2024] Open
Abstract
The effect of synthesis methods on the structural, magnetic, electrical transport, and magnetoresistance (MR) properties of K-deficient La0.85K0.1□0.05MnO3 (LKdMO) materials has been investigated. The compounds were synthesized via sol-gel (SG), wet-mixing (WM), and solid-state (SS) reaction. The resulting ceramics were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), and four point probe (FPP) techniques to evaluate their crystal structure, morphologies, elemental composition, electrical transport properties, and magnetoresistance (MR) behavior. This study reveals that the electrical- and magneto-transport properties of LKdMO ceramics are strongly influenced by their synthesis method. Among the samples, the WM method yielded ceramics with smaller grain sizes and more dispersed grain boundaries, leading to reduced resistivity. The MR values for LKdMO ceramics synthesized through SG, WM, and SS reached 17.05% at 287.74 K, 54.68% at 271.50 K, and 47.09% at 270.25 K, respectively. The WM-synthesized sample exhibited superior crystal quality and enhanced magnetic and electrical properties. These results indicate that LKdMO ceramics are promising candidates for application in magnetic sensors.
Collapse
Affiliation(s)
| | - Budhy Kurniawan
- Department of Physics, Universitas Indonesia Depok 16424 Indonesia
| | | | | | - Toto Sudiro
- Research Center for Advanced Material, National Research and Innovation Agency (BRIN) South Tangerang City 15314 Indonesia
| | - Agung Imaduddin
- Research Center for Advanced Material, National Research and Innovation Agency (BRIN) South Tangerang City 15314 Indonesia
| | - Heri Nugraha
- Research Center for Energy Conversion and Conservation, National Research and Innovation Agency Indonesia
| | - Sigit Dwi Yudanto
- Center for Metallurgy, National Research and Innovation Agency Indonesia
| | - Maykel T E Manawan
- Research Center for Advanced Material, National Research and Innovation Agency (BRIN) South Tangerang City 15314 Indonesia
- Faculty of Defense Technology, Indonesia Defense University Bogor 16810 Indonesia
| |
Collapse
|
5
|
Ren J, Zhong X. Prospect for detecting magnetism in two-dimensional perovskite oxides by electron magnetic circular dichroism. Micron 2024; 187:103718. [PMID: 39305702 DOI: 10.1016/j.micron.2024.103718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/12/2024] [Accepted: 09/13/2024] [Indexed: 11/12/2024]
Abstract
Two-dimensional (2D) magnets, especially strongly correlated 2D transition-metal perovskite oxides, have attracted significant attention due to their intriguing electromagnetic properties for potential applications in spintronic devices. Potentially electron magnetic circular dichroism (EMCD) under zone axis conditions can provide three-dimensional components of magnetic moments in 2D materials, but the collection efficiency and the signal-to-noise ratio for out-of-plane (OOP) components is limited due to the limited collection angle. Here we conducted a comprehensive computational simulation to optimize the experimental setting of EMCD for detecting the OOP components of magnetic moments in three beam conditions (3BCs) on 2D perovskite oxides La1-xSrxMnO3 (LSMO) in a TEM. The key parameters are sample thickness, accelerating voltage, Sr doping concentration, collection semi-angle and position, and sample orientation including systematic reflections excited and tilt angle. Our simulation results demonstrate that the relative dynamical diffraction coefficients of Mn OOP EMCD of LaMnO3 with a thickness ranging from 1 unit cell (uc) to 4 uc can be optimized in a 3BC with (110) systematic reflections excited and a relatively large collection semi-angle of 19 mrad at the relatively low accelerating voltage of 80 kV. In most cases, the relative dynamic diffraction coefficients for La1-xSrxMnO3 with the thickness ranging from 1 uc to 4 uc decrease with the increase of the Sr doping concentrations. The optimal tilt angle from a zone axis to a 3BC is 18° for the cases of the LSMO thickness of 2 uc, 3 uc and 4 uc, and 22° for the monolayer LSMO. Our work provides the theoretical simulation foundation for optimized EMCD experiments for measuring OOP components of magnetic moments in 2D transition-metal perovskite oxides.
Collapse
Affiliation(s)
- Jie Ren
- TRACE EM Unit and Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong, China; City University of Hong Kong Matter Science Research Institute (Futian), Shenzhen 518048, PR China; Nanomanufacturing Laboratory (NML), City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, PR China
| | - Xiaoyan Zhong
- TRACE EM Unit and Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong, China; City University of Hong Kong Matter Science Research Institute (Futian), Shenzhen 518048, PR China; Nanomanufacturing Laboratory (NML), City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, PR China.
| |
Collapse
|
6
|
Koirala KP, Hossain MD, Wang L, Zhuo Z, Yang W, Bowden ME, Spurgeon SR, Wang C, Sushko PV, Du Y. Layer Resolved Cr Oxidation State Modulation in Epitaxial SrFe 0.67Cr 0.33O 3-δ Thin Films. NANO LETTERS 2024; 24:14244-14251. [PMID: 39481117 DOI: 10.1021/acs.nanolett.4c03660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
Understanding how doping influences physicochemical properties of ABO3 perovskite oxides is critical for tailoring their functionalities. In this study, SrFe0.67Cr0.33O3-δ epitaxial thin films were used to examine the effects of Fe and Cr competition on structure and B-site cation oxidation states. The films exhibit a perovskite-like structure near the film/substrate interface, while a brownmillerite-like structure with horizontal oxygen vacancy channels predominates near the surface. Electron energy loss spectroscopy shows Fe remains Fe3+, while Cr varies from ∼Cr3+ (tetrahedral layers) to ∼Cr4+ (octahedral layers) within brownmillerite phases and becomes ∼Cr4.5+ in perovskite-like phases. Theoretical simulations indicate that Cr-O bond arrangements and the way oxygen vacancies interact with Cr and Fe drive Cr charge disproportionation. High-valent Cr cations introduce additional densities of states near the Fermi level, reducing the optical bandgap from ∼2.0 eV (SrFeO2.5) to ∼1.7 eV (SrFe0.67Cr0.33O3-δ). These findings offer insights into B-site cation doping in the perovskite oxide framework.
Collapse
Affiliation(s)
- Krishna Prasad Koirala
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Mohammad Delower Hossain
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Le Wang
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Zengqing Zhuo
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Wanli Yang
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Mark E Bowden
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Steven R Spurgeon
- National Security Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
- Department of Physics, University of Washington, Seattle, Washington 98195, United States
| | - Chongmin Wang
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Peter V Sushko
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Yingge Du
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| |
Collapse
|
7
|
Gu Y, Smith KA, Saha A, De C, Won CJ, Zhang Y, Lin LF, Cheong SW, Haule K, Ozerov M, Birol T, Homes C, Dagotto E, Musfeldt JL. Unconventional insulator-to-metal phase transition in Mn 3Si 2Te 6. Nat Commun 2024; 15:8104. [PMID: 39285185 PMCID: PMC11405877 DOI: 10.1038/s41467-024-52350-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 09/03/2024] [Indexed: 09/22/2024] Open
Abstract
The nodal-line semiconductor Mn3Si2Te6 is generating enormous excitment due to the recent discovery of a field-driven insulator-to-metal transition and associated colossal magnetoresistance as well as evidence for a new type of quantum state involving chiral orbital currents. Strikingly, these qualities persist even in the absence of traditional Jahn-Teller distortions and double-exchange mechanisms, raising questions about exactly how and why magnetoresistance occurs along with conjecture as to the likely signatures of loop currents. Here, we measured the infrared response of Mn3Si2Te6 across the magnetic ordering and field-induced insulator-to-metal transitions in order to explore colossal magnetoresistance in the absence of Jahn-Teller and double-exchange interactions. Rather than a traditional metal with screened phonons, the field-driven insulator-to-metal transition leads to a weakly metallic state with localized carriers. Our spectral data are fit by a percolation model, providing evidence for electronic inhomogeneity and phase separation. Modeling also reveals a frequency-dependent threshold field for carriers contributing to colossal magnetoresistance which we discuss in terms of polaron formation, chiral orbital currents, and short-range spin fluctuations. These findings enhance the understanding of insulator-to-metal transitions in new settings and open the door to the design of unconventional colossal magnetoresistant materials.
Collapse
Affiliation(s)
- Yanhong Gu
- Department of Chemistry, University of Tennessee, Knoxville, TN, 37996, USA
| | - Kevin A Smith
- Department of Chemistry, University of Tennessee, Knoxville, TN, 37996, USA
| | - Amartyajyoti Saha
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN, 55455, USA
- School of Physics and Astronomy, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Chandan De
- Laboratory for Pohang Emergent Materials and Max Plank POSTECH Center for Complex Phase Materials, Department of Physics, Pohang University of Science and Technology, Pohang, 37673, Korea
- Quantum Materials Science Unit, Okinawa Institute of Science and Technology, Okinawa, 904-0495, Japan
| | - Choong-Jae Won
- Laboratory for Pohang Emergent Materials and Max Plank POSTECH Center for Complex Phase Materials, Department of Physics, Pohang University of Science and Technology, Pohang, 37673, Korea
| | - Yang Zhang
- Department of Physics and Astronomy, University of Tennessee, Knoxville, TN, 37996, USA
| | - Ling-Fang Lin
- Department of Physics and Astronomy, University of Tennessee, Knoxville, TN, 37996, USA
| | - Sang-Wook Cheong
- Laboratory for Pohang Emergent Materials and Max Plank POSTECH Center for Complex Phase Materials, Department of Physics, Pohang University of Science and Technology, Pohang, 37673, Korea
- Department of Physics and Astronomy, Rutgers University, Piscataway, NJ, 08854, USA
- Rutgers Center for Emergent Materials, Rutgers University, Piscataway, NJ, 08854, USA
| | - Kristjan Haule
- Center for Materials Theory and Department of Physics and Astronomy, Rutgers University, Piscataway, NJ, 08854, USA
| | - Mykhaylo Ozerov
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL, 32310, USA
| | - Turan Birol
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Christopher Homes
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Elbio Dagotto
- Department of Physics and Astronomy, University of Tennessee, Knoxville, TN, 37996, USA
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Janice L Musfeldt
- Department of Chemistry, University of Tennessee, Knoxville, TN, 37996, USA.
- Department of Physics and Astronomy, University of Tennessee, Knoxville, TN, 37996, USA.
| |
Collapse
|
8
|
Gharsallah H, Jeddi M, Bejar M, Dhahri E, Nouari S. Study of the correlation between the magnetic and electrical properties of the La 0.6Sr 0.4MnO 3 compound. RSC Adv 2024; 14:21692-21705. [PMID: 38979444 PMCID: PMC11229085 DOI: 10.1039/d4ra03528c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 06/25/2024] [Indexed: 07/10/2024] Open
Abstract
In this work, we investigated the relationship between the electrical and magnetic properties of the superparamagnetic (SPM) La0.6Sr0.4MnO3 (S1C0) compound prepared by the sol-gel method. The (S1C0) sample displayed a ferromagnetic metallic (FMM) behavior at low temperatures and a paramagnetic semiconductor (PMSC) behavior at high temperatures. The FMM behavior was described by the Zener Double Exchange (ZDE) polynomial law containing the contributions of the electron-electron (e-e) interactions and the electron-magnon (e-m) scattering. The PMSC behavior was described by the Mott Variable Range Hopping (Mott-VRH) transport model. The semiconductor/metallic transition temperature has been approximated at the blocking temperature. The Thermal Coefficient of Resistivity (TCR), which exhibits a linear variation around ambient temperature, can be used as a calibration curve for thermometry. Thus, our sample can be considered as a good candidate for the detection of infrared radiation used in night vision bolometer technologies.
Collapse
Affiliation(s)
- H Gharsallah
- Laboratoire de Physique Appliquée, Faculté des Sciences, Université de Sfax B. P. 1171 3000 Sfax Tunisia +216 74 676 609 +216 98 333 873
- Institut Préparatoire aux Études d'Ingénieur de Sfax, Université de Sfax BP 1172 3018 Sfax Tunisia
| | - M Jeddi
- Laboratoire de Physique Appliquée, Faculté des Sciences, Université de Sfax B. P. 1171 3000 Sfax Tunisia +216 74 676 609 +216 98 333 873
| | - M Bejar
- Laboratoire de Physique Appliquée, Faculté des Sciences, Université de Sfax B. P. 1171 3000 Sfax Tunisia +216 74 676 609 +216 98 333 873
- Faculté des Sciences de Monastir, Université de Monastir Avenue de l'environnement 5019 Monastir Tunisia
| | - E Dhahri
- Laboratoire de Physique Appliquée, Faculté des Sciences, Université de Sfax B. P. 1171 3000 Sfax Tunisia +216 74 676 609 +216 98 333 873
| | - S Nouari
- Department of Mechanical Engineering, King Fahd University of Petroleum and Minerals Dhahran Saudi Arabia
| |
Collapse
|
9
|
Kurumaji T, Fang S, Ye L, Kitou S, Checkelsky JG. Metamagnetic multiband Hall effect in Ising antiferromagnet ErGa 2. Proc Natl Acad Sci U S A 2024; 121:e2318411121. [PMID: 38805279 PMCID: PMC11161778 DOI: 10.1073/pnas.2318411121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 04/13/2024] [Indexed: 05/30/2024] Open
Abstract
Frustrated rare-earth-based intermetallics provide a promising platform for emergent magnetotransport properties through exchange coupling between conduction electrons and localized rare-earth magnetic moments. Metamagnetism, the abrupt change of magnetization under an external magnetic field, is a signature of first-order magnetic phase transitions; recently, metamagnetic transitions in frustrated rare earth intermetallics have attracted interest for their accompanying nontrivial spin structures (e.g., skyrmions) and associated nonlinear and topological Hall effects (THE). Here, we present metamagnetism-induced Hall anomalies in single-crystalline ErGa2, which recalls features arising from the THE but wherein the strong Ising-type anisotropy of Er moments prohibits noncoplanar spin structures. We show that the observed anomalies are neither due to anomalous Hall effect nor THE; instead, can be accounted for via 4f-5d interactions which produce a band-dependent mobility modulation. This leads to a pronounced multiband Hall response across the magnetization process-a metamagnetic multiband Hall effect that resembles a topological-Hall-like response but without nontrivial origins. The present findings may be of general relevance in itinerant metamagnetic systems regardless of coplanar/noncoplanar nature of spins and are important for the accurate identification of Hall signals due to emergent magnetic fields.
