1
|
Starrett CE, Thelen TQ, Fontes CJ, Rehn DA. Excited states in warm and hot dense matter. Phys Rev E 2024; 109:035201. [PMID: 38632718 DOI: 10.1103/physreve.109.035201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 02/06/2024] [Indexed: 04/19/2024]
Abstract
Accurate modeling of warm and hot dense matter is challenging in part due to the multitude of excited states that must be considered. Here, we present a variational framework that models these excited states. In this framework an excited state is defined by a set of effective one-electron occupation factors, and the corresponding energy is defined by the effective one-body energy with an exchange and correlation term. The variational framework is applied to an atom-in-plasma model (a generalization of the so-called average atom model). Comparisons with a density functional theory based average atom model generally reveal good agreement in the calculated pressure, but our model also gives access to the excitation energies and charge state distributions.
Collapse
Affiliation(s)
- C E Starrett
- Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, New Mexico 87545, USA
| | - T Q Thelen
- Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, New Mexico 87545, USA
| | - C J Fontes
- Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, New Mexico 87545, USA
| | - D A Rehn
- Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, New Mexico 87545, USA
| |
Collapse
|
2
|
Gawne T, Vinko SM, Wark JS. Quantifying ionization in hot dense plasmas. Phys Rev E 2024; 109:L023201. [PMID: 38491590 DOI: 10.1103/physreve.109.l023201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 12/07/2023] [Indexed: 03/18/2024]
Abstract
Ionization is a problematic quantity in that it does not have a well-defined thermodynamic definition and yet it is a key parameter within plasma modeling. One still therefore aims to find a consistent and unambiguous definition for the ionization state. Within this context we present finite-temperature density functional theory calculations of the ionization state of carbon in CH plasmas using two potential definitions: one based on counting the number of continuum electrons, and another based on the optical conductivity. Differences of up to 10% are observed between the two methods. However, including "Pauli forbidden" transitions in the conductivity reproduces the counting definition, suggesting such transitions are important to evaluate the ionization state.
Collapse
Affiliation(s)
- Thomas Gawne
- Department of Physics, Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom
| | - Sam M Vinko
- Department of Physics, Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom
- Central Laser Facility, STFC Rutherford Appleton Laboratory, Didcot OX11 0QX, United Kingdom
| | - Justin S Wark
- Department of Physics, Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom
| |
Collapse
|
3
|
Engel RY, Alexander O, Atak K, Bovensiepen U, Buck J, Carley R, Cascella M, Chardonnet V, Chiuzbaian GS, David C, Döring F, Eschenlohr A, Gerasimova N, de Groot F, Guyader LL, Humphries OS, Izquierdo M, Jal E, Kubec A, Laarmann T, Lambert CH, Lüning J, Marangos JP, Mercadier L, Mercurio G, Miedema PS, Ollefs K, Pfau B, Rösner B, Rossnagel K, Rothenbach N, Scherz A, Schlappa J, Scholz M, Schunck JO, Setoodehnia K, Stamm C, Techert S, Vinko SM, Wende H, Yaroslavtsev AA, Yin Z, Beye M. Electron population dynamics in resonant non-linear x-ray absorption in nickel at a free-electron laser. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2023; 10:054501. [PMID: 37841290 PMCID: PMC10576398 DOI: 10.1063/4.0000206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/20/2023] [Indexed: 10/17/2023]
Abstract
Free-electron lasers provide bright, ultrashort, and monochromatic x-ray pulses, enabling novel spectroscopic measurements not only with femtosecond temporal resolution: The high fluence of their x-ray pulses can also easily enter the regime of the non-linear x-ray-matter interaction. Entering this regime necessitates a rigorous analysis and reliable prediction of the relevant non-linear processes for future experiment designs. Here, we show non-linear changes in the L 3 -edge absorption of metallic nickel thin films, measured with fluences up to 60 J/cm2. We present a simple but predictive rate model that quantitatively describes spectral changes based on the evolution of electronic populations within the pulse duration. Despite its simplicity, the model reaches good agreement with experimental results over more than three orders of magnitude in fluence, while providing a straightforward understanding of the interplay of physical processes driving the non-linear changes. Our findings provide important insights for the design and evaluation of future high-fluence free-electron laser experiments and contribute to the understanding of non-linear electron dynamics in x-ray absorption processes in solids at the femtosecond timescale.
