Krich JJ, Halperin BI. Cubic Dresselhaus spin-orbit coupling in 2D electron quantum dots.
PHYSICAL REVIEW LETTERS 2007;
98:226802. [PMID:
17677870 DOI:
10.1103/physrevlett.98.226802]
[Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2007] [Indexed: 05/16/2023]
Abstract
We study effects of the oft-neglected cubic Dresselhaus spin-orbit coupling (i.e., directly proportional p3) in GaAs/AlGaAs quantum dots. Using a semiclassical billiard model, we estimate the magnitude of the spin-orbit induced avoided crossings in a closed quantum dot in a Zeeman field. Using previous analyses based on random matrix theory, we calculate corresponding effects on the conductance through an open quantum dot. Combining our results with an experiment on an 8 microm2 quantum dot [D. M. Zumbühl, Phys. Rev. B 72, 081305 (2005)10.1103/PhysRevB.72.081305] suggests that (1) the GaAs Dresselhaus coupling constant gamma is approximately 9 eV A3, significantly less than the commonly cited value of 27.5 eV A3, and (2) the majority of the spin-flip effects can come from the cubic Dresselhaus term.
Collapse