Collapse
Affiliation(s)
- Takashi Kurumaji
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Shiang Fang
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Physics and Astronomy, Center for Materials Theory, Rutgers University, Piscataway, NJ08854
| | - Linda Ye
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Shunsuke Kitou
- Department of Advanced Materials Science, University of Tokyo, Kashiwa277-8561, Japan
| | - Joseph G. Checkelsky
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA02139
| |
Collapse
|
10
|
van de Putte M, Polishchuk D, Gauquelin N, Verbeeck J, Koster G, Huijben M. Control of Magnetic Shape Anisotropy by Nanopillar Dimensionality in Vertically Aligned Nanocomposites. ACS APPLIED ELECTRONIC MATERIALS 2024; 6:3695-3703. [PMID: 38828030 PMCID: PMC11137806 DOI: 10.1021/acsaelm.4c00371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/12/2024] [Accepted: 04/14/2024] [Indexed: 06/05/2024]
Abstract
Perpendicular magnetic anisotropy forms the foundation of the current data storage technology. However, there is an ever-increasing demand for higher density data storage, faster read-write access times, and lower power consuming storage devices, which requires new materials to reduce the switching current, improve bit-to-bit distributions, and improve reliability of writing with scalability below 10 nm. Here, vertically aligned nanocomposites (VANs) composed of self-assembled ferromagnetic La0.7Sr0.3MnO3 (LSMO) nanopillars in a surrounding ZnO matrix are investigated for controllable magnetic anisotropy. Confinement of LSMO into nanopillar dimensions down to 15 nm in such VAN films aligns the magnetic easy axis along the out-of-plane (i.e., perpendicular) direction, in strong contrast to the typical in-plane easy axis for strained, phase pure LSMO thin films. The dominant contribution to the magnetic anisotropy in these (LSMO)0.1(ZnO)0.9 VAN films comes from the shape of the nanopillars, while the epitaxial strain at the vertical LSMO:ZnO interfaces exhibits a negligible effect. These VAN films with their large, out-of-plane remnant magnetization of 2.6 μB/Mn and bit density of 0.77 Tbits/inch2 offer an interesting strategy for enhanced data storage applications.
Collapse
Affiliation(s)
- Marijn
W. van de Putte
- MESA+
Institute for Nanotechnology, University
of Twente, P.O. Box 217, 7500 AE Enschede, Netherlands
| | - Dmytro Polishchuk
- MESA+
Institute for Nanotechnology, University
of Twente, P.O. Box 217, 7500 AE Enschede, Netherlands
- Institute
of Magnetism of the National Academy of Sciences of Ukraine and Ministry
of Education and Science of Ukraine, 03142 Kyiv, Ukraine
| | - Nicolas Gauquelin
- Electron
Microscopy for Materials Science (EMAT), Uweniversity of Antwerp, 2020 Antwerp, Belgium
| | - Johan Verbeeck
- Electron
Microscopy for Materials Science (EMAT), Uweniversity of Antwerp, 2020 Antwerp, Belgium
| | - Gertjan Koster
- MESA+
Institute for Nanotechnology, University
of Twente, P.O. Box 217, 7500 AE Enschede, Netherlands
| | - Mark Huijben
- MESA+
Institute for Nanotechnology, University
of Twente, P.O. Box 217, 7500 AE Enschede, Netherlands
| |
Collapse
|
11
|
Verhage M, van der Minne E, Kiens EM, Korol L, Spiteri RJ, Koster G, Green RJ, Baeumer C, Flipse CFJ. Electronic and Structural Disorder of the Epitaxial La 0.67Sr 0.33MnO 3 Surface. ACS APPLIED MATERIALS & INTERFACES 2024; 16. [PMID: 38619160 PMCID: PMC11056928 DOI: 10.1021/acsami.3c17639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/16/2024]
Abstract
Understanding and tuning epitaxial complex oxide films are crucial in controlling the behavior of devices and catalytic processes. Substrate-induced strain, doping, and layer growth are known to influence the electronic and magnetic properties of the bulk of the film. In this study, we demonstrate a clear distinction between the bulk and surface of thin films of La0.67Sr0.33MnO3 in terms of chemical composition, electronic disorder, and surface morphology. We use a combined experimental approach of X-ray-based characterization methods and scanning probe microscopy. Using X-ray diffraction and resonant X-ray reflectivity, we uncover surface nonstoichiometry in the strontium and lanthanum alongside an accumulation of oxygen vacancies. With scanning tunneling microscopy, we observed an electronic phase separation (EPS) on the surface related to this nonstoichiometry. The EPS is likely driving the temperature-dependent resistivity transition and is a cause of proposed mixed-phase ferromagnetic and paramagnetic states near room temperature in these thin films.
Collapse
Affiliation(s)
- Michael Verhage
- Molecular
Materials and Nanosystems (M2N)—Department of Applied Physics, Eindhoven University of Technology, Eindhoven 5612 AP, Netherlands
| | - Emma van der Minne
- MESA+
Institute for Nanotechnology, Faculty of Science and Technology, University of Twente, Enschede 7522 NB, Netherlands
| | - Ellen M. Kiens
- MESA+
Institute for Nanotechnology, Faculty of Science and Technology, University of Twente, Enschede 7522 NB, Netherlands
| | - Lucas Korol
- Department
of Physics & Engineering Physics, University
of Saskatchewan, Saskatoon S7N 5A2, Canada
| | - Raymond J. Spiteri
- Department
of Computer Science, University of Saskatchewan, Saskatoon S7N 5A2, Canada
| | - Gertjan Koster
- MESA+
Institute for Nanotechnology, Faculty of Science and Technology, University of Twente, Enschede 7522 NB, Netherlands
| | - Robert J. Green
- Department
of Physics & Engineering Physics, University
of Saskatchewan, Saskatoon S7N 5A2, Canada
- Stewart
Blusson Quantum Matter Institute, University
of British Columbia, Vancouver V6T 1Z4, Canada
| | - Christoph Baeumer
- MESA+
Institute for Nanotechnology, Faculty of Science and Technology, University of Twente, Enschede 7522 NB, Netherlands
- Peter
Gruenberg
Institute and JARA-FIT, Forschungszentrum
Juelich GmbH, Juelich 52428, Germany
| | - Cornelis F. J. Flipse
- Molecular
Materials and Nanosystems (M2N)—Department of Applied Physics, Eindhoven University of Technology, Eindhoven 5612 AP, Netherlands
| |
Collapse
|
12
|
Stramaglia F, Panchal G, Nolting F, Vaz CAF. Fully Magnetically Polarized Ultrathin La 0.8Sr 0.2MnO 3 Films. ACS APPLIED MATERIALS & INTERFACES 2024; 16:4138-4149. [PMID: 38216138 PMCID: PMC10811626 DOI: 10.1021/acsami.3c14031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/18/2023] [Accepted: 12/18/2023] [Indexed: 01/14/2024]
Abstract
We report the observation of fully magnetically polarized ultrathin La0.8Sr0.2MnO3 films by using LaMnO3 and La0.45Sr0.55MnO3 buffer layers grown epitaxially on SrTiO3(001) substrates by molecular beam epitaxy. Specifically, we show that La0.8Sr0.2MnO3 films grown on 12-unit-cell LaMnO3 have bulk-like magnetic moments starting from a single unit cell thickness, while for the 15-unit-cell La0.45Sr0.55MnO3 buffer layer, the La0.8Sr0.2MnO3 transitions from an antiferromagnetic state to a fully spin-polarized ferromagnetic state at 4 unit cells. The magnetic results are confirmed by X-ray magnetic circular dichroism, while linear dichroic measurements carried out for the La0.8Sr0.2MnO3/La0.45Sr0.55MnO3 series show the presence of an orbital reorganization at the transition from the antiferromagnetic to ferromagnetic state corresponding to a change from a preferred in-plane orbital hole occupancy, characteristic of the A-type antiferromagnetic state of La0.45Sr0.55MnO3, to preferentially out of plane. We interpret our findings in terms of the different electronic charge transfers between the adjacent layers, confined to the unit cell in the case of insulating LaMnO3 and extended to a few unit cells in the case of conducting La0.45Sr0.55MnO3. Our work demonstrates an approach to growing ultrathin mixed-valence manganite films that are fully magnetically polarized from the single unit cell, paving the way to fully exploring the unique electronic properties of this class of strongly correlated oxide materials.
Collapse
Affiliation(s)
| | - Gyanendra Panchal
- Swiss Light Source, Paul Scherrer Institut, Villigen 5232, Switzerland
| | - Frithjof Nolting
- Swiss Light Source, Paul Scherrer Institut, Villigen 5232, Switzerland
| | - Carlos A. F. Vaz
- Swiss Light Source, Paul Scherrer Institut, Villigen 5232, Switzerland
| |
Collapse
|
13
|
Qi H, Wu W, Chen X. Ferroelectric Resistance Switching in Epitaxial BiFeO 3/La 0.7Sr 0.3MnO 3 Heterostructures. MATERIALS (BASEL, SWITZERLAND) 2023; 16:7198. [PMID: 38005127 PMCID: PMC10673057 DOI: 10.3390/ma16227198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/10/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023]
Abstract
BiFeO3/La0.7Sr0.3MnO3 (BFO/LSMO) epitaxial heterostructures were successfully synthesized by pulsed laser deposition on (001)-oriented SrTiO3 single-crystal substrates with Au top electrodes. Stable bipolar resistive switching characteristics regulated by ferroelectric polarization reversal was observed in the Au/BFO/LSMO heterostructures. The conduction mechanism was revealed to follow the Schottky emission model, and the Schottky barriers in high-resistance and low-resistance states were estimated based on temperature-dependent current-voltage curves. Further, the observed memristive behavior was interpreted via the modulation effect on the depletion region width and the Schottky barrier height caused by ferroelectric polarization reversal, combining with the oxygen vacancies migration near the BFO/LSMO interface.
Collapse
Affiliation(s)
- Hongyan Qi
- Expert Workstation for Terahertz Technology and Advanced Energy Materials and Devices, School of Physics and Mechanical & Electronical Engineering, Hubei University of Education, Wuhan 430205, China;
| | | | - Xinqi Chen
- Expert Workstation for Terahertz Technology and Advanced Energy Materials and Devices, School of Physics and Mechanical & Electronical Engineering, Hubei University of Education, Wuhan 430205, China;
| |
Collapse
|
14
|
Matsumoto K, Kawasoko H, Nishibori E, Fukumura T. Thermally Reentrant Crystalline Phase Change in Perovskite-Derivative Nickelate Enabling Reversible Switching of Room-Temperature Electrical Resistivity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2304978. [PMID: 37661571 PMCID: PMC10625122 DOI: 10.1002/advs.202304978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Indexed: 09/05/2023]
Abstract
Reversible switching of room-temperature electrical resistivity due to crystal-amorphous transition is demonstrated in various chalcogenides for development of non-volatile phase change memory. However, such reversible thermal switching of room-temperature electrical resistivity has not reported in transition metal oxides so far, despite their enormous studies on the electrical conduction like metal-insulator transition and colossal magnetoresistance effect. In this study, a thermally reversible switching of room-temperature electrical resistivity is reported with gigantic variation in a layered nickelate Sr2.5 Bi0.5 NiO5 (1201-SBNO) composed of (Sr1.5 Bi0.5 )O2 rock-salt and SrNiO3 perovskite layers via unique crystalline phase changes between the conducting 1201-SBNO with ordered (O-1201), disordered Sr/Bi arrangements in the (Sr1.5 Bi0.5 )O2 layer (D-1201), and insulating oxygen-deficient double perovskite Sr2 BiNiO4.5 (d-perovskite). The O-1201 is reentrant by high-temperature annealing of ≈1000 °C through crystalline phase change into the D-1201 and d-perovskite, resulting in the thermally reversible switching of room-temperature electrical resistivity with 102 - and 109 -fold variation, respectively. The 1201-SBNO is the first oxide to show the thermally reversible switching of room-temperature electrical resistivity via the crystalline phase changes, providing a new perspective on the electrical conduction for transition metal oxides.