Collapse
Affiliation(s)
| | - Oliver Alexander
- Department of Physics, Imperial College London, London, United Kingdom
| | - Kaan Atak
- Deutsches Elektronen-Synchrotron DESY, Germany
| | | | | | | | | | - Valentin Chardonnet
- Sorbonne Université, CNRS, Laboratoire de Chimie Physique-Matière et Rayonnement LCPMR, Paris, France
| | - Gheorghe Sorin Chiuzbaian
- Sorbonne Université, CNRS, Laboratoire de Chimie Physique-Matière et Rayonnement LCPMR, Paris, France
| | | | | | - Andrea Eschenlohr
- Faculty of Physics and Center for Nanointegration Duisburg-Essen CENIDE, University of Duisburg-Essen, Duisburg, Germany
| | | | - Frank de Groot
- Debye Institute for Nanomaterials Science, Inorganic Chemistry and Catalysis, Utrecht University, Utrecht, The Netherlands
| | | | | | | | - Emmanuelle Jal
- Sorbonne Université, CNRS, Laboratoire de Chimie Physique-Matière et Rayonnement LCPMR, Paris, France
| | - Adam Kubec
- Paul Scherrer Institut, Villigen, Switzerland
| | | | | | - Jan Lüning
- Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Berlin, Germany
| | | | | | | | | | - Katharina Ollefs
- Faculty of Physics and Center for Nanointegration Duisburg-Essen CENIDE, University of Duisburg-Essen, Duisburg, Germany
| | - Bastian Pfau
- Max Born Institute for Nonlinear Optics and Short Pulse Spectroscopy, Berlin, Germany
| | | | | | - Nico Rothenbach
- Faculty of Physics and Center for Nanointegration Duisburg-Essen CENIDE, University of Duisburg-Essen, Duisburg, Germany
| | | | | | | | | | | | | | | | | | - Heiko Wende
- Faculty of Physics and Center for Nanointegration Duisburg-Essen CENIDE, University of Duisburg-Essen, Duisburg, Germany
| | | | | | - Martin Beye
- Author to whom correspondence should be addressed:
| |
Collapse
|
4
|
Liang JH, Hu TX, Wu D, Sheng ZM. Kinetic studies of exchange-correlation effect on the collective excitations of warm dense plasmas. Phys Rev E 2022; 105:045206. [PMID: 35590614 DOI: 10.1103/physreve.105.045206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 03/25/2022] [Indexed: 06/15/2023]
Abstract
The exchange-correlation of electrons, as a fundamental effect in quantum mechanics, plays an important role in the collective motions of electrons in warm dense matter. We derive the quantum kinetic equations based on the time-dependent Kohn-Sham equation. By using a temperature-dependent functional for the exchange correlation, the excitations of electrostatic waves are analyzed under the adiabatic local density approximation (ALDA). We find that the influences of the exchange-correlation effect on the group velocity of electrostatic waves can be as high as 10% when both the density and temperature are low. Moreover, we also compare the results obtained by using ALDA-based kinetic theory, exchange kinetic theory, and quantum hydrodynamics, and discuss the differences among them.
Collapse
Affiliation(s)
- Jiong-Hang Liang
- Institute for Fusion Theory and Simulation, Department of Physics, Zhejiang University, 310027 Hangzhou, People's Republic of China
| | - Tian-Xing Hu
- Institute for Fusion Theory and Simulation, Department of Physics, Zhejiang University, 310027 Hangzhou, People's Republic of China
| | - D Wu
- Key Laboratory for Laser Plasmas, School of Physics and Astronomy, and Collaborative Innovation Center of IFSA (CICIFSA), Shanghai Jiao Tong University, 200240 Shanghai, People's Republic of China
| | - Zheng-Mao Sheng
- Institute for Fusion Theory and Simulation, Department of Physics, Zhejiang University, 310027 Hangzhou, People's Republic of China
| |
Collapse
|
5
|
Humphries OS, Marjoribanks RS, van den Berg QY, Galtier EC, Kasim MF, Lee HJ, Miscampbell AJF, Nagler B, Royle R, Wark JS, Vinko SM. Probing the Electronic Structure of Warm Dense Nickel via Resonant Inelastic X-Ray Scattering. PHYSICAL REVIEW LETTERS 2020; 125:195001. [PMID: 33216608 DOI: 10.1103/physrevlett.125.195001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 09/25/2020] [Accepted: 10/07/2020] [Indexed: 06/11/2023]
Abstract
The development of bright free-electron lasers (FEL) has revolutionized our ability to create and study matter in the high-energy-density (HED) regime. Current diagnostic techniques have been successful in yielding information on fundamental thermodynamic plasma properties, but provide only limited or indirect information on the detailed quantum structure of these systems, and on how it is affected by ionization dynamics. Here we show how the valence electronic structure of solid-density nickel, heated to temperatures of around 10 of eV on femtosecond timescales, can be probed by single-shot resonant inelastic x-ray scattering (RIXS) at the Linac Coherent Light Source FEL. The RIXS spectrum provides a wealth of information on the HED system that goes well beyond what can be extracted from x-ray absorption or emission spectroscopy alone, and is particularly well suited to time-resolved studies of electronic-structure dynamics.
