1
|
Arpaia R, Martinelli L, Sala MM, Caprara S, Nag A, Brookes NB, Camisa P, Li Q, Gao Q, Zhou X, Garcia-Fernandez M, Zhou KJ, Schierle E, Bauch T, Peng YY, Di Castro C, Grilli M, Lombardi F, Braicovich L, Ghiringhelli G. Signature of quantum criticality in cuprates by charge density fluctuations. Nat Commun 2023; 14:7198. [PMID: 37938250 PMCID: PMC10632404 DOI: 10.1038/s41467-023-42961-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 10/25/2023] [Indexed: 11/09/2023] Open
Abstract
The universality of the strange metal phase in many quantum materials is often attributed to the presence of a quantum critical point (QCP), a zero-temperature phase transition ruled by quantum fluctuations. In cuprates, where superconductivity hinders direct QCP observation, indirect evidence comes from the identification of fluctuations compatible with the strange metal phase. Here we show that the recently discovered charge density fluctuations (CDF) possess the right properties to be associated to a quantum phase transition. Using resonant x-ray scattering, we studied the CDF in two families of cuprate superconductors across a wide doping range (up to p = 0.22). At p* ≈ 0.19, the putative QCP, the CDF intensity peaks, and the characteristic energy Δ is minimum, marking a wedge-shaped region in the phase diagram indicative of a quantum critical behavior, albeit with anomalies. These findings strengthen the role of charge order in explaining strange metal phenomenology and provide insights into high-temperature superconductivity.
Collapse
Affiliation(s)
- Riccardo Arpaia
- Quantum Device Physics Laboratory, Department of Microtechnology and Nanoscience, Chalmers University of Technology, SE-41296, Göteborg, Sweden.
| | - Leonardo Martinelli
- Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133, Milano, Italy
| | - Marco Moretti Sala
- Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133, Milano, Italy
| | - Sergio Caprara
- Dipartimento di Fisica, Università di Roma "La Sapienza", P.le Aldo Moro 5, I-00185, Roma, Italy
- CNR-ISC, via dei Taurini 19, I-00185, Roma, Italy
| | - Abhishek Nag
- Diamond Light Source, Harwell Campus, Didcot, OX11 0DE, United Kingdom
| | - Nicholas B Brookes
- ESRF, The European Synchrotron, 71 Avenue des Martyrs, F-38000, Grenoble, France
| | - Pietro Camisa
- Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133, Milano, Italy
| | - Qizhi Li
- International Center for Quantum Materials, School of Physics, Peking University, CN-100871, Beijing, China
| | - Qiang Gao
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, CN-100190, Beijing, China
| | - Xingjiang Zhou
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, CN-100190, Beijing, China
| | | | - Ke-Jin Zhou
- Diamond Light Source, Harwell Campus, Didcot, OX11 0DE, United Kingdom
| | - Enrico Schierle
- Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Straße 15, D-12489, Berlin, Germany
| | - Thilo Bauch
- Quantum Device Physics Laboratory, Department of Microtechnology and Nanoscience, Chalmers University of Technology, SE-41296, Göteborg, Sweden
| | - Ying Ying Peng
- International Center for Quantum Materials, School of Physics, Peking University, CN-100871, Beijing, China
| | - Carlo Di Castro
- Dipartimento di Fisica, Università di Roma "La Sapienza", P.le Aldo Moro 5, I-00185, Roma, Italy
| | - Marco Grilli
- Dipartimento di Fisica, Università di Roma "La Sapienza", P.le Aldo Moro 5, I-00185, Roma, Italy
- CNR-ISC, via dei Taurini 19, I-00185, Roma, Italy
| | - Floriana Lombardi
- Quantum Device Physics Laboratory, Department of Microtechnology and Nanoscience, Chalmers University of Technology, SE-41296, Göteborg, Sweden
| | - Lucio Braicovich
- Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133, Milano, Italy
- ESRF, The European Synchrotron, 71 Avenue des Martyrs, F-38000, Grenoble, France
| | - Giacomo Ghiringhelli
- Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133, Milano, Italy.