Collapse
Affiliation(s)
- Kota Matsumoto
- Department of ChemistryGraduate School of ScienceTohoku UniversitySendai980‐8578Japan
| | - Hideyuki Kawasoko
- Department of ChemistryGraduate School of ScienceTohoku UniversitySendai980‐8578Japan
- PRESTOJapan Science and Technology AgencySaitama332‐0012Japan
| | - Eiji Nishibori
- Department of Physics and Tsukuba Research Center for Energy Materials ScienceFaculty of Pure and Applied SciencesUniversity of TsukubaTsukuba305‐8571Japan
| | - Tomoteru Fukumura
- Department of ChemistryGraduate School of ScienceTohoku UniversitySendai980‐8578Japan
- Advanced Institute for Materials Research and Core Research ClusterTohoku UniversitySendai980‐8577Japan
- Center for Science and Innovation in SpintronicsTohoku UniversitySendai980‐8577Japan
| |
Collapse
|
15
|
Ueda K, Yu T, Hirayama M, Kurokawa R, Nakajima T, Saito H, Kriener M, Hoshino M, Hashizume D, Arima TH, Arita R, Tokura Y. Colossal negative magnetoresistance in field-induced Weyl semimetal of magnetic half-Heusler compound. Nat Commun 2023; 14:6339. [PMID: 37816724 PMCID: PMC10564756 DOI: 10.1038/s41467-023-41982-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 09/26/2023] [Indexed: 10/12/2023] Open
Abstract
The discovery of topological insulators and semimetals triggered enormous interest in exploring emergent electromagnetic responses in solids. Particular attention has been focused on ternary half-Heusler compounds, whose electronic structure bears analogy to the topological zinc-blende compounds while also including magnetic rare-earth ions coupled to conduction electrons. However, most of the research in this system has been in band-inverted zero-gap semiconductors such as GdPtBi, which still does not fully exhaust the large potential of this material class. Here, we report a less-studied member of half-Heusler compounds, HoAuSn, which we show is a trivial semimetal or narrow-gap semiconductor at zero magnetic field but undergoes a field-induced transition to a Weyl semimetal, with a negative magnetoresistance exceeding four orders of magnitude at low temperatures. The combined study of Shubnikov-de Haas oscillations and first-principles calculation suggests that the exchange field from Ho 4f moments reconstructs the band structure to induce Weyl points which play a key role in the strong suppression of large-angle carrier scattering. Our findings demonstrate the unique mechanism of colossal negative magnetoresistance and provide pathways towards realizing topological electronic states in a large class of magnetic half-Heusler compounds.
Collapse
Affiliation(s)
- Kentaro Ueda
- Department of Applied Physics and Quantum Phase Electronics Center (QPEC), University of Tokyo, Tokyo, 113-8656, Japan.
| | - Tonghua Yu
- Department of Applied Physics and Quantum Phase Electronics Center (QPEC), University of Tokyo, Tokyo, 113-8656, Japan
| | - Motoaki Hirayama
- Department of Applied Physics and Quantum Phase Electronics Center (QPEC), University of Tokyo, Tokyo, 113-8656, Japan
- RIKEN Center for Emergent Matter Science (CEMS), Wako, 351-0198, Japan
| | - Ryo Kurokawa
- Department of Applied Physics and Quantum Phase Electronics Center (QPEC), University of Tokyo, Tokyo, 113-8656, Japan
| | - Taro Nakajima
- RIKEN Center for Emergent Matter Science (CEMS), Wako, 351-0198, Japan
- Institute of Solid State Physics, University of Tokyo, Kashiwa, 277-8561, Japan
| | - Hiraku Saito
- Institute of Solid State Physics, University of Tokyo, Kashiwa, 277-8561, Japan
| | - Markus Kriener
- RIKEN Center for Emergent Matter Science (CEMS), Wako, 351-0198, Japan
| | - Manabu Hoshino
- RIKEN Center for Emergent Matter Science (CEMS), Wako, 351-0198, Japan
| | - Daisuke Hashizume
- RIKEN Center for Emergent Matter Science (CEMS), Wako, 351-0198, Japan
| | - Taka-Hisa Arima
- RIKEN Center for Emergent Matter Science (CEMS), Wako, 351-0198, Japan
- Department of Advanced Material Science, University of Tokyo, Kashiwa, 277-8561, Japan
| | - Ryotaro Arita
- RIKEN Center for Emergent Matter Science (CEMS), Wako, 351-0198, Japan
- Research Center for Advanced Science and Technology, University of Tokyo, Komaba Meguro-ku, Tokyo, 153-8904, Japan
| | - Yoshinori Tokura
- Department of Applied Physics and Quantum Phase Electronics Center (QPEC), University of Tokyo, Tokyo, 113-8656, Japan
- RIKEN Center for Emergent Matter Science (CEMS), Wako, 351-0198, Japan
- Tokyo College, University of Tokyo, Tokyo, 113-8656, Japan
| |
Collapse
|
16
|
Hoang VH, Lee NS, Kim HJ. Strain-induced Mn valence state variation in CaMnO 3-δ/substrate interfaces: electronic reconstruction versus oxygen vacancies. NANOSCALE ADVANCES 2023; 5:3887-3895. [PMID: 37496622 PMCID: PMC10368000 DOI: 10.1039/d3na00206c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/26/2023] [Indexed: 07/28/2023]
Abstract
This study investigates the nanoscale crystalline and electronic structures of the interfaces between CaMnO3-δ and substrates such as SrTiO3 (001) and LaAlO3 (001) by employing advanced transmission electron microscopy and electron energy loss spectroscopy techniques. The objective is to comprehend the influence of different strains on the Mn valence state. Our findings reveal that the Mn valence state remains relatively stable in the region of a weakly tensile-strained interface, whereas it experiences a significant decrease from Mn4+ to Mn2.3+ in the region of a strongly tensile-strained interface. Although this reduction in valence appears to be consistent with the electron reconstruction scenario, the observed increase in the out-of-plane lattice constant at the interface implies the accumulation of oxygen vacancies at the interface. Consequently, the present study offers a comprehensive understanding of the intricate relationships among the Mn valence state, local structure, and formation of oxygen vacancies in the context of two distinct strain cases. This knowledge is essential for tailoring the interface properties and guiding future developments in the field of oxide heterostructures.
Collapse
Affiliation(s)
- Van-Hien Hoang
- Department of Physics, Graduate School, Daegu University Gyeongbuk 38453 Republic of Korea
| | - Nam-Suk Lee
- National Institute for Nanomaterials Technology (NINT), Pohang University of Science and Technology (POSTECH) Pohang 37673 Republic of Korea
| | - Heon-Jung Kim
- Department of Physics, Graduate School, Daegu University Gyeongbuk 38453 Republic of Korea
- Department of Materials-Energy Science and Engineering, College of Engineering, Daegu University Gyeongbuk 38453 Republic of Korea
| |
Collapse
|
17
|
Hernando A, Ruiz-González ML, Diaz O, Alonso JM, Martínez JL, Ayuela A, González-Calbet JM, Cortés-Gil R. Tuning Magnetoconductivity in LaMnO 3 NPs through Cationic Vacancy Control. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13101601. [PMID: 37242018 DOI: 10.3390/nano13101601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 04/11/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023]
Abstract
The inclusion of La-Mn vacancies in LaMnO3 nanoparticles leads to a noticeable change in conductivity behavior. The sample retains its overall insulator characteristic, with a typical thermal activation mechanism at high temperatures, but it presents high magnetoconductivity below 200 K. The activation energy decreases linearly with the square of the reduced magnetization and vanishes when the sample is magnetized at saturation. Therefore, it turns out that electron hopping between Mn3+ and Mn4+ largely contributes to the conductivity below the Curie temperature. The influence of the applied magnetic field on conductivity also supports the hypothesis of hopping contribution, and the electric behavior can be explained as being due to an increase in the hopping probability via spin alignment.
Collapse
Affiliation(s)
- Antonio Hernando
- Departamento de Ingeniería, Universidad Antonio de Nebrija, Pirineos 55, 28940 Madrid, Spain
- Instituto de Magnetismo Aplicado, UCM-ADIF-CSIC, Las Rozas, 28230 Madrid, Spain
- IMDEA de Nanociencia Faraday 9, 28049 Madrid, Spain
- Donostia International Physics Centre, Manuel Lardizabal, Ibilbidea 4, 20018 San Sebastian, Spain
| | - M Luisa Ruiz-González
- Departamento de Química Inorgánica, Facultad de Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Omar Diaz
- Departamento de Ingeniería, Universidad Antonio de Nebrija, Pirineos 55, 28940 Madrid, Spain
- Departamento de Química Inorgánica, Facultad de Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - José M Alonso
- Instituto de Magnetismo Aplicado, UCM-ADIF-CSIC, Las Rozas, 28230 Madrid, Spain
- Instituto de Ciencia de Materiales, CSIC, Sor Juana Inés de la Cruz s/n, 28049 Madrid, Spain
| | - José L Martínez
- Instituto de Ciencia de Materiales, CSIC, Sor Juana Inés de la Cruz s/n, 28049 Madrid, Spain
| | - Andrés Ayuela
- Donostia International Physics Centre, Manuel Lardizabal, Ibilbidea 4, 20018 San Sebastian, Spain
| | - José M González-Calbet
- Departamento de Química Inorgánica, Facultad de Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
- ICTS-ELECMI-Centro Nacional de Microscopia Electrónica, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Raquel Cortés-Gil
- Departamento de Química Inorgánica, Facultad de Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| |
Collapse
|
18
|
Muchharla B, Madhogaria RP, Detellem D, Hung CM, Chanda A, Mudiyanselage NWYAY, Duong AT, Trinh MT, Witanachchi S, Phan MH. Intergranular Spin Dependent Tunneling Dominated Magnetoresistance in Helimagnetic Manganese Phosphide Thin Films. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13091478. [PMID: 37177023 PMCID: PMC10179965 DOI: 10.3390/nano13091478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 04/16/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023]
Abstract
Helical magnets are emerging as a novel class of materials for spintronics and sensor applications; however, research on their charge- and spin-transport properties in a thin film form is less explored. Herein, we report the temperature and magnetic field-dependent charge transport properties of a highly crystalline MnP nanorod thin film over a wide temperature range (2 K < T < 350 K). The MnP nanorod films of ~100 nm thickness were grown on Si substrates at 500 °C using molecular beam epitaxy. The temperature-dependent resistivity ρ(T) data exhibit a metallic behavior (dρ/dT > 0) over the entire measured temperature range. However, large negative magnetoresistance (Δρ/ρ) of up to 12% is observed below ~50 K at which the system enters a stable helical (screw) magnetic state. In this temperature regime, the Δρ(H)/ρ(0) dependence also shows a magnetic field-manipulated CONE + FAN phase coexistence. The observed magnetoresistance is dominantly governed by the intergranular spin dependent tunneling mechanism. These findings pinpoint a correlation between the transport and magnetism in this helimagnetic system.
Collapse
Affiliation(s)
| | | | - Derick Detellem
- Department of Physics, University of South Florida, Tampa, FL 33620, USA
| | - Chang-Ming Hung
- Department of Physics, University of South Florida, Tampa, FL 33620, USA
| | - Amit Chanda
- Department of Physics, University of South Florida, Tampa, FL 33620, USA
| | | | - Anh Tuan Duong
- Faculty of Materials Science and Engineering, Phenikaa University, Hanoi 12116, Vietnam
- Phenikaa Research and Technology Institute (PRATI), A&A Green Phoenix Group, 167 Hoang Ngan, Hanoi 13313, Vietnam
| | - Minh-Tuan Trinh
- Department of Chemistry and Biochemistry, Utah State University, Logan, UT 84322, USA
| | - Sarath Witanachchi
- Department of Physics, University of South Florida, Tampa, FL 33620, USA
| | - Manh-Huong Phan
- Department of Physics, University of South Florida, Tampa, FL 33620, USA
| |
Collapse
|
19
|
Das A, Mrinalini M, Usami T, Pati SP, Taniyama T, Gorige V. Electric and Magnetic Tuning of Gilbert Damping Constant in LSMO/PMN-PT(011) Heterostructure. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2023; 35:285801. [PMID: 37044113 DOI: 10.1088/1361-648x/accc66] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Electric field control of magnetodynamics in magnetoelectric (ME) heterostructures has
been the subject of recent interest due to its fundamental complexity and promising applications in
room temperature devices. The present work focuses on the tuning of magnetodynamic parameters
of epitaxially grown ferromagnetic (FM) La0.7Sr0.3MnO3(LSMO) on a ferro(piezo)electric (FE)
Pb(Mg0.33Nb0.67)O3-PbTiO3(PMN-PT) single crystal substrate. The uniaxial magnetic anisotropy
of LSMO on PMN-PT confirms the ME coupling at the FM/FE heterointerface. The magnitude of
the Gilbert damping constant (α) of this uniaxial LSMO film measured along the hard magnetic axis
is significantly small compared to the easy axis. Furthermore, a marked decrease in the α values of
LSMO at positive and negative electrical remanence of PMN-PT is observed, which is interpreted
in the framework of strain induced spin dependent electronic structure. The present results clearly
encourage the prospects of electric field controlled magnetodynamics, thereby realising the room
temperature spin-wave based device applications with ultra-low power consumption.
