1
|
Malkin AY, Kulichikhin VG, Khashirova SY, Simonov-Emelyanov ID, Mityukov AV. Rheology of Highly Filled Polymer Compositions-Limits of Filling, Structure, and Transport Phenomena. Polymers (Basel) 2024; 16:442. [PMID: 38337331 PMCID: PMC10857539 DOI: 10.3390/polym16030442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/23/2024] [Accepted: 02/02/2024] [Indexed: 02/12/2024] Open
Abstract
The current state of the rheology of various polymeric and other materials containing a high concentration of spherical solid filler is considered. The physics of the critical points on the concentration scale are discussed in detail. These points determine the features of the rheological behavior of the highly filled materials corresponding to transitions from a liquid to a yielding medium, elastic-plastic state, and finally to an elastic solid-like state of suspensions. Theoretical and experimental data are summarized, showing the limits of the most dense packing of solid particles, which is of key importance for applications and obtaining high-quality products. The results of model and fine structural studies of physical phenomena that occur when approaching the point of filling the volume, including the occurrence of instabilities, are considered. The occurrence of heterogeneity in the form of individual clusters is also described. These heterogeneous objects begin to move as a whole that leads to the appearance of discontinuities in the suspension volume or wall slip. Understanding these phenomena is a key for particle technology and multiphase processing.
Collapse
Affiliation(s)
- Alexander Ya. Malkin
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Science, 29. Leninsky Prospect, 119991 Moscow, Russia; (V.G.K.); (A.V.M.)
| | - Valery G. Kulichikhin
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Science, 29. Leninsky Prospect, 119991 Moscow, Russia; (V.G.K.); (A.V.M.)
| | - Svetlana Yu. Khashirova
- Kh.M. Berbekov Kabardino-Balkarsky State University, Chernyshevsky Str. 273, 36000 Nal’chik, Russia;
| | - Igor D. Simonov-Emelyanov
- M.V. Lomonosov Institute of Fine Chemical Technology, Russian Technological University, 78. Vernadsky Avenue, 119454 Moscow, Russia;
| | - Anton V. Mityukov
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Science, 29. Leninsky Prospect, 119991 Moscow, Russia; (V.G.K.); (A.V.M.)
| |
Collapse
|
2
|
Rathee V, Miller J, Blair DL, Urbach JS. Structure of propagating high-stress fronts in a shear-thickening suspension. Proc Natl Acad Sci U S A 2022; 119:e2203795119. [PMID: 35914166 PMCID: PMC9371692 DOI: 10.1073/pnas.2203795119] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 06/13/2022] [Indexed: 02/03/2023] Open
Abstract
We report direct measurements of spatially resolved stress at the boundary of a shear-thickening cornstarch suspension revealing persistent regions of high local stress propagating in the flow direction at the speed of the top boundary. The persistence of these propagating fronts enables precise measurements of their structure, including the profile of boundary stress measured by boundary stress microscopy (BSM) and the nonaffine velocity of particles at the bottom boundary of the suspension measured by particle image velocimetry (PIV). In addition, we directly measure the relative flow between the particle phase and the suspending fluid (fluid migration) and find the migration is highly localized to the fronts and changes direction across the front, indicating that the fronts are composed of a localized region of high dilatant pressure and low particle concentration. The magnitude of the flow indicates that the pore pressure difference driving the fluid migration is comparable to the critical shear stress for the onset of shear thickening. The propagating fronts fully account for the increase in viscosity with applied stress reported by the rheometer and are consistent with the existence of a stable jammed region in contact with one boundary of the system that generates a propagating network of percolated frictional contacts spanning the gap between the rheometer plates and producing strong localized dilatant pressure.