- CNR-SPIN, Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133, Milano, Italy.
| |
Collapse
|
2
|
Hepting M, Bejas M, Nag A, Yamase H, Coppola N, Betto D, Falter C, Garcia-Fernandez M, Agrestini S, Zhou KJ, Minola M, Sacco C, Maritato L, Orgiani P, Wei HI, Shen KM, Schlom DG, Galdi A, Greco A, Keimer B. Gapped Collective Charge Excitations and Interlayer Hopping in Cuprate Superconductors. PHYSICAL REVIEW LETTERS 2022; 129:047001. [PMID: 35938998 DOI: 10.1103/physrevlett.129.047001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 03/29/2022] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
We use resonant inelastic x-ray scattering to probe the propagation of plasmons in the electron-doped cuprate superconductor Sr_{0.9}La_{0.1}CuO_{2}. We detect a plasmon gap of ∼120 meV at the two-dimensional Brillouin zone center, indicating that low-energy plasmons in Sr_{0.9}La_{0.1}CuO_{2} are not strictly acoustic. The plasmon dispersion, including the gap, is accurately captured by layered t-J-V model calculations. A similar analysis performed on recent resonant inelastic x-ray scattering data from other cuprates suggests that the plasmon gap is generic and its size is related to the magnitude of the interlayer hopping t_{z}. Our work signifies the three dimensionality of the charge dynamics in layered cuprates and provides a new method to determine t_{z}.
Collapse
Affiliation(s)
- M Hepting
- Max-Planck-Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart, Germany
| | - M Bejas
- Facultad de Ciencias Exactas, Ingeniería y Agrimensura and Instituto de Física de Rosario (UNR-CONICET), Avenida Pellegrini 250, 2000 Rosario, Argentina
| | - A Nag
- Diamond Light Source, Harwell Campus, Didcot OX11 0DE, United Kingdom
| | - H Yamase
- International Center of Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba 305-0047, Japan
- Department of Condensed Matter Physics, Graduate School of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - N Coppola
- Dipartimento di Ingegneria Industriale, Università di Salerno, I-84084 Fisciano (Salerno), Italy
| | - D Betto
- Max-Planck-Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart, Germany
| | - C Falter
- Institut für Festkörpertheorie, Westfälische Wilhelms-Universität, Wilhelm-Klemm-Straße 10, 48149 Münster, Germany
| | | | - S Agrestini
- Diamond Light Source, Harwell Campus, Didcot OX11 0DE, United Kingdom
| | - Ke-Jin Zhou
- Diamond Light Source, Harwell Campus, Didcot OX11 0DE, United Kingdom
| | - M Minola
- Max-Planck-Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart, Germany
| | - C Sacco
- Dipartimento di Ingegneria Industriale, Università di Salerno, I-84084 Fisciano (Salerno), Italy
| | - L Maritato
- Dipartimento di Ingegneria Industriale, Università di Salerno, I-84084 Fisciano (Salerno), Italy
- CNR-SPIN Salerno, Università di Salerno, I-84084 Fisciano (Salerno), Italy
| | - P Orgiani
- CNR-SPIN Salerno, Università di Salerno, I-84084 Fisciano (Salerno), Italy
- CNR-IOM, TASC Laboratory in Area Science Park, 34139 Trieste, Italy
| | - H I Wei
- LASSP, Department of Physics, Cornell University, Ithaca, New York 14853, USA
| | - K M Shen
- LASSP, Department of Physics, Cornell University, Ithaca, New York 14853, USA
| | - D G Schlom
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, USA
- Kavli Institute at Cornell for Nanoscale Science, Ithaca, New York 14853, USA
- Leibniz-Institut für Kristallzüchtung, Max-Born-Straße 2, 12489 Berlin, Germany
| | - A Galdi
- Dipartimento di Ingegneria Industriale, Università di Salerno, I-84084 Fisciano (Salerno), Italy
- Cornell Laboratory for Accelerator Based Sciences and Education, Cornell University, Ithaca, New York 14853, USA
| | - A Greco
- Facultad de Ciencias Exactas, Ingeniería y Agrimensura and Instituto de Física de Rosario (UNR-CONICET), Avenida Pellegrini 250, 2000 Rosario, Argentina
| | - B Keimer
- Max-Planck-Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart, Germany
| |
Collapse
|
3
|
Abstract
Recent resonant X-ray scattering experiments on cuprates allowed to identify a new kind of collective excitations, known as charge density fluctuations, which have finite characteristic wave vector, short correlation length and small characteristic energy. It was then shown that these fluctuations provide a microscopic scattering mechanism that accounts for the anomalous transport properties of cuprates in the so-called strange-metal phase and are a source of anomalies in the specific heat. In this work, we retrace the main steps that led us to attributing a central role to charge density fluctuations in the strange-metal phase of cuprates, discuss the state of the art on the issue and provide an in-depth analysis of the contribution of charge density fluctuations to the specific heat.