Collapse
Affiliation(s)
- Avisek Das
- School of Physics, University of Hyderabad, Gachibowli, Hyderabad 500046, India, Hyderabad, Telangana, 500046, INDIA
| | - Mrinalini Mrinalini
- School of Physics, University of Hyderabad, Gachibowli, Hyderabad 500046, India, Hyderabad, Telangana, 500046, INDIA
| | - Takamasa Usami
- Department of Physics, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan, Nagoya, Aichi, 464-8601, JAPAN
| | - Satya Prakash Pati
- Department of Physics, Nagoya University, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan, Nagoya, 464-8601, JAPAN
| | - Tomoyasu Taniyama
- Department of Physics, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602, JAPAN
| | - Venkataiah Gorige
- School of Physics, University of Hyderabad, University of Hyderabad, Prof C R Rao Road, Gachibowli, Hyderabad, Telangana, 500046, INDIA
| |
Collapse
|
20
|
Žurauskienė N. Engineering of Advanced Materials for High Magnetic Field Sensing: A Review. SENSORS (BASEL, SWITZERLAND) 2023; 23:2939. [PMID: 36991646 PMCID: PMC10059877 DOI: 10.3390/s23062939] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/04/2023] [Accepted: 03/05/2023] [Indexed: 06/19/2023]
Abstract
Advanced scientific and industrial equipment requires magnetic field sensors with decreased dimensions while keeping high sensitivity in a wide range of magnetic fields and temperatures. However, there is a lack of commercial sensors for measurements of high magnetic fields, from ∼1 T up to megagauss. Therefore, the search for advanced materials and the engineering of nanostructures exhibiting extraordinary properties or new phenomena for high magnetic field sensing applications is of great importance. The main focus of this review is the investigation of thin films, nanostructures and two-dimensional (2D) materials exhibiting non-saturating magnetoresistance up to high magnetic fields. Results of the review showed how tuning of the nanostructure and chemical composition of thin polycrystalline ferromagnetic oxide films (manganites) can result in a remarkable colossal magnetoresistance up to megagauss. Moreover, by introducing some structural disorder in different classes of materials, such as non-stoichiometric silver chalcogenides, narrow band gap semiconductors, and 2D materials such as graphene and transition metal dichalcogenides, the possibility to increase the linear magnetoresistive response range up to very strong magnetic fields (50 T and more) and over a large range of temperatures was demonstrated. Approaches for the tailoring of the magnetoresistive properties of these materials and nanostructures for high magnetic field sensor applications were discussed and future perspectives were outlined.
Collapse
Affiliation(s)
- Nerija Žurauskienė
- Department of Functional Materials and Electronics, Center for Physical Sciences and Technology, Sauletekio Ave. 3, 10257 Vilnius, Lithuania;
- Faculty of Electronics, Vilnius Gediminas Technical University, 10223 Vilnius, Lithuania
| |
Collapse
|
21
|
He Z, Qi Z, Yang B, Lu P, Shen J, Dilley NR, Zhang X, Wang H. Controllable Phase Transition Properties in VO 2 Films via Metal-Ion Intercalation. NANO LETTERS 2023; 23:1119-1127. [PMID: 36719402 DOI: 10.1021/acs.nanolett.2c03286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
VO2 has shown great promise for sensors, smart windows, and energy storage devices, because of its drastic semiconductor-to-metal transition (SMT) near 340 K coupled with a structural transition. To push its application toward room-temperature, effective transition temperature (Tc) tuning in VO2 is desired. In this study, tailorable SMT characteristics in VO2 films have been achieved by the electrochemical intercalation of foreign ions (e.g., Li ions). By controlling the relative potential with respect to Li/Li+ during the intercalation process, Tc of VO2 can be effectively and systematically tuned in the window from 326.7 to 340.8 K. The effective Tc tuning could be attributed to the observed strain and lattice distortion and the change of the charge carrier density in VO2 introduced by the intercalation process. This demonstration opens up a new approach in tuning the VO2 phase transition toward room-temperature device applications and enables future real-time phase change property tuning.
Collapse
Affiliation(s)
- Zihao He
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Zhimin Qi
- School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Bo Yang
- School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Ping Lu
- Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Jianan Shen
- School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Neil R Dilley
- Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, United States
| | - Xinghang Zhang
- School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Haiyan Wang
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
22
|
Guo S, Wang B, Wolf D, Lubk A, Xia W, Wang M, Xiao Y, Cui J, Pravarthana D, Dou Z, Leistner K, Li RW, Hühne R, Nielsch K. Hierarchically Engineered Manganite Thin Films with a Wide-Temperature-Range Colossal Magnetoresistance Response. ACS NANO 2023; 17:2517-2528. [PMID: 36651833 DOI: 10.1021/acsnano.2c10200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Colossal magnetoresistance is of great fundamental and technological significance in condensed-matter physics, magnetic memory, and sensing technologies. However, its relatively narrow working temperature window is still a severe obstacle for potential applications due to the nature of the material-inherent phase transition. Here, we realized hierarchical La0.7Sr0.3MnO3 thin films with well-defined (001) and (221) crystallographic orientations by combining substrate modification with conventional thin-film deposition. Microscopic investigations into its magnetic transition through electron holography reveal that the hierarchical microstructure significantly broadens the temperature range of the ferromagnetic-paramagnetic transition, which further widens the response temperature range of the macroscopic colossal magnetoresistance under the scheme of the double-exchange mechanism. Therefore, this work puts forward a method to alter the magnetic transition and thus to extend the magnetoresistance working window by nanoengineering, which might be a promising approach also for other phase-transition-related effects in functional oxides.
Collapse
Affiliation(s)
- Shanshan Guo
- CAS Key Laboratory of Magnetic Materials and Devices, Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, People's Republic of China
- Leibniz IFW Dresden, Dresden 01069, Germany
| | - Baomin Wang
- CAS Key Laboratory of Magnetic Materials and Devices, Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, People's Republic of China
- School of Physical Science and Technology, Ningbo University, Ningbo 315201, People's Republic of China
| | | | - Axel Lubk
- Leibniz IFW Dresden, Dresden 01069, Germany
- Institute of Solid State and Materials Physics, TU Dresden, Dresden 01069, Germany
| | - Weixing Xia
- CAS Key Laboratory of Magnetic Materials and Devices, Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, People's Republic of China
| | - Mingkun Wang
- CAS Key Laboratory of Magnetic Materials and Devices, Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, People's Republic of China
| | - Yao Xiao
- CAS Key Laboratory of Magnetic Materials and Devices, Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, People's Republic of China
| | - Junfeng Cui
- Key Laboratory of Marine Materials and Related Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, People's Republic of China
| | - Dhanapal Pravarthana
- CAS Key Laboratory of Magnetic Materials and Devices, Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, People's Republic of China
| | - Zehua Dou
- Leibniz IFW Dresden, Dresden 01069, Germany
| | - Karin Leistner
- Leibniz IFW Dresden, Dresden 01069, Germany
- Electrochemical Sensors and Energy Storage, Faculty of Natural Sciences, Institute of Chemistry, TU Chemnitz, Chemnitz 09111, Germany
| | - Run-Wei Li
- CAS Key Laboratory of Magnetic Materials and Devices, Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, People's Republic of China
| | | | | |
Collapse
|
23
|
Zdiri F, Alonso JM, Mnasri T, de la Presa P, Morales I, Martínez JL, Ben Younes R, Marin P. Effects of Partial Manganese Substitution by Cobalt on the Physical Properties of Pr 0.7Sr 0.3Mn (1-x)Co xO 3 (0 ≤ x ≤ 0.15) Manganites. MATERIALS (BASEL, SWITZERLAND) 2023; 16:1573. [PMID: 36837202 PMCID: PMC9963721 DOI: 10.3390/ma16041573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/08/2023] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
We have investigated the structural, magnetic, and electrical transport properties of Pr0.7 Sr0.3 Mn(1-x)Cox O3 nanopowders (x = 0, 0.05, 0.10 and 0.15). The Pechini Sol-gel method was used to synthesize these nanopowders. X-ray diffraction at room temperature shows that all the nano powders have an orthorhombic structure of Pnma space group crystallography. The average crystallite size of samples x = 0, 0.05, 0.10, and 0.15 are 33.78 nm, 29 nm, 33.61 nm, and 24.27 nm, respectively. Semi-quantitative chemical analysis by energy dispersive spectroscopy (EDS) confirms the expected stoichiometry of the sample. Magnetic measurements indicate that all samples show a ferromagnetic (FM) to paramagnetic (PM) transition with increasing temperature. The Curie temperature TC gradually decreases (300 K, 270 K, 250 K, and 235 K for x = 0, 0.05, 0.10, and 0.15, respectively) with increasing Co concentrations. The M-H curves for all compounds reveal the PM behavior at 300 K, while the FM behavior characterizes the magnetic hysteresis at low temperature (5 K). The electrical resistivity measurements show that all compounds exhibit metallic behavior at low temperature (T < Tρ) well fitted by the relation ρ = ρ0 + ρ2T2 + ρ4.5T4.5 and semiconductor behavior above Tρ (T > Tρ), for which the electronic transport can be explained by the variable range hopping model and the adiabatic small polaron hopping model. All samples have significant magnetoresistance (MR) values, even at room temperature. This presented research provides an innovative and practical approach to develop materials in several technological areas, such as ultra-high density magnetic recording and magneto resistive sensors.
Collapse
Affiliation(s)
- Feriel Zdiri
- Laboratory of Technology, Energy and Innovative Materials, Department of Physics, Faculty of Sciences of Gafsa, Gafsa 2112, Tunisia
| | - José María Alonso
- Instituto de Magnetismo Aplicado, Universidad Complutense de Madrid, A6 22,500 Km, Las Rozas, 28230 Madrid, Spain
- Instituto de Ciencia de Materiales, CSIC, Sor Juana Inés de la Cruz s/n, 28049 Madrid, Spain
| | - Taoufik Mnasri
- Laboratory of Technology, Energy and Innovative Materials, Department of Physics, Faculty of Sciences of Gafsa, Gafsa 2112, Tunisia
| | - Patricia de la Presa
- Instituto de Magnetismo Aplicado, Universidad Complutense de Madrid, A6 22,500 Km, Las Rozas, 28230 Madrid, Spain
- Departamento de Física de Materiales, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Irene Morales
- Instituto de Magnetismo Aplicado, Universidad Complutense de Madrid, A6 22,500 Km, Las Rozas, 28230 Madrid, Spain
- Departamento de Física de Materiales, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - José Luis Martínez
- Instituto de Ciencia de Materiales, CSIC, Sor Juana Inés de la Cruz s/n, 28049 Madrid, Spain
| | - Rached Ben Younes
- Laboratory of Technology, Energy and Innovative Materials, Department of Physics, Faculty of Sciences of Gafsa, Gafsa 2112, Tunisia
| | - Pilar Marin
- Instituto de Magnetismo Aplicado, Universidad Complutense de Madrid, A6 22,500 Km, Las Rozas, 28230 Madrid, Spain
- Departamento de Física de Materiales, Universidad Complutense de Madrid, 28040 Madrid, Spain
| |
Collapse
|
24
|
Nonstoichiometric Strontium Ferromolybdate as an Electrode Material for Solid Oxide Fuel Cells. INORGANICS 2022. [DOI: 10.3390/inorganics10120230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
This review is devoted to the application of Sr2FeMoO6−δ (SFM) and Sr2F1.5Mo0.5O6−δ (SF1.5M) in La1−xSrxGa1−yMgyO3−δ (LSGM)-based SOFCs. We consider the most relevant physical properties (crystal structure, thermodynamic stability, iron and molybdenum valence states, oxygen vacancy formation and oxygen non-stoichiometry, electrical conductivity), A- and B-site ion substitution, and the performance of SF1+xM SOFCs (polarization resistance, operation with hydrogen, operation with hydrocarbons and methanol). Their properties can be tailored to a particular application by the substitution of different metal cations into their lattices. SF1+xM materials are excellent catalysts in hydrocarbon oxidation and can prevent carbon deposition due to the ability to exchange lattice oxygen with the gaseous phase. Moreover, they are sulfur tolerant. This opens the way to direct hydrocarbon-fueled SOFCs, eliminating the need for external fuel reforming and sulfur removal components. Such SOFCs can be greatly simplified and operate with much higher overall efficiency, thus contributing to the solution to the lack of energy problem in our modern world.
Collapse
|
25
|
Effect of Sintering Temperature and Polarization on the Dielectric and Electrical Properties of La0.9Sr0.1MnO3 Manganite in Alternating Current. MATERIALS 2022; 15:ma15103683. [PMID: 35629706 PMCID: PMC9147359 DOI: 10.3390/ma15103683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/27/2022] [Accepted: 05/13/2022] [Indexed: 12/20/2022]
Abstract
The electrical characterization ofa La0.9Sr0.1MnO3 compound sintered at 800, 1000 and 1200 °C was investigated by means of the impedance-spectroscopy technique. As the results, the experimental conductivity spectra were explained in terms of the power law. The AC-conductivity study reveals the contributions of different conduction mechanisms. Indeed, the variation in the frequency exponents (‘s1’ and ‘s2’) as a function of the temperature confirms the thermal activation of the conduction process in the system. It proves, equally, that the transport properties are governed by the non-small-polaron-tunneling and the correlated-barrier-hopping mechanisms. Moreover, the values of the frequency exponents increase under the sintering-temperature (TS) effect. Such an evolution may be explained energetically. The jump relaxation model was used to explain the electrical conductivity in the dispersive region, as well as the frequency-exponent values by ionic conductivity. Under electrical polarization with applied DC biases of Vp = 0.1 and 2 V at room temperature, the results show the significant enhancement of the electrical conductivity. In addition, the dielectric study reveals the evident presence of dielectric relaxation. Under the sintering-temperature effect, the dielectric constant increases enormously. Indeed, the temperature dependence of the dielectric constant is well fitted by the modified Curie–Weiss law. Thus, the deduced values of the parameter (γ) confirm the relaxor character and prove the diffuse phase transition of our material. Of note is the high dielectric-permittivity magnitude, which indicates that the material is promising for microelectronic devices.
