1
|
Moldabekov Z, Schwalbe S, Böhme MP, Vorberger J, Shao X, Pavanello M, Graziani FR, Dornheim T. Bound-State Breaking and the Importance of Thermal Exchange-Correlation Effects in Warm Dense Hydrogen. J Chem Theory Comput 2024; 20:68-78. [PMID: 38133546 PMCID: PMC10782774 DOI: 10.1021/acs.jctc.3c00934] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 12/01/2023] [Accepted: 12/01/2023] [Indexed: 12/23/2023]
Abstract
Hydrogen at extreme temperatures and pressures is of key relevance for cutting-edge technological applications, with inertial confinement fusion research being a prime example. In addition, it is ubiquitous throughout our universe and naturally occurs in a variety of astrophysical objects. In the present work, we present exact ab initio path integral Monte Carlo (PIMC) results for the electronic density of warm dense hydrogen along a line of constant degeneracy across a broad range of densities. Using the well-known concept of reduced density gradients, we develop a new framework to identify the breaking of bound states due to pressure ionization in bulk hydrogen. Moreover, we use our PIMC results as a reference to rigorously assess the accuracy of a variety of exchange-correlation (XC) functionals in density functional theory calculations for different density regions. Here, a key finding is the importance of thermal XC effects for the accurate description of density gradients in high-energy-density systems. Our exact PIMC test set is freely available online and can be used to guide the development of new methodologies for the simulation of warm dense matter and beyond.
Collapse
Affiliation(s)
- Zhandos Moldabekov
- Center
for Advanced Systems Understanding (CASUS), Görlitz D-02826, Germany
- Helmholtz-Zentrum
Dresden-Rossendorf (HZDR), Dresden D-01328, Germany
| | - Sebastian Schwalbe
- Center
for Advanced Systems Understanding (CASUS), Görlitz D-02826, Germany
- Helmholtz-Zentrum
Dresden-Rossendorf (HZDR), Dresden D-01328, Germany
| | | | - Jan Vorberger
- Helmholtz-Zentrum
Dresden-Rossendorf (HZDR), Dresden D-01328, Germany
| | - Xuecheng Shao
- Department
of Chemistry, Rutgers University, Newark, New Jersey 07102, United States
- Department
of Physics, Rutgers University, Newark, New Jersey 07102, United States
| | - Michele Pavanello
- Department
of Chemistry, Rutgers University, Newark, New Jersey 07102, United States
- Department
of Physics, Rutgers University, Newark, New Jersey 07102, United States
| | - Frank R. Graziani
- Lawrence
Livermore National Laboratory (LLNL), Livermore 94550, California, United States
| | - Tobias Dornheim
- Center
for Advanced Systems Understanding (CASUS), Görlitz D-02826, Germany
- Helmholtz-Zentrum
Dresden-Rossendorf (HZDR), Dresden D-01328, Germany
| |
Collapse
|
2
|
Filinov AV, Bonitz M. Equation of state of partially ionized hydrogen and deuterium plasma revisited. Phys Rev E 2023; 108:055212. [PMID: 38115427 DOI: 10.1103/physreve.108.055212] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/31/2023] [Indexed: 12/21/2023]
Abstract
We present improved first-principle fermionic path integral Monte Carlo (PIMC) simulation results for a dense partially ionized hydrogen (deuterium) plasma, for temperatures in the range 15000K≤T≤400000K and densities 7×10^{-7}g/cm^{3}≤ρ_{H}≤0.085g/cm^{3} (1.4×10^{-6}g/cm^{3}≤ρ_{D}≤0.17g/cm^{3}), corresponding to 100≥r_{s}≥2, where r_{s}=r[over ¯]/a_{B} is the ratio of the mean interparticle distance to the Bohr radius. These simulations are based on the fermionic propagator PIMC (FP-PIMC) approach in the grand canonical ensemble [Filinov et al., Contrib. Plasma Phys. 61, e202100112 (2021)0863-104210.1002/ctpp.202100112] and fully account for correlation and quantum degeneracy and spin effects. For the application to hydrogen and deuterium, we develop a combination of the fourth-order factorization and the pair product ansatz for the density matrix. Moreover, we avoid the fixed node approximation that may lead to uncontrolled errors in restricted PIMC (RPIMC). Our results allow us to critically reevaluate the accuracy of the RPIMC simulations for hydrogen by Hu et al. [Phys. Rev. B 84, 224109 (2011)1098-012110.1103/PhysRevB.84.224109] and of various chemical models. The deviations are generally found to be small, but for the lowest temperature, T=15640 K they reach several percent. We present detailed tables with our first principles results for the pressure and energy isotherms. We expect our updated results will serve as a valuable benchmark for comparison with other methods.