Collapse
Affiliation(s)
- Vikram Rathee
- Department of Physics and Institute for Soft Matter Synthesis and Metrology, Georgetown University, Washington, DC 20057
| | - Joia Miller
- Department of Physics and Institute for Soft Matter Synthesis and Metrology, Georgetown University, Washington, DC 20057
| | - Daniel L Blair
- Department of Physics and Institute for Soft Matter Synthesis and Metrology, Georgetown University, Washington, DC 20057
| | - Jeffrey S Urbach
- Department of Physics and Institute for Soft Matter Synthesis and Metrology, Georgetown University, Washington, DC 20057
| |
Collapse
|
3
|
Lee KL, Yang FL. Flow reversal triggers discontinuous shear thickening response across an erodible granular bed in a Couette-Poiseuille-like flow. Phys Rev E 2022; 105:L052901. [PMID: 35706163 DOI: 10.1103/physreve.105.l052901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 05/05/2022] [Indexed: 06/15/2023]
Abstract
Granular rheology is experimentally investigated in a vertical Couette-Poiseuille-like channel flow of photoelastic disks, where an erodible bed is sheared intermittently by an upward-moving shear band and a gravity-induced reverse flow. The shear band conforms to the existing nonlocal Eyring-like rheology but the bed exhibits discontinuous shear thickening from the Bagnold inertial regime near the band-bed interface to the Herschel-Bulkley plastic regime near the static wall. This newly discovered bed rheology is rate dependent and is associated with the fragility of the contact networks indicated by the statistics of local stress states inferred from the material photoelastic responses.
Collapse
Affiliation(s)
- Keng-Lin Lee
- Department of Mechanical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Fu-Ling Yang
- Department of Mechanical Engineering, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
4
|
Pradeep S, Nabizadeh M, Jacob AR, Jamali S, Hsiao LC. Jamming Distance Dictates Colloidal Shear Thickening. PHYSICAL REVIEW LETTERS 2021; 127:158002. [PMID: 34678008 DOI: 10.1103/physrevlett.127.158002] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 05/10/2021] [Accepted: 08/30/2021] [Indexed: 06/13/2023]
Abstract
We report experimental and computational observations of dynamic contact networks for colloidal suspensions undergoing shear thickening. The dense suspensions are comprised of sterically stabilized poly(methyl methacrylate) colloids that are spherically symmetric and have varied surface roughness. Confocal rheometry and dissipative particle dynamics simulations show that the shear thickening strength β scales exponentially with the scaled deficit contact number and the scaled jamming distance. Rough colloids, which experience additional rotational constraints, require an average of 1.5-2 fewer particle contacts as compared to smooth colloids, in order to generate the same β. This is because the surface roughness enhances geometric friction in such a way that the rough colloids do not experience a large change in the free volume near the jamming point. The available free volume for colloids of different roughness is related to the deficiency from the maximum number of nearest neighbors at jamming under shear. Our results further suggest that the force per contact is different for particles with different morphologies.
Collapse
Affiliation(s)
- Shravan Pradeep
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Mohammad Nabizadeh
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, Massachusetts 02115, USA
| | - Alan R Jacob
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Safa Jamali
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, Massachusetts 02115, USA
| | - Lilian C Hsiao
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, USA
| |
Collapse
|
5
|
Rathee V, Monti A, Rosti ME, Shen AQ. Shear thickening behavior in dense repulsive and attractive suspensions of hard spheres. SOFT MATTER 2021; 17:8047-8058. [PMID: 34525164 DOI: 10.1039/d1sm00971k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Shear thickening in stable dense colloidal suspensions is a reversible phenomenon and no hysteresis is observed in the flow curve measurements. However, a reduction in the stability of colloids promotes particle aggregation and introduces a time dependent rheological response. In this work, by using a model colloidal system of hard spherical silica particles (average diameter of 415 nm) with varying particle volume fractions 0.2 ≤ ϕ ≤ 0.56, we study the effect of particle stability on the hysteresis of the shear thickening behavior of these suspensions. The particle stability is manipulated by adding a simple monovalent salt (sodium chloride) in the silica suspension with varying concentrations α ∈ [0,0.5] M. For repulsive and weakly attractive suspensions, the flow behavior is history independent and the shear thickening behavior does not exhibit hysteresis. However, significant hysteresis is observed in rheological measurements for strongly attractive suspensions, with shear history playing a critical role due to the dynamic nature of particle clusters, resulting in time dependent hysteresis behavior. By performing numerical simulations, we find that this hysteresis behavior arises due to the competition among shear, electrostatic repulsive, van der Waals attractive, and frictional contact forces. The critical shear stress (i.e., the onset of shear thickening) decreases with increasing salt concentrations, which can be captured by a scaling relationship based on the force balance between particle-particle contact force and electrostatic repulsive force. Our combined experimental and simulation results imply the formation of particle contacts in our sheared suspensions.