Collapse
|
26
|
Chaluvadi SK, Polewczyk V, Petrov AY, Vinai G, Braglia L, Diez JM, Pierron V, Perna P, Mechin L, Torelli P, Orgiani P. Electronic Properties of Fully Strained La 1-x Sr x MnO 3 Thin Films Grown by Molecular Beam Epitaxy (0.15 ≤ x ≤ 0.45). ACS OMEGA 2022; 7:14571-14578. [PMID: 35557663 PMCID: PMC9088787 DOI: 10.1021/acsomega.1c06529] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 02/04/2022] [Indexed: 06/15/2023]
Abstract
The structural, electronic, and magnetic properties of Sr-hole-doped epitaxial La1-x Sr x MnO3 (0.15 ≤ x ≤ 0.45) thin films deposited using the molecular beam epitaxy technique on 4° vicinal STO (001) substrates are probed by the combination of X-ray diffraction and various synchrotron-based spectroscopy techniques. The structural characterizations evidence a significant shift in the LSMO (002) peak to the higher diffraction angles owing to the increase in Sr doping concentrations in thin films. The nature of the LSMO Mn mixed-valence state was estimated from X-ray photoemission spectroscopy together with the relative changes in the Mn L2,3 edges observed in X-ray absorption spectroscopy (XAS), both strongly affected by doping. CTM4XAS simulations at the XAS Mn L2,3 edges reveal the combination of epitaxial strain, and different MnO6 crystal field splitting give rise to a peak at ∼641 eV. The observed changes in the occupancy of the eg and the t2g orbitals as well as their binding energy positions toward the Fermi level with hole doping are discussed. The room-temperature magnetic properties were probed at the end by circular dichroism.
Collapse
Affiliation(s)
- Sandeep Kumar Chaluvadi
- Istituto
Officina dei Materiali (IOM)−CNR, Laboratorio TASC, Area Science Park, S.S.14, km 163.5, I-34149 Trieste, Italy
| | - Vincent Polewczyk
- Istituto
Officina dei Materiali (IOM)−CNR, Laboratorio TASC, Area Science Park, S.S.14, km 163.5, I-34149 Trieste, Italy
| | - Aleksandr Yu Petrov
- Istituto
Officina dei Materiali (IOM)−CNR, Laboratorio TASC, Area Science Park, S.S.14, km 163.5, I-34149 Trieste, Italy
| | - Giovanni Vinai
- Istituto
Officina dei Materiali (IOM)−CNR, Laboratorio TASC, Area Science Park, S.S.14, km 163.5, I-34149 Trieste, Italy
| | - Luca Braglia
- Istituto
Officina dei Materiali (IOM)−CNR, Laboratorio TASC, Area Science Park, S.S.14, km 163.5, I-34149 Trieste, Italy
| | | | - Victor Pierron
- Normandie
Univ, UNICAEN, ENSICAEN, CNRS, GREYC (UMR 6072), 14000 Caen, France
| | - Paolo Perna
- IMDEA-Nanociencia, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Laurence Mechin
- Normandie
Univ, UNICAEN, ENSICAEN, CNRS, GREYC (UMR 6072), 14000 Caen, France
| | - Piero Torelli
- Istituto
Officina dei Materiali (IOM)−CNR, Laboratorio TASC, Area Science Park, S.S.14, km 163.5, I-34149 Trieste, Italy
| | - Pasquale Orgiani
- Istituto
Officina dei Materiali (IOM)−CNR, Laboratorio TASC, Area Science Park, S.S.14, km 163.5, I-34149 Trieste, Italy
| |
Collapse
|
27
|
Strain Engineering: A Pathway for Tunable Functionalities of Perovskite Metal Oxide Films. NANOMATERIALS 2022; 12:nano12050835. [PMID: 35269323 PMCID: PMC8912649 DOI: 10.3390/nano12050835] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/14/2022] [Accepted: 02/24/2022] [Indexed: 11/16/2022]
Abstract
Perovskite offers a framework that boasts various functionalities and physical properties of interest such as ferroelectricity, magnetic orderings, multiferroicity, superconductivity, semiconductor, and optoelectronic properties owing to their rich compositional diversity. These properties are also uniquely tied to their crystal distortion which is directly affected by lattice strain. Therefore, many important properties of perovskite can be further tuned through strain engineering which can be accomplished by chemical doping or simply element substitution, interface engineering in epitaxial thin films, and special architectures such as nanocomposites. In this review, we focus on and highlight the structure–property relationships of perovskite metal oxide films and elucidate the principles to manipulate the functionalities through different modalities of strain engineering approaches.
Collapse
|
28
|
Dhahri A, Laifi J, Gouadria S, Elhadi M, Dhahri E, Hlil EK. Influence of Ni content on structural, magnetocaloric and electrical properties in manganite La 0.6Ba 0.2Sr 0.2Mn 1-x Ni x O 3 (0 ≤ x ≤ 0.1) type perovskites. RSC Adv 2022; 12:3935-3947. [PMID: 35425461 PMCID: PMC8981039 DOI: 10.1039/d1ra07059b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 01/12/2022] [Indexed: 11/21/2022] Open
Abstract
We present a detailed study on the physical properties of La0.6Ba0.2Sr0.2Mn1-x Ni x O3 samples (x = 0.00, 0.05 and 0.1). The ceramics were fabricated using the sol-gel route. Structural refinement, employing the Rietveld method, disclosed a rhombohedral R3̄c phase. The magnetization vs. temperature plots show a paramagnetic-ferromagnetic (PM-FM) transition phase at the T C (Curie temperature), which decreases from 354 K to 301 K. From the Arrott diagrams M 2 vs. μ 0 H/M, we can conclude the phase transition is of the second order. Based on measurements of the isothermal magnetization around T C, the magnetocaloric effects (MCEs) have been calculated. The entropy maximum change (-ΔS M) values are 7.40 J kg-1 K-1, 5.6 J kg-1 K-1 and 4.48 J kg-1 K-1, whereas the relative cooling power (RCP) values are 232 J kg-1, 230 J kg-1 and 156 J kg-1 for x = 0.00, 0.05 and 0.10, respectively, under an external field (μ 0 H) of 5 T. Through these results, the La0.6Ba0.2Sr0.2Mn1-x Ni x O3 (0 ≤ x ≤ 0.1) samples can be suggested for use in magnetic refrigeration technology above room temperature. The electrical resistivity (ρ) vs. temperature plots exhibit a transition from metallic behavior to semiconductor behavior in the vicinity of T M-SC. The adiabatic small polaron hopping (ASPH) model is applied in the PM-semiconducting part (T > T MS). Throughout the temperature range, ρ is adjusted by the percolation model. This model is based on the phase segregation of FM-metal clusters and PM-insulating regions.
Collapse
Affiliation(s)
- Ahmed Dhahri
- Laboratoire de Physique Appliquée, Faculté des Sciences de Sfax, Université de Sfax BP 1171 3000 Tunisia
- Department of Physics, College of Science and Humanities - Dawadmi, Shaqra University Riyadh Saudi Arabia
| | - J Laifi
- Physics Department, College of Science, Jouf University P.O. Box: 2014 Sakaka Saudi Arabia
| | - Soumaya Gouadria
- Department of Physics, College of Science, Princess Nourah Bint Abdulrahman University P.O. Box 84428 Riyadh 11671 Saudi Arabia
| | - M Elhadi
- Department of Physics, College of Science and Humanities - Dawadmi, Shaqra University Riyadh Saudi Arabia
| | - E Dhahri
- Laboratoire de Physique Appliquée, Faculté des Sciences de Sfax, Université de Sfax BP 1171 3000 Tunisia
| | - E K Hlil
- Univ. Grenoble Alpes, CNRS, Grenoble INP, Institut Néel 38000 Grenoble France
| |
Collapse
|
29
|
Hou W, Yao Y, Li Y, Peng B, Shi K, Zhou Z, Pan J, Liu M, Hu J. Linearly shifting ferromagnetic resonance response of La 0.7Sr 0.3MnO 3 thin film for body temperature sensors. FRONTIERS OF MATERIALS SCIENCE 2022; 16:220589. [PMID: 35228892 PMCID: PMC8866917 DOI: 10.1007/s11706-022-0589-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 12/29/2021] [Indexed: 05/17/2023]
Abstract
Human body temperature not only reflects vital signs, but also affects the state of various organs through blood circulation, and even affects lifespan. Here a wireless body temperature detection scheme was presented that the temperature was extracted by investigating the out-of-plane (OP) ferromagnetic resonance (FMR) field of 10.2 nm thick La0.7Sr0.3MnO3 (LSMO) film using electron paramagnetic resonance (EPR) technique. Within the range of 34-42 °C, the OP FMR field changes linearly with the increasing or decreasing temperature, and this variation comes from the linear responses of magnetization to the fluctuant temperature. Using this method, a tiny temperature change (< 0.1 °C) of organisms can be detected accurately and sensitively, which shows great potential in body temperature monitoring for humans and mammals.
Collapse
Affiliation(s)
- Weixiao Hou
- Laboratory of Magnetic and Electric Functional Materials and the Applications, The Key Laboratory of Shanxi Province, College of Material Science and Technology, Taiyuan University of Science and Technology, Taiyuan, 030024 China
| | - Yufei Yao
- Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, School of Electronic and Information Engineering State Key Laboratory for Mechanical Behavior of Materials and International Joint Laboratory for Micro/Nano Manufacture and Measurement Technology, Xi’an Jiaotong University, Xi’an, 710049 China
| | - Yaojin Li
- Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, School of Electronic and Information Engineering State Key Laboratory for Mechanical Behavior of Materials and International Joint Laboratory for Micro/Nano Manufacture and Measurement Technology, Xi’an Jiaotong University, Xi’an, 710049 China
| | - Bin Peng
- Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, School of Electronic and Information Engineering State Key Laboratory for Mechanical Behavior of Materials and International Joint Laboratory for Micro/Nano Manufacture and Measurement Technology, Xi’an Jiaotong University, Xi’an, 710049 China
| | - Keqing Shi
- Department of Intensive Care, Precision Medicine Center Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 China
| | - Ziyao Zhou
- Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, School of Electronic and Information Engineering State Key Laboratory for Mechanical Behavior of Materials and International Joint Laboratory for Micro/Nano Manufacture and Measurement Technology, Xi’an Jiaotong University, Xi’an, 710049 China
| | - Jingye Pan
- Department of Intensive Care, Precision Medicine Center Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 China
| | - Ming Liu
- Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, School of Electronic and Information Engineering State Key Laboratory for Mechanical Behavior of Materials and International Joint Laboratory for Micro/Nano Manufacture and Measurement Technology, Xi’an Jiaotong University, Xi’an, 710049 China
| | - Jifan Hu
- Laboratory of Magnetic and Electric Functional Materials and the Applications, The Key Laboratory of Shanxi Province, College of Material Science and Technology, Taiyuan University of Science and Technology, Taiyuan, 030024 China
| |
Collapse
|
30
|
Ye X, Wang X, Liu Z, Zhou B, Zhou L, Deng H, Long Y. Emergent physical properties of perovskite-type oxides prepared under high pressure. Dalton Trans 2021; 51:1745-1753. [PMID: 34935820 DOI: 10.1039/d1dt03551g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The perovskite ABO3 family demonstrates a wide variety of structural evolutions and physical properties and is arguably the most important family of complex oxides. Chemical substitutions of the A- and/or B-site and modulation of oxygen content can effectively regulate their electronic behaviors and multifunctional performances. In general, the BO6 octahedron represents the main unit controlling the electronic and magnetic properties while the A-site ion is often not involved. However, a series of unconventional perovskite materials have been recently synthesized under high pressure, such as the s-d level controlled Pb-based perovskite family and quadruple perovskite oxides containing transition metal ions at the A-site. In these compounds, the intersite A-B correlations play an important role in electronic behaviors and further induce many emergent physical properties.