Collapse
|
4
|
Nag A, Zhu M, Bejas M, Li J, Robarts HC, Yamase H, Petsch AN, Song D, Eisaki H, Walters AC, García-Fernández M, Greco A, Hayden SM, Zhou KJ. Detection of Acoustic Plasmons in Hole-Doped Lanthanum and Bismuth Cuprate Superconductors Using Resonant Inelastic X-Ray Scattering. PHYSICAL REVIEW LETTERS 2020; 125:257002. [PMID: 33416344 DOI: 10.1103/physrevlett.125.257002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 10/18/2020] [Accepted: 11/13/2020] [Indexed: 06/12/2023]
Abstract
High T_{c} superconductors show a rich variety of phases associated with their charge degrees of freedom. Valence charges can give rise to charge ordering or acoustic plasmons in these layered cuprate superconductors. While charge ordering has been observed for both hole- and electron-doped cuprates, acoustic plasmons have only been found in electron-doped materials. Here, we use resonant inelastic x-ray scattering to observe the presence of acoustic plasmons in two families of hole-doped cuprate superconductors (La_{1.84}Sr_{0.16}CuO_{4} and Bi_{2}Sr_{1.6}La_{0.4}CuO_{6+δ}), crucially completing the picture. Interestingly, in contrast to the quasistatic charge ordering which manifests at both Cu and O sites, the observed acoustic plasmons are predominantly associated with the O sites, revealing a unique dichotomy in the behavior of valence charges in hole-doped cuprates.
Collapse
Affiliation(s)
- Abhishek Nag
- Diamond Light Source, Harwell Campus, Didcot OX11 0DE, United Kingdom
| | - M Zhu
- H. H. Wills Physics Laboratory, University of Bristol, Bristol BS8 1TL, United Kingdom
| | - Matías Bejas
- Facultad de Ciencias Exactas, Ingeniería y Agrimensura and Instituto de Física de Rosario (UNR-CONICET), Avenida Pellegrini 250, 2000 Rosario, Argentina
| | - J Li
- Diamond Light Source, Harwell Campus, Didcot OX11 0DE, United Kingdom
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - H C Robarts
- Diamond Light Source, Harwell Campus, Didcot OX11 0DE, United Kingdom
- H. H. Wills Physics Laboratory, University of Bristol, Bristol BS8 1TL, United Kingdom
| | - Hiroyuki Yamase
- International Center of Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba 305-0047, Japan
- Department of Condensed Matter Physics, Graduate School of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - A N Petsch
- H. H. Wills Physics Laboratory, University of Bristol, Bristol BS8 1TL, United Kingdom
| | - D Song
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8560, Japan
| | - H Eisaki
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8560, Japan
| | - A C Walters
- Diamond Light Source, Harwell Campus, Didcot OX11 0DE, United Kingdom
| | | | - Andrés Greco
- Facultad de Ciencias Exactas, Ingeniería y Agrimensura and Instituto de Física de Rosario (UNR-CONICET), Avenida Pellegrini 250, 2000 Rosario, Argentina
| | - S M Hayden
- H. H. Wills Physics Laboratory, University of Bristol, Bristol BS8 1TL, United Kingdom
| | - Ke-Jin Zhou
- Diamond Light Source, Harwell Campus, Didcot OX11 0DE, United Kingdom
| |
Collapse
|
5
|
Revival of Charge Density Waves and Charge Density Fluctuations in Cuprate High-Temperature Superconductors. CONDENSED MATTER 2020. [DOI: 10.3390/condmat5040070] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
I present here a short memory of my scientific contacts with K.A. Müller starting from the Interlaken Conference (1988), Erice (1992 and 1993), and Cottbus (1994) on the initial studies on phase separation (PS) and charge inhomogeneity in cuprates carried out against the view of the majority of the scientific community at that time. Going over the years and passing through the charge density wave (CDW) instability of the correlated Fermi liquid (FL) and to the consequences of charge density fluctuations (CDFs), I end with a presentation of my current research activity on CDWs and the related two-dimensional charge density fluctuations (2D-CDFs). A scenario follows of the physics of cuprates, which includes the solution of the decades-long problem of the strange metal (SM) state.