Collapse
Affiliation(s)
- A V Filinov
- Institut für Theoretische Physik und Astrophysik, Christian-Albrechts-Universität zu Kiel, Leibnizstraße 15, 24098 Kiel, Germany
| | - M Bonitz
- Institut für Theoretische Physik und Astrophysik, Christian-Albrechts-Universität zu Kiel, Leibnizstraße 15, 24098 Kiel, Germany
| |
Collapse
|
3
|
Dornheim T, Böhme MP, Moldabekov ZA, Vorberger J. Electronic density response of warm dense hydrogen on the nanoscale. Phys Rev E 2023; 108:035204. [PMID: 37849144 DOI: 10.1103/physreve.108.035204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/11/2023] [Indexed: 10/19/2023]
Abstract
The properties of hydrogen at warm dense matter (WDM) conditions are of high importance for the understanding of astrophysical objects and technological applications such as inertial confinement fusion. In this work, we present extensive ab initio path integral Monte Carlo results for the electronic properties in the Coulomb potential of a fixed ionic configuration. This gives us unique insights into the complex interplay between the electronic localization around the protons with their density response to an external harmonic perturbation. We find qualitative agreement between our simulation data and a heuristic model based on the assumption of a local uniform electron gas model, but important trends are not captured by this simplification. In addition to being interesting in their own right, we are convinced that our results will be of high value for future projects, such as the rigorous benchmarking of approximate theories for the simulation of WDM, most notably density functional theory.
Collapse
Affiliation(s)
- Tobias Dornheim
- Center for Advanced Systems Understanding (CASUS), D-02826 Görlitz, Germany
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), D-01328 Dresden, Germany
| | - Maximilian P Böhme
- Center for Advanced Systems Understanding (CASUS), D-02826 Görlitz, Germany
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), D-01328 Dresden, Germany
- Technische Universität Dresden, D-01062 Dresden, Germany
| | - Zhandos A Moldabekov
- Center for Advanced Systems Understanding (CASUS), D-02826 Görlitz, Germany
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), D-01328 Dresden, Germany
| | - Jan Vorberger
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), D-01328 Dresden, Germany
| |
Collapse
|
4
|
Svensson P, Campbell T, Graziani F, Moldabekov Z, Lyu N, Batista VS, Richardson S, Vinko SM, Gregori G. Development of a new quantum trajectory molecular dynamics framework. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2023; 381:20220325. [PMID: 37393934 PMCID: PMC10315217 DOI: 10.1098/rsta.2022.0325] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 01/19/2023] [Indexed: 07/04/2023]
Abstract
An extension to the wave packet description of quantum plasmas is presented, where the wave packet can be elongated in arbitrary directions. A generalized Ewald summation is constructed for the wave packet models accounting for long-range Coulomb interactions and fermionic effects are approximated by purpose-built Pauli potentials, self-consistent with the wave packets used. We demonstrate its numerical implementation with good parallel support and close to linear scaling in particle number, used for comparisons with the more common wave packet employing isotropic states. Ground state and thermal properties are compared between the models with differences occurring primarily in the electronic subsystem. Especially, the electrical conductivity of dense hydrogen is investigated where a 15% increase in DC conductivity can be seen in our wave packet model compared with other models. This article is part of the theme issue 'Dynamic and transient processes in warm dense matter'.
Collapse
Affiliation(s)
- Pontus Svensson
- Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU, UK
| | - Thomas Campbell
- Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU, UK
| | - Frank Graziani
- Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | - Zhandos Moldabekov
- Center of Advanced Systems Understanding (CASUS), D-02826 Görlitz, Germany
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), D-01328 Dresden, Germany
| | - Ningyi Lyu
- Department of Chemistry, Yale University, New Haven, CT 06520, USA
| | - Victor S Batista
- Department of Chemistry, Yale University, New Haven, CT 06520, USA
- Yale Quantum Institute, Yale University, New Haven, CT 06511, USA
| | | | - Sam M Vinko
- Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU, UK
- Central Laser Facility, STFC Rutherford Appleton Laboratory, Didcot OX11 0QX, UK
| | - Gianluca Gregori
- Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU, UK
| |
Collapse
|
5
|
Dornheim T, Vorberger J, Moldabekov ZA, Böhme M. Analysing the dynamic structure of warm dense matter in the imaginary-time domain: theoretical models and simulations. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2023; 381:20220217. [PMID: 37393936 DOI: 10.1098/rsta.2022.0217] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 01/10/2023] [Indexed: 07/04/2023]
Abstract
Rigorous diagnostics of experiments with warm dense matter are notoriously difficult. A key method is X-ray Thomson scattering (XRTS), but the interpretation of XRTS measurements is usually based on theoretical models that entail various approximations. Recently, Dornheim et al. [Nat. Commun. 13, 7911 (2022)] introduced a new framework for temperature diagnostics of XRTS experiments that is based on imaginary-time correlation functions. On the one hand, switching from the frequency to the imaginary-time domain gives one direct access to a number of physical properties, which facilitates the extraction of the temperature of arbitrarily complex materials without relying on any models or approximations. On the other hand, the bulk of theoretical work in dynamic quantum many-body theory is devoted to the frequency domain, and, to the best of our knowledge, the manifestation of physics properties within the imaginary-time density-density correlation function (ITCF) remains poorly understood. In the present work, we aim to fill this gap by introducing a simple, semi-analytical model for the imaginary-time dependence of two-body correlations within the framework of imaginary-time path integrals. As a practical example, we compare our new model to extensive ab initio path integral Monte Carlo results for the ITCF of a uniform electron gas, and find excellent agreement over a broad range of wavenumbers, densities and temperatures. This article is part of the theme issue 'Dynamic and transient processes in warm dense matter'.