Collapse
Affiliation(s)
- Xubin Ye
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.,School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao Wang
- Max Planck Institute for Chemical Physics of Solids, Nothnitzer Straße 40, 01187 Dresden, Germany
| | - Zhehong Liu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.,School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bowen Zhou
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.,School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Long Zhou
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.,School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongshan Deng
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Youwen Long
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.,School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.,Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| |
Collapse
|
31
|
Greculeasa SG, Stanciu AE, Leca A, Kuncser A, Hrib L, Chirila C, Pasuk I, Kuncser V. Influence of Thickness on the Magnetic and Magnetotransport Properties of Epitaxial La 0.7Sr 0.3MnO 3 Films Deposited on STO (0 0 1). NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:3389. [PMID: 34947736 PMCID: PMC8706966 DOI: 10.3390/nano11123389] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/29/2021] [Accepted: 12/11/2021] [Indexed: 11/30/2022]
Abstract
Epitaxial La0.7Sr0.3MnO3 films with different thicknesses (9-90 nm) were deposited on SrTiO3 (0 0 1) substrates by pulsed laser deposition. The films have been investigated with respect to morpho-structural, magnetic, and magneto-transport properties, which have been proven to be thickness dependent. Magnetic contributions with different switching mechanisms were evidenced, depending on the perovskite film thickness. The Curie temperature increases with the film thickness. In addition, colossal magnetoresistance effects of up to 29% above room temperature were evidenced and discussed in respect to the magnetic behavior and film thickness.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Victor Kuncser
- National Institute of Materials Physics, Atomistilor 405A, 077125 Magurele, Romania; (S.G.G.); (A.-E.S.); (A.L.); (A.K.); (L.H.); (C.C.); (I.P.)
| |
Collapse
|
32
|
Rajak P, Knez D, Chaluvadi SK, Orgiani P, Rossi G, Méchin L, Ciancio R. Evidence of Mn-Ion Structural Displacements Correlated with Oxygen Vacancies in La 0.7Sr 0.3MnO 3 Interfacial Dead Layers. ACS APPLIED MATERIALS & INTERFACES 2021; 13:55666-55675. [PMID: 34758616 DOI: 10.1021/acsami.1c15599] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The properties of half-metallic manganite thin films depend on the composition and structure in the atomic scale, and consequently, their potential functional behavior can only be based on fine structure characterization. By combining advanced transmission electron microscopy, electron energy loss spectroscopy, density functional theory calculations, and multislice image simulations, we obtained evidence of a 7 nm-thick interface layer in La0.7Sr0.3MnO3 (LSMO) thin films, compatible with the formation of well-known dead layers in manganites, with an elongated out-of-plane lattice parameter and structural and electronic properties well distinguished from the bulk of the film. We observed, for the first time, a structural shift of Mn ions coupled with oxygen vacancies and a reduced Mn valence state within such layer. Understanding the correlation between oxygen vacancies, the Mn oxidation state, and Mn-ion displacements is a prerequisite to engineer the magnetotransport properties of LSMO thin films.
Collapse
Affiliation(s)
- Piu Rajak
- Istituto Officina dei Materiali-CNR, Area Science Park, S.S.14, km 163.5, 34149 Trieste, Italy
| | - Daniel Knez
- Institute of Electron Microscopy and Nanoanalysis, Graz University of Technology, Steyrergasse 17, 8010 Graz, Austria
| | - Sandeep Kumar Chaluvadi
- Istituto Officina dei Materiali-CNR, Area Science Park, S.S.14, km 163.5, 34149 Trieste, Italy
| | - Pasquale Orgiani
- Istituto Officina dei Materiali-CNR, Area Science Park, S.S.14, km 163.5, 34149 Trieste, Italy
- CNR-SPIN, UOS Salerno, 84084 Fisciano, Salerno, Italy
| | - Giorgio Rossi
- Istituto Officina dei Materiali-CNR, Area Science Park, S.S.14, km 163.5, 34149 Trieste, Italy
- Dipartimento di Fisica, Università degli Studi di Milano, Via Celoria 16, 20133 Milano, Italy
| | - Laurence Méchin
- Normandie University, UNICAEN, ENSICAEN, CNRS, GREYC, 14000 Caen, France
| | - Regina Ciancio
- Istituto Officina dei Materiali-CNR, Area Science Park, S.S.14, km 163.5, 34149 Trieste, Italy
| |
Collapse
|
33
|
Huang J, Zhang D, Liu J, Dou H, Wang H. Double-Exchange Bias Modulation under Horizontal and Perpendicular Field Directions by 3D Nanocomposite Design. ACS APPLIED MATERIALS & INTERFACES 2021; 13:50141-50148. [PMID: 34644494 DOI: 10.1021/acsami.1c14699] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Exchange bias (EB) presents the interfacial coupling between ferromagnetic (FM) and antiferromagnetic (AFM) phases, which could be applied for high-density data storage and magnetic recording. In thin films, the EB effect could be realized in either a FM/AFM multilayer structure or a FM/AFM vertically aligned nanocomposite (VAN) form, which allows the interfacial coupling tuning along the horizontal or perpendicular directions, respectively. Here, to combine the schemes of multilayer and VAN structures, a new 3D nanocomposite has been designed, which is La0.7Sr0.3MnO3 (LSMO)/NiO VAN layers with inserted LSMO or NiO layers. Such a 3D nanocomposite structure provides a great platform to tailor the EB effect along both horizontal and perpendicular directions. Specifically, the sample with a NiO interlayer exhibits the highest EB field (HEB) of 350 Oe and 475 Oe under in-plane and out-of-plane field, respectively. Furthermore, the HEB value and Curie temperature (Tc) can be tuned by different 3D nanostructures. This work demonstrates the double EB modulation with the designed 3D nanostructures as a new route toward advanced magnetic data storage and spintronic devices.
Collapse
Affiliation(s)
- Jijie Huang
- School of Materials, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Di Zhang
- School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Juncheng Liu
- School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Hongyi Dou
- School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Haiyan Wang
- School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
34
|
Structural, magnetic, magnetocaloric properties and critical behavior of La0.6Bi0.1Sr0.3−xCaxMn0.9Cu0.1O3 manganites (with x = 0.1 and 0.15). INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108824] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
35
|
Zhang Y, Liu J, Dong Y, Wu S, Zhang J, Wang J, Lu J, Rückriegel A, Wang H, Duine R, Yu H, Luo Z, Shen K, Zhang J. Strain-Driven Dzyaloshinskii-Moriya Interaction for Room-Temperature Magnetic Skyrmions. PHYSICAL REVIEW LETTERS 2021; 127:117204. [PMID: 34558947 DOI: 10.1103/physrevlett.127.117204] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 06/13/2023]
Abstract
Dzyaloshinskii-Moriya interaction in magnets, which is usually derived from inversion symmetry breaking at interfaces or in noncentrosymmetric crystals, plays a vital role in chiral spintronics. Here we report that an emergent Dzyaloshinskii-Moriya interaction can be achieved in a centrosymmetric material, La_{0.67}Sr_{0.33}MnO_{3}, by a graded strain. This strain-driven Dzyaloshinskii-Moriya interaction not only exhibits distinctive two coexisting nonreciprocities of spin-wave propagation in one system, but also brings about a robust room-temperature magnetic skyrmion lattice as well as a spiral lattice at zero magnetic field. Our results demonstrate the feasibility of investigating chiral spintronics in a large category of centrosymmetric magnetic materials.
Collapse
Affiliation(s)
- Yuelin Zhang
- Department of Physics, Beijing Normal University, Beijing 100875, China
| | - Jie Liu
- Department of Physics, Beijing Normal University, Beijing 100875, China
- The Center for Advanced Quantum Studies, Beijing Normal University, Beijing 100191, China
| | - Yongqi Dong
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Shizhe Wu
- Department of Physics, Beijing Normal University, Beijing 100875, China
| | - Jianyu Zhang
- Fert Beijing Institute, MIIT Key Laboratory of Spintronics, School of Integrated Circuit Science and Engineering, Beihang University, Beijing 100191, China
| | - Jie Wang
- Department of Physics, Beijing Normal University, Beijing 100875, China
| | - Jingdi Lu
- Department of Physics, Beijing Normal University, Beijing 100875, China
| | - Andreas Rückriegel
- Institute for Theoretical Physics and Center for Extreme Matter and Emergent Phenomena, Utrecht University, Leuvenlaan 4, 3584 CE Utrecht, Netherlands
- Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, Netherlands
| | - Hanchen Wang
- Fert Beijing Institute, MIIT Key Laboratory of Spintronics, School of Integrated Circuit Science and Engineering, Beihang University, Beijing 100191, China
| | - Rembert Duine
- Institute for Theoretical Physics and Center for Extreme Matter and Emergent Phenomena, Utrecht University, Leuvenlaan 4, 3584 CE Utrecht, Netherlands
- Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, Netherlands
| | - Haiming Yu
- Fert Beijing Institute, MIIT Key Laboratory of Spintronics, School of Integrated Circuit Science and Engineering, Beihang University, Beijing 100191, China
| | - Zhenlin Luo
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Ka Shen
- Department of Physics, Beijing Normal University, Beijing 100875, China
- The Center for Advanced Quantum Studies, Beijing Normal University, Beijing 100191, China
| | - Jinxing Zhang
- Department of Physics, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
36
|
Martins PM, Lima AC, Ribeiro S, Lanceros-Mendez S, Martins P. Magnetic Nanoparticles for Biomedical Applications: From the Soul of the Earth to the Deep History of Ourselves. ACS APPLIED BIO MATERIALS 2021; 4:5839-5870. [PMID: 35006927 DOI: 10.1021/acsabm.1c00440] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Precisely engineered magnetic nanoparticles (MNPs) have been widely explored for applications including theragnostic platforms, drug delivery systems, biomaterial/device coatings, tissue engineering scaffolds, performance-enhanced therapeutic alternatives, and even in SARS-CoV-2 detection strips. Such popularity is due to their unique, challenging, and tailorable physicochemical/magnetic properties. Given the wide biomedical-related potential applications of MNPs, significant achievements have been reached and published (exponentially) in the last five years, both in synthesis and application tailoring. Within this review, and in addition to essential works in this field, we have focused on the latest representative reports regarding the biomedical use of MNPs including characteristics related to their oriented synthesis, tailored geometry, and designed multibiofunctionality. Further, actual trends, needs, and limitations of magnetic-based nanostructures for biomedical applications will also be discussed.
Collapse
Affiliation(s)
- Pedro M Martins
- Centre of Molecular and Environmental Biology (CBMA), Universidade do Minho, Campus de Gualtar, Braga 4710-057, Portugal.,IB-S - Institute for Research and Innovation on Bio-Sustainability, University of Minho, Braga 4710-057, Portugal
| | - Ana C Lima
- Centre/Department of Physics, University of Minho, Campus de Gualtar, Braga 4710-057, Portugal
| | - Sylvie Ribeiro
- Centre of Molecular and Environmental Biology (CBMA), Universidade do Minho, Campus de Gualtar, Braga 4710-057, Portugal.,Centre/Department of Physics, University of Minho, Campus de Gualtar, Braga 4710-057, Portugal
| | - Senentxu Lanceros-Mendez
- 3BCMaterials, Basque Centre for Materials and Applications, UPV/EHU Science Park, Leioa 48940, Spain.,IKERBASQUE, Basque Foundation for Science, Bilbao, 48009, Spain
| | - Pedro Martins
- IB-S - Institute for Research and Innovation on Bio-Sustainability, University of Minho, Braga 4710-057, Portugal.,Centre/Department of Physics, University of Minho, Campus de Gualtar, Braga 4710-057, Portugal
| |
Collapse
|
37
|
Paudel B, Kang KT, Sharma Y, Nakotte H, Yarotski D, Chen A. Symmetry mismatch controlled ferroelastic domain ordering and the functional properties of manganite films on cubic miscut substrates. Phys Chem Chem Phys 2021; 23:16623-16628. [PMID: 34319307 DOI: 10.1039/d1cp01957k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We have studied the magnetotransport properties and strain release mechanisms in ferroelastic La0.9Sr0.1MnO3 (LSMO) epitaxial thin films on SrTiO3 (STO)(001) substrates with different miscut angles. The substrate miscut angle plays a critical role in releasing shear strain and has a huge impact on the properties of the films. The strain relaxes by monoclinic distortion for films on low miscut substrates and for higher miscut substrates, the strain relaxation causes the formation of periodic twin domains with larger periodicities. We observe that the Curie temperature (TC) decreases systematically, and magnetoresistance (MR) increases with increasing the miscut angle. Such changes in the magnetic and transport properties could be due to the increased density of phase boundaries (PBs) with the increase of miscut angle. This work provides a way to tailor film microstructures and subsequent functional properties of other complex oxide films on miscut substrates with symmetry mismatch.