Collapse
|
6
|
Arpaia R, Caprara S, Fumagalli R, De Vecchi G, Peng YY, Andersson E, Betto D, De Luca GM, Brookes NB, Lombardi F, Salluzzo M, Braicovich L, Di Castro C, Grilli M, Ghiringhelli G. Dynamical charge density fluctuations pervading the phase diagram of a Cu-based high- T c superconductor. Science 2020; 365:906-910. [PMID: 31467219 DOI: 10.1126/science.aav1315] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 07/30/2019] [Indexed: 11/02/2022]
Abstract
Charge density modulations have been observed in all families of high-critical temperature (T c) superconducting cuprates. Although they are consistently found in the underdoped region of the phase diagram and at relatively low temperatures, it is still unclear to what extent they influence the unusual properties of these systems. Using resonant x-ray scattering, we carefully determined the temperature dependence of charge density modulations in YBa2Cu3O7-δ and Nd1+ x Ba2- x Cu3O7-δ for several doping levels. We isolated short-range dynamical charge density fluctuations in addition to the previously known quasi-critical charge density waves. They persist up to well above the pseudogap temperature T*, are characterized by energies of a few milli-electron volts, and pervade a large area of the phase diagram.
Collapse
Affiliation(s)
- R Arpaia
- Dipartimento di Fisica, Politecnico di Milano, I-20133 Milano, Italy. .,Quantum Device Physics Laboratory, Department of Microtechnology and Nanoscience, Chalmers University of Technology, SE-41296 Göteborg, Sweden
| | - S Caprara
- Dipartimento di Fisica, Università di Roma "La Sapienza," I-00185 Roma, Italy.,CNR-ISC, I-00185 Roma, Italy
| | - R Fumagalli
- Dipartimento di Fisica, Politecnico di Milano, I-20133 Milano, Italy
| | - G De Vecchi
- Dipartimento di Fisica, Politecnico di Milano, I-20133 Milano, Italy
| | - Y Y Peng
- Dipartimento di Fisica, Politecnico di Milano, I-20133 Milano, Italy
| | - E Andersson
- Quantum Device Physics Laboratory, Department of Microtechnology and Nanoscience, Chalmers University of Technology, SE-41296 Göteborg, Sweden
| | - D Betto
- ESRF, European Synchrotron, F-38043 Grenoble, France
| | - G M De Luca
- Dipartimento di Fisica "E. Pancini," Università di Napoli Federico II, Complesso Monte Sant'Angelo, I-80126 Napoli, Italy.,CNR-SPIN, Complesso Monte Sant'Angelo, I-80126 Napoli, Italy
| | - N B Brookes
- ESRF, European Synchrotron, F-38043 Grenoble, France
| | - F Lombardi
- Quantum Device Physics Laboratory, Department of Microtechnology and Nanoscience, Chalmers University of Technology, SE-41296 Göteborg, Sweden
| | - M Salluzzo
- CNR-SPIN, Complesso Monte Sant'Angelo, I-80126 Napoli, Italy
| | - L Braicovich
- Dipartimento di Fisica, Politecnico di Milano, I-20133 Milano, Italy.,ESRF, European Synchrotron, F-38043 Grenoble, France
| | - C Di Castro
- Dipartimento di Fisica, Università di Roma "La Sapienza," I-00185 Roma, Italy.,CNR-ISC, I-00185 Roma, Italy
| | - M Grilli
- Dipartimento di Fisica, Università di Roma "La Sapienza," I-00185 Roma, Italy.,CNR-ISC, I-00185 Roma, Italy
| | - G Ghiringhelli
- Dipartimento di Fisica, Politecnico di Milano, I-20133 Milano, Italy. .,CNR-SPIN, Dipartimento di Fisica, Politecnico di Milano, I-20133 Milano, Italy
| |
Collapse
|
7
|
Ekino T, Gabovich AM, Suan Li M, Szymczak H, Voitenko AI. Quasiparticle conductance-voltage characteristics for break junctions involving d-wave superconductors: charge-density-wave effects. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2017; 29:505602. [PMID: 29105650 DOI: 10.1088/1361-648x/aa9867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Quasiparticle tunnel conductance-voltage characteristics (CVCs), [Formula: see text], were calculated for break junctions (BJs) made up of layered d-wave superconductors partially gapped by charge-density waves (CDWs). The current is assumed to flow in the ab-plane of electrodes. The influence of CDWs is analyzed by comparing the resulting CVCs with CVCs calculated for BJs made up of pure d-wave superconductors with relevant parameters. The main CDW-effects were found to be the appearance of new CVC peculiarities and the loss of CVC symmetry with respect to the V-sign. Tunnel directionality was shown to be one of the key factors in the formation of [Formula: see text] dependences. In particular, the orientation of electrodes with respect to the current channel becomes very important. As a result, [Formula: see text] can acquire a large variety of forms similar to those for tunnel junctions between superconductors with s-wave, d-wave, and mixed symmetry of their order parameters. The diversity of peculiarities is especially striking at finite temperatures. In the case of BJs made up of pure d-wave superconductors, the resulting CVC can include a two-peak gap-driven structure. The results were compared with the experimental BJ data for a number of high-T c oxides. It was shown that the large variety of the observed current-voltage characteristics can be interpreted in the framework of our approach. Thus, quasiparticle tunnel currents in the ab-plane can be used as an additional mean to detect CDWs competing with superconductivity in cuprates or other layered superconductors.