Collapse
Affiliation(s)
- O S Humphries
- Department of Physics, Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom
| | - R S Marjoribanks
- Department of Physics, University of Toronto, 60 St. George Street, Toronto, Ontario M5S 1A7, Canada
| | - Q Y van den Berg
- Department of Physics, Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom
| | - E C Galtier
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
| | - M F Kasim
- Department of Physics, Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom
| | - H J Lee
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
| | - A J F Miscampbell
- Department of Physics, Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom
| | - B Nagler
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
| | - R Royle
- Department of Physics, Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom
| | - J S Wark
- Department of Physics, Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom
| | - S M Vinko
- Department of Physics, Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom
| |
Collapse
|
6
|
Shaffer NR, Starrett CE. Model of electron transport in dense plasmas spanning temperature regimes. Phys Rev E 2020; 101:053204. [PMID: 32575252 DOI: 10.1103/physreve.101.053204] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 04/28/2020] [Indexed: 11/07/2022]
Abstract
We present a new model of electron transport in warm and hot dense plasmas which combines the quantum Landau-Fokker-Planck equation with the concept of mean-force scattering. We obtain electrical and thermal conductivities across several orders of magnitude in temperature, from warm dense matter conditions to hot, nondegenerate plasma conditions, including the challenging crossover regime between the two. The small-angle approximation characteristic of Fokker-Planck collision theories is mitigated to good effect by the construction of accurate effective Coulomb logarithms based on mean-force scattering, which allows the theory to remain accurate even at low temperatures, as compared with high-fidelity quantum simulation results. Electron-electron collisions are treated on equal footing as electron-ion collisions. Their accurate treatment is found to be essential for hydrogen, and is expected to be important to other low-Z elements. We find that electron-electron scattering remains influential to the value of the thermal conductivity down to temperatures somewhat below the Fermi energy. The accuracy of the theory seems to falter only for the behavior of the thermal conductivity at very low temperatures due to a subtle interplay between the Pauli exclusion principle and the small-angle approximation as they pertain to electron-electron scattering. Even there, the model is in fair agreement with ab initio simulations.
Collapse
|
7
|
Vinko SM, Vozda V, Andreasson J, Bajt S, Bielecki J, Burian T, Chalupsky J, Ciricosta O, Desjarlais MP, Fleckenstein H, Hajdu J, Hajkova V, Hollebon P, Juha L, Kasim MF, McBride EE, Muehlig K, Preston TR, Rackstraw DS, Roling S, Toleikis S, Wark JS, Zacharias H. Time-Resolved XUV Opacity Measurements of Warm Dense Aluminum. PHYSICAL REVIEW LETTERS 2020; 124:225002. [PMID: 32567902 DOI: 10.1103/physrevlett.124.225002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 05/02/2020] [Accepted: 05/22/2020] [Indexed: 06/11/2023]
Abstract
The free-free opacity in plasmas is fundamental to our understanding of energy transport in stellar interiors and for inertial confinement fusion research. However, theoretical predictions in the challenging dense plasma regime are conflicting and there is a dearth of accurate experimental data to allow for direct model validation. Here we present time-resolved transmission measurements in solid-density Al heated by an XUV free-electron laser. We use a novel functional optimization approach to extract the temperature-dependent absorption coefficient directly from an oversampled pool of single-shot measurements, and find a pronounced enhancement of the opacity as the plasma is heated to temperatures of order of the Fermi energy. Plasma heating and opacity enhancement are observed on ultrafast timescales, within the duration of the femtosecond XUV pulse. We attribute further rises in the opacity on ps timescales to melt and the formation of warm dense matter.