Collapse
Affiliation(s)
- Binod Paudel
- Center for Integrated Nanotechnologies (CINT), Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA.
| | | | | | | | | | | |
Collapse
|
38
|
Magnetism in quasi-two-dimensional tri-layer La 2.1Sr 1.9Mn 3O 10 manganite. Sci Rep 2021; 11:14117. [PMID: 34238952 PMCID: PMC8266891 DOI: 10.1038/s41598-021-93290-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 06/16/2021] [Indexed: 11/24/2022] Open
Abstract
The tri-layer La\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$_{3-3x}$$\end{document}3-3xSr\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$_{1+3x}$$\end{document}1+3xMn\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$_{3}$$\end{document}3O\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$_{10}$$\end{document}10 manganites of Ruddlesden–Popper (RP) series are naturally arranged layered structure with alternate stacking of ω-MnO\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$_2$$\end{document}2 (ω = 3) planes and rock-salt type block layers (La, Sr)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$_2$$\end{document}2O\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$_2$$\end{document}2 along c-axis. The dimensionality of the RP series manganites depends on the number of perovskite layers and significantly affects the magnetic and transport properties of the system. Generally, when a ferromagnetic material undergoes a magnetic phase transition from ferromagnetic to paramagnetic state, the magnetic moment of the system becomes zero above the transition temperature (T\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ _{C} $$\end{document}C). However, the tri-layer La\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$_{2.1}$$\end{document}2.1Sr\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$_{1.9}$$\end{document}1.9Mn\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$_{3}$$\end{document}3O\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$_{10}$$\end{document}10 shows non-zero magnetic moment above T\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ _{C} $$\end{document}C and also another transition at higher temperature T\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ ^{*} \approx $$\end{document}∗≈ 263 K. The non-zero magnetization above T\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ _{C} $$\end{document}C emphasizes that the phase transition in tri-layer La\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$_{2.1}$$\end{document}2.1Sr\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$_{1.9}$$\end{document}1.9Mn\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$_{3}$$\end{document}3O\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$_{10}$$\end{document}10 not a ferromagnetic to paramagnetic state. We show here the non-zero magnetic moment above T\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ _{C} $$\end{document}C is due to the quasi-two-dimensional nature of the tri-layer La\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$_{2.1}$$\end{document}2.1Sr\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$_{1.9}$$\end{document}1.9Mn\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$_{3}$$\end{document}3O\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$_{10}$$\end{document}10 manganite. The scaling of the magnetic entropy change confirms the second-order phase transition and the critical behavior of phase transition has been studied around T\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$_C$$\end{document}C to understand the low dimensional magnetism in tri-layer La\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$_{2.1}$$\end{document}2.1Sr\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$_{1.9}$$\end{document}1.9Mn\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$_{3}$$\end{document}3O\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$_{10}$$\end{document}10. We have obtained the critical exponents for tri-layer La\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$_{2.1}$$\end{document}2.1Sr\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$_{1.9}$$\end{document}1.9Mn\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$_{3}$$\end{document}3O\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$_{10}$$\end{document}10, which belong to the short-range two-dimensional (2D)-Ising universality class. The low dimensional magnetism in tri-layer La\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$_{2.1}$$\end{document}2.1Sr\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$_{1.9}$$\end{document}1.9Mn\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$_{3}$$\end{document}3O\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$_{10}$$\end{document}10 manganite is also explained with the help of renormalization group theoretical approach for short-range 2D-Ising systems. It has been shown that the layered structure of tri-layer La\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$_{2.1}$$\end{document}2.1Sr\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$_{1.9}$$\end{document}1.9Mn\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$_{3}$$\end{document}3O\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$_{10}$$\end{document}10 results in three different types of interactions intra-planer (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ J_{ab} $$\end{document}Jab), intra-tri-layer (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ J_{c} $$\end{document}Jc) and inter-tri-layer (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ J' $$\end{document}J′) such that \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ J_{ab}> J_{c}>> J' $$\end{document}Jab>Jc>>J′ and competition among these give rise to the canted antiferromagnetic spin structure above T\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ _{C} $$\end{document}C. Based on the similar magnetic interaction in bi-layer manganite, we propose that the tri-layer La\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$_{2.1}$$\end{document}2.1Sr\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$_{1.9}$$\end{document}1.9Mn\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$_{3}$$\end{document}3O\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$_{10}$$\end{document}10 should be able to host the skyrmion below T\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ _{C} $$\end{document}C due to its strong anisotropy and layered structure.
Collapse
|
39
|
Zhang C, Ding S, Qiao K, Li J, Li Z, Yin Z, Sun J, Wang J, Zhao T, Hu F, Shen B. Large Low-Field Magnetoresistance (LFMR) Effect in Free-Standing La 0.7Sr 0.3MnO 3 Films. ACS APPLIED MATERIALS & INTERFACES 2021; 13:28442-28450. [PMID: 34105344 DOI: 10.1021/acsami.1c03753] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The realization of a large low-field magnetoresistance (LFMR) effect in free-standing magnetic oxide films is a crucial goal toward promoting the development of flexible, low power consumption, and nonvolatile memory devices for information storage. La0.7Sr0.3MnO3 (LSMO) is an ideal material for spintronic devices due to its excellent magnetic and electronic properties. However, it is difficult to achieve both a large LFMR effect and high flexibility in LSMO films due to the lack of research on LFMR-related mechanisms and the strict LSMO growth conditions, which require rigid substrates. Here, we induced a large LFMR effect in an LSMO/mica heterostructure by utilizing a disorder-related spin-polarized tunneling effect and developed a simple transfer method to obtain free-standing LSMO films for the first time. Electrical and magnetic characterizations of these free-standing LSMO films revealed that all of the principal properties of LSMO were sustained under compressive and tensile conditions. Notably, the magnetoresistance of the processed LSMO film reached up to 16% under an ultrasmall magnetic field (0.1 T), which is 80 times that of a traditional LSMO film. As a demonstration, a stable nonvolatile multivalue storage function in flexible LSMO films was successfully achieved. Our work may pave the way for future wearable resistive memory device applications.
Collapse
Affiliation(s)
- Cheng Zhang
- Beijing National Laboratory of Condensed Matter Physics & Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Shuaishuai Ding
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Sciences, Tianjin University, Tianjin 300072, People's Republic of China
| | - Kaiming Qiao
- Beijing National Laboratory of Condensed Matter Physics & Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Jia Li
- Beijing National Laboratory of Condensed Matter Physics & Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Zhe Li
- Beijing National Laboratory of Condensed Matter Physics & Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Zhuo Yin
- Beijing National Laboratory of Condensed Matter Physics & Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Jirong Sun
- Beijing National Laboratory of Condensed Matter Physics & Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, People's Republic of China
| | - Jing Wang
- Beijing National Laboratory of Condensed Matter Physics & Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
- Fujian Institute of Innovation, Chinese Academy of Sciences, Fuzhou, Fujian 350108, People's Republic of China
| | - Tongyun Zhao
- Beijing National Laboratory of Condensed Matter Physics & Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou, Jiangxi 341000, People's Republic of China
| | - Fengxia Hu
- Beijing National Laboratory of Condensed Matter Physics & Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, People's Republic of China
| | - Baogen Shen
- Beijing National Laboratory of Condensed Matter Physics & Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou, Jiangxi 341000, People's Republic of China
| |
Collapse
|
40
|
Beliayev EY, Horielyi VA, Kolesnichenko YA. Magnetotransport properties of CrO2 powder composites (Review article). LOW TEMPERATURE PHYSICS 2021; 47:355-377. [DOI: 10.1063/10.0004228] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
The most significant experimental results and theoretical concepts related to chromium dioxide-based composites, according to their influence on the evolution of modern understanding of electron transport phenomena in disordered magnetic systems, are presented. It is shown that the variety of physical processes taking place in powder materials does not allow the development of a holistic theoretical approach to describing the properties of the obtained compacted materials. The properties of composite materials depend on the anisotropy of the shape and magnetic properties of particles of which they are composed. The influence of percolation effects leads to a change in the current-carrying channels morphology with the temperature variation in an external magnetic field. This affects both the shape of the magnetoresistance hysteresis loops and the magnetic field magnitudes corresponding to the magnetoresistance maxima. A wide range of magnetotransport phenomena observed in half-metal composite materials contributes to the development of modern concepts of the conductivity features near the metal-insulator threshold and the influence of the metal-insulator interfaces on tunneling conductivity.
Collapse
Affiliation(s)
- E. Yu. Beliayev
- B. Verkin Institute for Low Temperature Physics and Engineering of the National Academy of Sciences of Ukraine , Kharkiv 61103, Ukraine
| | - V. A. Horielyi
- B. Verkin Institute for Low Temperature Physics and Engineering of the National Academy of Sciences of Ukraine , Kharkiv 61103, Ukraine
| | - Yu. A. Kolesnichenko
- B. Verkin Institute for Low Temperature Physics and Engineering of the National Academy of Sciences of Ukraine , Kharkiv 61103, Ukraine
| |
Collapse
|
41
|
Polysubstituted High-Entropy [LaNd](Cr 0.2Mn 0.2Fe 0.2Co 0.2Ni 0.2)O 3 Perovskites: Correlation of the Electrical and Magnetic Properties. NANOMATERIALS 2021; 11:nano11041014. [PMID: 33921115 PMCID: PMC8071509 DOI: 10.3390/nano11041014] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 04/06/2021] [Accepted: 04/13/2021] [Indexed: 11/17/2022]
Abstract
La-, Nd- and La/Nd-based polysubstituted high-entropy oxides (HEOs) were produced by solid-state reactions. Composition of the B-site was fixed for all samples (Cr0.2Mn0.2Fe0.2Co0.2Ni0.2) with varying of A-site cation (La, Nd and La0.5Nd0.5). Nominal chemical composition of the HEOs correlates well with initial calculated stoichiometry. All produced samples are single phase with perovskite-like structure. Average particle size is critically dependent on chemical composition. Minimal average particle size (~400 nm) was observed for the La-based sample and maximal average particle size (5.8 μm) was observed for the Nd-based sample. The values of the configurational entropy of mixing for each sample were calculated. Electrical properties were investigated in the wide range of temperatures (150–450 K) and frequencies (10−1–107 Hz). Results are discussed in terms of the variable range hopping and the small polaron hopping mechanisms. Magnetic properties were analyzed from the temperature and field dependences of the specific magnetization. The frustrated state of the spin subsystem was observed, and it can be a result of the increasing entropy state. From the Zero-Field-Cooling and Field-Cooling regimes (ZFC-FC) curves, we determine the <S> average and Smax maximum size of a ferromagnetic nanocluster in a paramagnetic matrix. The <S> average size of a ferromagnetic cluster is ~100 nm (La-CMFCNO) and ~60 nm (LN-CMFCNO). The Smax maximum size is ~210 nm (La-CMFCNO) and ~205 nm (LN-CMFCNO). For Nd-CMFCNO, spin glass state (ferromagnetic cluster lower than 30 nm) was observed due to f-d exchange at low temperatures.
Collapse
|
42
|
Localized electronic vacancy level and its effect on the properties of doped manganites. Sci Rep 2021; 11:6706. [PMID: 33758221 PMCID: PMC7988069 DOI: 10.1038/s41598-021-85945-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 02/28/2021] [Indexed: 11/09/2022] Open
Abstract
Oxygen vacancies are common to most metal oxides and usually play a crucial role in determining the properties of the host material. In this work, we perform ab initio calculations to study the influence of vacancies in doped manganites \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\text {La}_{(1-\text {x})} \text {Sr}_{\text {x}} \text {MnO}_{3}$$\end{document}La(1-x)SrxMnO3, varying both the vacancy concentration and the chemical composition within the ferromagnetic-metallic range (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$0.2\,<\,\text {x}\,<\,0.5$$\end{document}0.2<x<0.5). We find that oxygen vacancies give rise to a localized electronic level and analyse the effects that the possible occupation of this defect state can have on the physical properties of the host. In particular, we observe a substantial reduction of the exchange energy that favors spin-flipped configurations (local antiferromagnetism), which correlate with the weakening of the double-exchange interaction, the deterioration of the metallicity, and the degradation of ferromagnetism in reduced samples. In agreement with previous studies, vacancies give rise to a lattice expansion when the defect level is unoccupied. However, our calculations suggest that under low Sr concentrations the defect level can be populated, which conversely results in a local reduction of the lattice parameter. Although the exact energy position of this defect level is sensitive to the details of the electronic interactions, we argue that it is not far from the Fermi energy for optimally doped manganites (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\text {x}\,\sim \,1/3$$\end{document}x∼1/3), and thus its occupation could be tuned by controlling the number of available electrons, either with chemical doping or gating. Our results could have important implications for engineering the electronic properties of thin films in oxide compounds.
Collapse
|
43
|
Spectroscopic characterization of electronic structures of ultra-thin single crystal La 0.7Sr 0.3MnO 3. Sci Rep 2021; 11:5250. [PMID: 33664335 PMCID: PMC7933230 DOI: 10.1038/s41598-021-84598-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 02/18/2021] [Indexed: 11/08/2022] Open
Abstract
We have successfully fabricated high quality single crystalline La0.7Sr0.3MnO3 (LSMO) film in the freestanding form that can be transferred onto silicon wafer and copper mesh support. Using soft x-ray absorption (XAS) and resonant inelastic x-ray scattering (RIXS) spectroscopy in transmission and reflection geometries, we demonstrate that the x-ray emission from Mn 3s-2p core-to-core transition (3sPFY) seen in the RIXS maps can represent the bulk-like absorption signal with minimal self-absorption effect around the Mn L3-edge. Similar measurements were also performed on a reference LSMO film grown on the SrTiO3 substrate and the agreement between measurements substantiates the claim that the bulk electronic structures can be preserved even after the freestanding treatment process. The 3sPFY spectrum obtained from analyzing the RIXS maps offers a powerful way to probe the bulk electronic structures in thin films and heterostructures when recording the XAS spectra in the transmission mode is not available.
Collapse
|
44
|
Lee J, Ha Y, Lee S. Hydrogen Control of Double Exchange Interaction in La 0.67 Sr 0.33 MnO 3 for Ionic-Electric-Magnetic Coupled Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2007606. [PMID: 33576067 DOI: 10.1002/adma.202007606] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 12/23/2020] [Indexed: 06/12/2023]
Abstract
The dynamic tuning of ion concentrations has attracted significant attention for creating versatile functionalities of materials, which are impossible to reach using classical control knobs. Despite these merits, the following fundamental questions remain: how do ions affect the electronic bandstructure, and how do ions simultaneously change the electrical and magnetic properties? Here, by annealing platinum-dotted La0.67 Sr0.33 MnO3 films in hydrogen and argon at a lower temperature of 200 °C for several minutes, a reversible change in resistivity is achieved by three orders of magnitude with tailored ferromagnetic magnetization. The transition occurs through the tuning of the double exchange interaction, ascribed to an electron-doping-induced and/or a lattice-expansion-induced modulation, along with an increase in the hydrogen concentration. High reproducibility, long-term stability, and multilevel linearity are appealing for ionic-electric-magnetic coupled applications.