Collapse
Affiliation(s)
- T Ekino
- Hiroshima University, Graduate School of Integrated Arts and Sciences, Higashi-Hiroshima, 739-8521, Japan
| | | | | | | | | |
Collapse
|
8
|
Ekino T, Gabovich AM, Suan Li M, Szymczak H, Voitenko AI. Influence of the spatially inhomogeneous gap distribution on the quasiparticle current in c-axis junctions involving d-wave superconductors with charge density waves. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2016; 28:445701. [PMID: 27604150 DOI: 10.1088/0953-8984/28/44/445701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The quasiparticle tunnel current J(V) between the superconducting ab-planes along the c-axis and the corresponding conductance [Formula: see text] were calculated for symmetric junctions composed of disordered d-wave layered superconductors partially gapped by charge density waves (CDWs). Here, V is the voltage. Both the checkerboard and unidirectional CDWs were considered. It was shown that the spatial spread of the CDW-pairing strength substantially smears the peculiarities of G(V) appropriate to uniform superconductors. The resulting curves G(V) become very similar to those observed for a number of cuprates in intrinsic junctions, e.g. mesas. In particular, the influence of CDWs may explain the peak-dip-hump structures frequently found for high-T c oxides.
Collapse
Affiliation(s)
- T Ekino
- Hiroshima University, Graduate School of Integrated Arts and Sciences, Higashi-Hiroshima, 739-8521, Japan
| | | | | | | | | |
Collapse
|
9
|
Fanfarillo L, Mori M, Campetella M, Grilli M, Caprara S. Glue function of optimally and overdoped cuprates from inversion of the Raman spectra. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2016; 28:065701. [PMID: 26790363 DOI: 10.1088/0953-8984/28/6/065701] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We address the issue of identifying the mediators of effective interactions in cuprates superconductors. Specifically, we use inversion theory to analyze Raman spectra of optimally and over-doped La2-x Sr x CuO4 samples. This allows us to extract the so-called glue function without making any a priori assumption based on any specific model. We use instead two different techniques, namely the singular value decomposition and a multi-rectangle decomposition. With both techniques we find consistent results showing that: (i) two distinct excitations are responsible for the glue function, which have completely different doping dependence. One excitation becomes weak above optimal doping, where on the contrary the other keeps (or even slightly increases) its strength; (ii) there is a marked temperature dependence on the weight and spectral distribution of these excitations, which therefore must have a somewhat critical character. It is quite natural to identify and characterize these two distinct excitations as damped antiferromagnetic spin waves and damped charge density waves, respectively. This sets the stage for a scenario in which superconductivity is concomitant and competing with a charge ordering instability.
Collapse
Affiliation(s)
- L Fanfarillo
- Instituto de Ciencia de Materiales de Madrid, ICMM-CSIC, Cantoblanco, E-28049 Madrid, Spain
| | | | | | | | | |
Collapse
|
10
|
Liu J, Kargarian M, Kareev M, Gray B, Ryan PJ, Cruz A, Tahir N, Chuang YD, Guo J, Rondinelli JM, Freeland JW, Fiete GA, Chakhalian J. Heterointerface engineered electronic and magnetic phases of NdNiO3 thin films. Nat Commun 2013; 4:2714. [DOI: 10.1038/ncomms3714] [Citation(s) in RCA: 146] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2013] [Accepted: 10/04/2013] [Indexed: 11/09/2022] Open
|
11
|
Caprara S, Peronaci F, Grilli M. Intrinsic instability of electronic interfaces with strong Rashba coupling. PHYSICAL REVIEW LETTERS 2012; 109:196401. [PMID: 23215408 DOI: 10.1103/physrevlett.109.196401] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Indexed: 06/01/2023]
Abstract
We consider a model for the two-dimensional electron gas formed at the interface of oxide heterostructures, which includes a Rashba spin-orbit coupling proportional to the electric field perpendicular to the interface. Based on the standard mechanism of polarity catastrophe, we assume that the electric field has a contribution proportional to the electron density. Under these simple and general assumptions, we show that a phase separation instability (signaled by a negative compressibility) occurs for realistic values of the spin-orbit coupling and of the electronic band-structure parameters. This provides an intrinsic mechanism for the inhomogeneous phases observed at the LaAlO(3)/SrTiO(3) or LaTiO(3)/SrTiO(3) interfaces.