Collapse
Affiliation(s)
- Tobias Dornheim
- Center for Advanced Systems Understanding (CASUS), D-02826 Görlitz, Germany
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), D-01328 Dresden, Germany
| | - Jan Vorberger
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), D-01328 Dresden, Germany
| | - Zhandos A Moldabekov
- Center for Advanced Systems Understanding (CASUS), D-02826 Görlitz, Germany
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), D-01328 Dresden, Germany
| | - Maximilian Böhme
- Center for Advanced Systems Understanding (CASUS), D-02826 Görlitz, Germany
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), D-01328 Dresden, Germany
- Technische Universität Dresden, D-01062 Dresden, Germany
| |
Collapse
|
6
|
Bethkenhagen M, Sharma A, Suryanarayana P, Pask JE, Sadigh B, Hamel S. Properties of carbon up to 10 million kelvin from Kohn-Sham density functional theory molecular dynamics. Phys Rev E 2023; 107:015306. [PMID: 36797894 DOI: 10.1103/physreve.107.015306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 12/22/2022] [Indexed: 06/18/2023]
Abstract
Accurately modeling dense plasmas over wide-ranging conditions of pressure and temperature is a grand challenge critically important to our understanding of stellar and planetary physics as well as inertial confinement fusion. In this work, we employ Kohn-Sham density functional theory (DFT) molecular dynamics (MD) to compute the properties of carbon at warm and hot dense matter conditions in the vicinity of the principal Hugoniot. In particular, we calculate the equation of state (EOS), Hugoniot, pair distribution functions, and diffusion coefficients for carbon at densities spanning 8 g/cm^{3} to 16 g/cm^{3} and temperatures ranging from 100 kK to 10 MK using the Spectral Quadrature method. We find that the computed EOS and Hugoniot are in good agreement with path integral Monte Carlo results and the sesame database. Additionally, we calculate the ion-ion structure factor and viscosity for selected points. All results presented are at the level of full Kohn-Sham DFT-MD, free of empirical parameters, average-atom, and orbital-free approximations employed previously at such conditions.
Collapse
Affiliation(s)
- Mandy Bethkenhagen
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
- École Normale Supérieure de Lyon, Université Lyon 1, Laboratoire de Géologie de Lyon, CNRS UMR 5276, 69364 Lyon, Cedex 07, France
| | - Abhiraj Sharma
- College of Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Phanish Suryanarayana
- College of Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - John E Pask
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - Babak Sadigh
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - Sebastien Hamel
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| |
Collapse
|
7
|
Böhme M, Moldabekov ZA, Vorberger J, Dornheim T. Ab initio path integral Monte Carlo simulations of hydrogen snapshots at warm dense matter conditions. Phys Rev E 2023; 107:015206. [PMID: 36797933 DOI: 10.1103/physreve.107.015206] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 12/19/2022] [Indexed: 06/18/2023]
Abstract
We combine ab initio path integral Monte Carlo (PIMC) simulations with fixed ion configurations from density functional theory molecular dynamics (DFT-MD) simulations to solve the electronic problem for hydrogen under warm dense matter conditions [Böhme et al., Phys. Rev. Lett. 129, 066402 (2022)0031-900710.1103/PhysRevLett.129.066402]. The problem of path collapse due to the Coulomb attraction is avoided by utilizing the pair approximation, which is compared against the simpler Kelbg pair potential. We find very favorable convergence behavior towards the former. Since we do not impose any nodal restrictions, our PIMC simulations are afflicted with the notorious fermion sign problem, which we analyze in detail. While computationally demanding, our results constitute an exact benchmark for other methods and approximations within DFT. Our setup gives us the unique capability to study important properties of warm dense hydrogen such as the electronic static density response and exchange-correlation kernel without any model assumptions, which will be very valuable for a variety of applications such as the interpretation of experiments and the development of new XC functionals.