Collapse
Affiliation(s)
- Vikram Rathee
- Micro/Bio/Nanofluidics Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, 904-0495, Japan.
| | - Alessandro Monti
- Complex Fluids and Flows Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, 904-0495, Japan
| | - Marco E Rosti
- Complex Fluids and Flows Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, 904-0495, Japan
| | - Amy Q Shen
- Micro/Bio/Nanofluidics Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, 904-0495, Japan.
| |
Collapse
|
6
|
Saitoh K. The role of friction in statistics and scaling laws of avalanches. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2021; 44:85. [PMID: 34165652 DOI: 10.1140/epje/s10189-021-00089-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/14/2021] [Indexed: 06/13/2023]
Abstract
We investigate statistics and scaling laws of avalanches in two-dimensional frictional particles by numerical simulations. We find that the critical exponent for avalanche size distributions is governed by microscopic friction between the particles in contact, where the exponent is larger and closer to mean-field predictions if the friction coefficient is finite. We reveal that microscopic "slips" between frictional particles induce numerous small avalanches which increase the slope, as well as the power-law exponent, of avalanche size distributions. We also analyze statistics and scaling laws of the avalanche duration and maximum stress drop rates, and examine power spectra of stress drop rates. Our numerical results suggest that the microscopic friction is a key ingredient of mean-field descriptions and plays a crucial role in avalanches observed in real materials.
Collapse
Affiliation(s)
- Kuniyasu Saitoh
- Department of Physics, Faculty of Science, Kyoto Sangyo University, Motoyama, Kamigamo, Kita-ku, Kyoto, 603-8555, Japan.
| |
Collapse
|
7
|
Malkin AY, Kulichikhin VG, Mityukov AV, Kotomin SV. Deformation Properties of Concentrated Metal-in-Polymer Suspensions under Superimposed Compression and Shear. Polymers (Basel) 2020; 12:polym12051038. [PMID: 32370177 PMCID: PMC7285065 DOI: 10.3390/polym12051038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 04/27/2020] [Accepted: 04/30/2020] [Indexed: 11/16/2022] Open
Abstract
Concentrated metal-in-polymer suspensions (55 vol.% and 60 vol.%) of aluminum powder dispersed in low molecular weight polyethylene glycol) demonstrate elastoplastic properties under compression and shear. The rheological behavior of concentrated suspensions was studied in a rotational rheometer with uniaxial compression (squeezing), as well as shearing superimposed on compression. At a high metal concentration, the elasticity of the material strongly increases under strain, compared with the plasticity. The elastic compression modulus increases with the growth of normal stress. Changes in the shear modulus depend on both normal and shear stresses. At a low compression force, the shear modulus is only slightly dependent on the shear stress. However, high compression stress leads to a decrease in the shear modulus by several orders with the growth of the shear stress. The decrease in the modulus seems to be rather unusual for compacted matter. This phenomenon could be explained by the rearrangement of the specific organization of the suspension under compression, leading to the creation of inhomogeneous structures and their displacement at flow, accompanied by wall slip. The obtained set of rheological characteristics of highly loaded metal-in-polymer suspensions is the basis for understanding the behavior of such systems in the powder injection molding process.
Collapse
|