Collapse
Affiliation(s)
- S Caprara
- Dipartimento di Fisica, Università di Roma La Sapienza, P Aldo Moro 5, 00185 Roma, Italy
| | | | | |
Collapse
|
12
|
Capone M, Sangiovanni G, Castellani C, Di Castro C, Grilli M. Phase separation close to the density-driven Mott transition in the Hubbard-Holstein model. PHYSICAL REVIEW LETTERS 2004; 92:106401. [PMID: 15089222 DOI: 10.1103/physrevlett.92.106401] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2003] [Indexed: 05/24/2023]
Abstract
The density-driven Mott transition is studied by means of dynamical mean-field theory in the Hubbard-Holstein model, where the Hubbard term leading to the Mott transition is supplemented by an electron-phonon (e-ph) term. We show that an intermediate e-ph coupling leads to a first-order transition at T=0, which is accompanied by a phase separation between a metal and an insulator. The compressibility in the metallic phase is substantially enhanced. At quite larger values of the coupling, a polaronic phase emerges coexisting with a nonpolaronic metal.
Collapse
Affiliation(s)
- M Capone
- Enrico Fermi Center, Rome, Italy
| | | | | | | | | |
Collapse
|
13
|
Caprara S, Di Castro C, Werner P, Zwerger W. Vertex corrections near the stripe phase. PHYSICAL REVIEW LETTERS 2002; 88:066403. [PMID: 11863830 DOI: 10.1103/physrevlett.88.066403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2001] [Indexed: 05/23/2023]
Abstract
We calculate the vertex corrections within a model for fermion quasiparticles coupled with charge and spin fluctuations, which provide the relevant scattering mechanism near the stripe instability in high- T(c) cuprates. The logarithmic divergence of the vertex, which characterizes the spin-fermion model near the antiferromagnetic instability, is ruled out, due to the incommensuration of the charge and spin modulation within the stripe phase, as revealed by neutron scattering. This simplifies the skeleton structure of the problem. The vertex is negative in the relevant kinematical regime, effectively reducing the interaction strength. Our results apply to generic incommensurate instabilities of electronic origin.
Collapse
Affiliation(s)
- S Caprara
- Dipartimento di Fisica, Università di Roma "La Sapienza" and Istituto Nazionale per la Fisica della Materia, SMC and UdR Roma 1, Piazzale Aldo Moro 2, 00185 Roma, Italy
| | | | | | | |
Collapse
|
14
|
Andergassen S, Caprara S, Di Castro C, Grilli M. Anomalous isotopic effect near the charge-ordering quantum criticality. PHYSICAL REVIEW LETTERS 2001; 87:056401. [PMID: 11497793 DOI: 10.1103/physrevlett.87.056401] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2000] [Indexed: 05/23/2023]
Abstract
Within the Hubbard-Holstein model, we evaluate the crossover lines marking the opening of pseudogaps in the cuprates, which, in our scenario, are ruled by the proximity to a charge-ordering quantum criticality (stripe formation). We find that their isotopic dependence, due to critical fluctuations, implies a substantial positive shift of the pseudogap-formation temperature T(*). We infer that the isotopic shift of the superconducting T(c) is nearly absent in the optimally and overdoped regimes and is negative and increasing upon underdoping. The dynamical nature of the charge-ordering transition may explain the spread of the experimental values of T(*).
Collapse
Affiliation(s)
- S Andergassen
- Istituto Nazionale per la Fisica della Materia, Unità di Roma 1, Italy
| | | | | | | |
Collapse
|
15
|
Perali A, Castellani C, Grilli M. d-wave superconductivity near charge instabilities. PHYSICAL REVIEW. B, CONDENSED MATTER 1996; 54:16216-16225. [PMID: 9985700 DOI: 10.1103/physrevb.54.16216] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
|