Collapse
Affiliation(s)
- Jaehyun Lee
- Department of Emerging Materials Science, Daegu-Gyeongbuk Institute of Science and Technology, Daegu, 42988, Republic of Korea
| | - Youngkyoung Ha
- Department of Emerging Materials Science, Daegu-Gyeongbuk Institute of Science and Technology, Daegu, 42988, Republic of Korea
| | - Shinbuhm Lee
- Department of Emerging Materials Science, Daegu-Gyeongbuk Institute of Science and Technology, Daegu, 42988, Republic of Korea
| |
Collapse
|
45
|
Kelley KP, Sharma V, Zhang W, Baddorf AP, Nascimento VB, Vasudevan RK. Exotic Long-Range Surface Reconstruction on La 0.7Sr 0.3MnO 3 Thin Films. ACS APPLIED MATERIALS & INTERFACES 2021; 13:9166-9173. [PMID: 33566561 DOI: 10.1021/acsami.0c20166] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Due to an extremely diverse phase space, La1-xSrxMnO3, as with other manganites, offers a wide range of tunability and applications including colossal magnetoresistance and use as spin-polarized electrodes. Here, we study an unprecedented, exotic surface reconstruction (6 × 6) in La1-xSrxMnO3 (x = 0.3) observed via low-energy electron diffraction (LEED). Scanning tunneling microscopy (STM) shows the surface is relatively flat, with unit-cell step heights, and X-ray photoelectron spectroscopy (XPS) reveals a strong degree of Sr segregation at the surface. By combining electron diffraction and first-principles computations, we propose that the long-range surface reconstruction consists of a Sr-segregated surface with La (6 × 6) ordering. This study expands our understanding of manganite systems and underscores their ability to form interesting surface reconstructions, driven largely by cation segregation that can potentially be controlled for tuning surface ordering.
Collapse
Affiliation(s)
- Kyle P Kelley
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Vinit Sharma
- National Institute for Computational Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
- Joint Institute for Computational Sciences, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Wenrui Zhang
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Arthur P Baddorf
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Von B Nascimento
- Departamento de Física, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, Belo Horizonte 31270-901, MG, Brazil
| | - Rama K Vasudevan
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| |
Collapse
|
46
|
Huang J, Wang H, Qi Z, Lu P, Zhang D, Zhang B, He Z, Wang H. Multifunctional Metal-Oxide Nanocomposite Thin Film with Plasmonic Au Nanopillars Embedded in Magnetic La 0.67Sr 0.33MnO 3 Matrix. NANO LETTERS 2021; 21:1032-1039. [PMID: 33405932 DOI: 10.1021/acs.nanolett.0c04213] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Searching for multifunctional materials with tunable magnetic and optical properties has been a critical task toward the implementation of future integrated optical devices. Vertically aligned nanocomposite (VAN) thin films provide a unique platform for multifunctional material designs. Here, a new metal-oxide VAN has been designed with plasmonic Au nanopillars embedded in a ferromagnetic La0.67Sr0.33MnO3 (LSMO) matrix. Such Au-LSMO nanocomposite presents intriguing plasmon resonance in the visible range and magnetic anisotropy property, which are functionalized by the Au and LSMO phase, respectively. Furthermore, the vertically aligned nanostructure of metal and dielectric oxide results in the hyperbolic property for near-field electromagnetic wave manipulation. Such optical and magnetic response could be further tailored by tuning the composition of Au and LSMO phases.
Collapse
Affiliation(s)
- Jijie Huang
- School of Materials, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Han Wang
- School of Materials Engineering, Purdue University, West Lafayette, Indiana 47906, United States
| | - Zhimin Qi
- School of Materials Engineering, Purdue University, West Lafayette, Indiana 47906, United States
| | - Ping Lu
- Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Di Zhang
- School of Materials Engineering, Purdue University, West Lafayette, Indiana 47906, United States
| | - Bruce Zhang
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47906, United States
| | - Zihao He
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47906, United States
| | - Haiyan Wang
- School of Materials Engineering, Purdue University, West Lafayette, Indiana 47906, United States
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47906, United States
| |
Collapse
|
47
|
Wong HF, Ng SM, Zhang W, Liu YK, Wong PKJ, Tang CS, Lam KK, Zhao XW, Meng ZG, Fei LF, Cheng WF, Nordheim DV, Wong WY, Wang ZR, Ploss B, Dai JY, Mak CL, Wee ATS, Leung CW. Modulating Magnetism in Ferroelectric Polymer-Gated Perovskite Manganite Films with Moderate Gate Pulse Chains. ACS APPLIED MATERIALS & INTERFACES 2020; 12:56541-56548. [PMID: 33283518 DOI: 10.1021/acsami.0c14172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Most previous attempts on achieving electric-field manipulation of ferromagnetism in complex oxides, such as La0.66Sr0.33MnO3 (LSMO), are based on electrostatically induced charge carrier changes through high-k dielectrics or ferroelectrics. Here, the use of a ferroelectric copolymer, polyvinylidene fluoride with trifluoroethylene [P(VDF-TrFE)], as a gate dielectric to successfully modulate the ferromagnetism of the LSMO thin film in a field-effect device geometry is demonstrated. Specifically, through the application of low-voltage pulse chains inadequate to switch the electric dipoles of the copolymer, enhanced tunability of the oxide magnetic response is obtained, compared to that induced by ferroelectric polarization. Such observations have been attributed to electric field-induced oxygen vacancy accumulation/depletion in the LSMO layer upon the application of pulse chains, which is supported by surface-sensitive-characterization techniques, including X-ray photoelectron spectroscopy and X-ray magnetic circular dichroism. These techniques not only unveil the electrochemical nature of the mechanism but also establish a direct correlation between the oxygen vacancies created and subsequent changes to the valence states of Mn ions in LSMO. These demonstrations based on the pulsing strategy can be a viable route equally applicable to other functional oxides for the construction of electric field-controlled magnetic devices.
Collapse
Affiliation(s)
- Hon Fai Wong
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Sheung Mei Ng
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Wen Zhang
- School of Electronics and Information and School of Microelectronics, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, Shaanxi 710072, China
- Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117542, Singapore
| | - Yu Kuai Liu
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Ping Kwan Johnny Wong
- School of Electronics and Information and School of Microelectronics, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, Shaanxi 710072, China
- Centre for Advanced 2D Materials and Graphene Research Centre, National University of Singapore, 6 Science Drive 2, Singapore 117546, Singapore
| | - Chi Sin Tang
- Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117542, Singapore
| | - Ka Kin Lam
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Xu Wen Zhao
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Zhen Gong Meng
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Lin Feng Fei
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Wang Fai Cheng
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Danny von Nordheim
- Department of SciTec, University of Applied Sciences Jena, Carl-Zeiss-Promenade 2, 07743 Jena, Germany
| | - Wai Yeung Wong
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Zong Rong Wang
- State Key Lab of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Bernd Ploss
- Department of SciTec, University of Applied Sciences Jena, Carl-Zeiss-Promenade 2, 07743 Jena, Germany
| | - Ji-Yan Dai
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Chee Leung Mak
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Andrew Thye Shen Wee
- Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117542, Singapore
- Centre for Advanced 2D Materials and Graphene Research Centre, National University of Singapore, 6 Science Drive 2, Singapore 117546, Singapore
| | - Chi Wah Leung
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| |
Collapse
|
48
|
Kaciulis S, Bolli E, Mezzi A, Vagner M, Plausinaitiene V, Kersulis S, Zurauskiene N, Lukose R. Surface and structural analysis of epitaxial La
1−
x
Sr
x
(Mn
1−
y
Co
y
)
z
O
3
films. SURF INTERFACE ANAL 2020. [DOI: 10.1002/sia.6767] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Saulius Kaciulis
- Institute for the Studies of Nanostructured Materials (ISMN), CNR Rome Italy
| | - Eleonora Bolli
- Institute for the Studies of Nanostructured Materials (ISMN), CNR Rome Italy
| | - Alessio Mezzi
- Institute for the Studies of Nanostructured Materials (ISMN), CNR Rome Italy
| | - Milita Vagner
- Institute of Chemistry Vilnius University Vilnius Lithuania
| | | | - Skirmantas Kersulis
- Department of Functional Materials and Electronics, Center for Physical Sciences and Technology Vilnius Lithuania
| | - Nerija Zurauskiene
- Department of Functional Materials and Electronics, Center for Physical Sciences and Technology Vilnius Lithuania
- Department of Electrical Engineering, Vilnius Gediminas Technical University Vilnius Lithuania
| | - Rasuole Lukose
- IHP—Leibniz‐Institut für innovative Mikroelektronik Frankfurt (Oder) Germany
| |
Collapse
|
49
|
He R, Lin JL, Liu Q, Liao Z, Shui L, Wang ZJ, Zhong Z, Li RW. Emergent Ferroelectricity in Otherwise Nonferroelectric Oxides by Oxygen Vacancy Design at Heterointerfaces. ACS APPLIED MATERIALS & INTERFACES 2020; 12:45602-45610. [PMID: 32929952 DOI: 10.1021/acsami.0c13314] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Introducing point defects in complex metal oxides is a very effective route to engineer crystal symmetry and therefore control physical properties. However, the inversion symmetry breaking, which is vital for many tantalizing properties, such as ferroelectricity and chiral spin structure, is usually hard to be induced in the bulk crystal by point defects. By designing the oxygen vacancy formation energy profile and migration path across the oxide heterostructure, our first-principles density functional theory (DFT) calculations demonstrate that the point defects can effectively break the inversion symmetry and hence create novel ferroelectricity in superlattices consisting of otherwise nonferroelectric materials SrTiO3 and SrRuO3. This induced ferroelectricity can be significantly enhanced by reducing the SrTiO3 thickness. Inspired by theory calculation, SrTiO3/SrRuO3 superlattices were experimentally fabricated and are found to exhibit surprising strong ferroelectric properties. Our finding paves a simple and effective pathway to engineer the inversion symmetry and thus properties by point defect control in oxide heterostructures.
Collapse
Affiliation(s)
- Ri He
- Key Laboratory of Magnetic Materials Devices & Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510006, China
- International Academy of Optoelectronics at Zhaoqing, South China Normal University, Zhaoqing 526238, China
| | - Jun Liang Lin
- College of Light Industry, Liaoning University, Shenyang 110036, China
- School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
| | - Qing Liu
- Key Laboratory of Magnetic Materials Devices & Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Zhaoliang Liao
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, China
| | - Lingling Shui
- School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510006, China
| | - Zhan Jie Wang
- School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870, China
| | - Zhicheng Zhong
- Key Laboratory of Magnetic Materials Devices & Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- China Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Run-Wei Li
- Key Laboratory of Magnetic Materials Devices & Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- China Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
50
|
Kane AM, Chiu IT, Ahlm NJ, Chopdekar RV, N'Diaye AT, Arenholz E, Mehta A, Lauter V, Takamura Y. Controlling Magnetization Vector Depth Profiles of La 0.7Sr 0.3CoO 3/La 0.7Sr 0.3MnO 3 Exchange Spring Bilayers via Interface Reconstruction. ACS APPLIED MATERIALS & INTERFACES 2020; 12:45437-45443. [PMID: 32852194 DOI: 10.1021/acsami.0c09417] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The La0.7Sr0.3CoO3-δ/La0.7Sr0.3MnO3-δ (LSCO/LSMO) bilayer system is an ideal perovskite oxide platform for investigating interface reconstruction and its effect on their magnetic properties. Previous studies have shown that LSCO can separate into magnetic sublayers, which possess distinct trends as the total LSCO thickness increases. In this study, we used polarized neutron reflectometry to quantify changes in the magnetic and chemical depth profiles, and it confirms the formation of ∼12 Å-thick interfacial LSCO and LSMO layers, characterized by a decreased nuclear scattering length density compared to the bulk of the layers. This decrease is attributed to the combined effects of oxygen vacancy formation and interfacial charge transfer, which lead to magnetically active Co2+ ions with ionic radii larger than the Co3+/Co4+ ions typically found in bulk LSCO or single-layer films. The interfacial magnetization values, as well as Co2+ ion and oxygen vacancy concentrations, depend strongly on the LSCO layer thickness. These results highlight the sensitive interplay of the cation valence states, oxygen vacancy concentration, and magnetization at interfaces in perovskite oxide multilayers, demonstrating the potential to tune their functional properties via careful design of their structure.
Collapse
Affiliation(s)
- Alexander M Kane
- Department of Materials Science and Engineering, University of California, Davis, Davis, California 95616, United States
| | - I-Ting Chiu
- Department of Chemical Engineering, University of California, Davis, Davis, California 95616, United States
| | - Nolan J Ahlm
- Department of Materials Science and Engineering, University of California, Davis, Davis, California 95616, United States
| | - Rajesh V Chopdekar
- Department of Materials Science and Engineering, University of California, Davis, Davis, California 95616, United States
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Alpha T N'Diaye
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Elke Arenholz
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Cornell High Energy Synchrotron Source, Cornell University, Ithaca, New York 14853, United States
| | - Apurva Mehta
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Valeria Lauter
- Neutron Scattering Division, Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Yayoi Takamura
- Department of Materials Science and Engineering, University of California, Davis, Davis, California 95616, United States
| |
Collapse
|