Collapse
Affiliation(s)
- S M Vinko
- Department of Physics, Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom
| | - V Vozda
- Charles University, Faculty of Mathematics and Physics, Institute of Physics, Ke Karlovu 5, CZ-121 16 Prague 2, Czech Republic
- Institute of Physics, Czech Academy of Sciences, Na Slovance 2, 18221 Prague 8, Czech Republic
| | - J Andreasson
- ELI Beamlines, Institute of Physics, Czech Academy of Sciences, Na Slovance 2, CZ-182 21 Prague 8, Czech Republic
- Chalmers University of Technology, Department of Physics, 41296 Göteborg, Sweden
| | - S Bajt
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - J Bielecki
- European XFEL GmbH, Holzkoppel 4, 22869 Schenefeld, Germany
| | - T Burian
- Institute of Physics, Czech Academy of Sciences, Na Slovance 2, 18221 Prague 8, Czech Republic
| | - J Chalupsky
- Institute of Physics, Czech Academy of Sciences, Na Slovance 2, 18221 Prague 8, Czech Republic
| | - O Ciricosta
- Department of Physics, Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom
| | - M P Desjarlais
- Pulsed Power Sciences Center, Sandia National Laboratories, Albuquerque, New Mexico 87185, USA
| | - H Fleckenstein
- Center for Free-Electron Laser Science, DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - J Hajdu
- ELI Beamlines, Institute of Physics, Czech Academy of Sciences, Na Slovance 2, CZ-182 21 Prague 8, Czech Republic
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3, Box 596, SE-75124 Uppsala, Sweden
| | - V Hajkova
- Institute of Physics, Czech Academy of Sciences, Na Slovance 2, 18221 Prague 8, Czech Republic
| | - P Hollebon
- Department of Physics, Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom
| | - L Juha
- Institute of Physics, Czech Academy of Sciences, Na Slovance 2, 18221 Prague 8, Czech Republic
| | - M F Kasim
- Department of Physics, Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom
| | - E E McBride
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - K Muehlig
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3, Box 596SE-751 24 Uppsala, Sweden
| | - T R Preston
- European XFEL GmbH, Holzkoppel 4, 22869 Schenefeld, Germany
| | - D S Rackstraw
- Department of Physics, Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom
| | - S Roling
- Universität Münster, Busso-Peus-Strasse 10, 48149 Münster, Germany
| | - S Toleikis
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - J S Wark
- Department of Physics, Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom
| | - H Zacharias
- Universität Münster, Busso-Peus-Strasse 10, 48149 Münster, Germany
| |
Collapse
|
8
|
Shaffer NR, Starrett CE. Correlations between conduction electrons in dense plasmas. Phys Rev E 2020; 101:013208. [PMID: 32069618 DOI: 10.1103/physreve.101.013208] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Indexed: 11/07/2022]
Abstract
Most treatments of electron-electron correlations in dense plasmas either ignore them entirely (random phase approximation) or neglect the role of ions (jellium approximation). In this work, we go beyond both these approximations to derive a formula for the electron-electron static structure factor which properly accounts for the contributions of both ionic structure and quantum-mechanical dynamic response in the electrons. The result can be viewed as a natural extension of the quantum Ornstein-Zernike theory of ionic and electronic correlations, and it is suitable for dense plasmas in which the ions are classical and the conduction electrons are quantum-mechanical. The corresponding electron-electron pair distribution functions are compared with the results of path integral Monte Carlo simulations, showing good agreement whenever no strong electron resonance states are present. We construct approximate potentials of mean force which describe the effective screened interaction between electrons. Significant deviations from Debye-Hückel screening are present at temperatures and densities relevant to high-energy density experiments involving warm and hot dense plasmas. The presence of correlations between conduction electrons is likely to influence the electron-electron contribution to the electrical and thermal conductivity. It is expected that excitation processes involving the conduction electrons (e.g., free-free absorption) will also be affected.
Collapse
Affiliation(s)
- Nathaniel R Shaffer
- Los Alamos National Laboratory, P. O. Box 1663, Los Alamos, New Mexico 87545, USA
| | - Charles E Starrett
- Los Alamos National Laboratory, P. O. Box 1663, Los Alamos, New Mexico 87545, USA
| |
Collapse
|