Collapse
Affiliation(s)
- Maximilian Böhme
- Center for Advanced Systems Understanding (CASUS), D-02826 Görlitz, Germany
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiation Physics, D-01328 Dresden, Germany
- Technische Universität Dresden, Institute of Theoretical Physics, D-01062 Dresden, Germany
| | - Zhandos A Moldabekov
- Center for Advanced Systems Understanding (CASUS), D-02826 Görlitz, Germany
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiation Physics, D-01328 Dresden, Germany
| | - Jan Vorberger
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiation Physics, D-01328 Dresden, Germany
| | - Tobias Dornheim
- Center for Advanced Systems Understanding (CASUS), D-02826 Görlitz, Germany
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiation Physics, D-01328 Dresden, Germany
| |
Collapse
|
8
|
Wang Q, Wang HP. Atomic structure of intermetallic compound Nb 5Si 3by new cluster transformation analysis method. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2022; 35:105401. [PMID: 36538830 DOI: 10.1088/1361-648x/acad57] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
The structure of Nb5Si3at the atomic level is fundamental for identifying its complicated structure in atomic simulations and for further understanding the phase selection behaviors during the solidification of Nb-Si alloys. In this study, the structure of Nb5Si3was investigated using deep-learning molecular dynamic simulations. The idealβNb5Si3is characterized by Nb-centered Voronoi polyhedrons (VPs) <0,0,12,3>, <0,0,12,2>, and Si-centered VPs <0,2,8,2>, <0,2,8,0>. Most initial VPs are distorted at high temperatures due to intense thermal perturbation. A new cluster transformation analysis (CTA) method was proposed to evaluate the stability of ideal VPs against perturbation and predict the possible transformations of the initial VPs in atomic simulations. Most transformations of the initial VPs inβNb5Si3originate from distortions at the edges of the Nb-centered VPs and the faces/vertices of the Si-centered VPs. The distorted VPs inβNb5Si3at high temperatures are dominated by <0,1,10,4>, <0,1,10,5>, <0,2,8,1> and <1,2,5,3> VPs, which are predicted as the primary transformations by the CTA.
Collapse
Affiliation(s)
- Q Wang
- School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an 710072, People's Republic of China
| | - H P Wang
- School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an 710072, People's Republic of China
| |
Collapse
|
9
|
Zhang S, Karasiev VV, Shaffer N, Mihaylov DI, Nichols K, Paul R, Goshadze RMN, Ghosh M, Hinz J, Epstein R, Goedecker S, Hu SX. First-principles equation of state of CHON resin for inertial confinement fusion applications. Phys Rev E 2022; 106:045207. [PMID: 36397594 DOI: 10.1103/physreve.106.045207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 09/24/2022] [Indexed: 06/16/2023]
Abstract
A wide-range (0 to 1044.0 g/cm^{3} and 0 to 10^{9} K) equation-of-state (EOS) table for a CH_{1.72}O_{0.37}N_{0.086} quaternary compound has been constructed based on density-functional theory (DFT) molecular-dynamics (MD) calculations using a combination of Kohn-Sham DFT MD, orbital-free DFT MD, and numerical extrapolation. The first-principles EOS data are compared with predictions of simple models, including the fully ionized ideal gas and the Fermi-degenerate electron gas models, to chart their temperature-density conditions of applicability. The shock Hugoniot, thermodynamic properties, and bulk sound velocities are predicted based on the EOS table and compared to those of C-H compounds. The Hugoniot results show the maximum compression ratio of the C-H-O-N resin is larger than that of CH polystyrene due to the existence of oxygen and nitrogen; while the other properties are similar between CHON and CH. Radiation hydrodynamic simulations have been performed using the table for inertial confinement fusion targets with a CHON ablator and compared with a similar design with CH. The simulations show CHON outperforms CH as the ablator for laser-direct-drive target designs.
Collapse
Affiliation(s)
- Shuai Zhang
- Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623, USA
| | - Valentin V Karasiev
- Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623, USA
| | - Nathaniel Shaffer
- Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623, USA
| | - Deyan I Mihaylov
- Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623, USA
| | - Katarina Nichols
- Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623, USA
| | - Reetam Paul
- Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623, USA
| | - R M N Goshadze
- Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623, USA
| | - Maitrayee Ghosh
- Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623, USA
| | - Joshua Hinz
- Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623, USA
| | - Reuben Epstein
- Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623, USA
| | - Stefan Goedecker
- Department of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel, Switzerland
| | - S X Hu
- Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623, USA
| |
Collapse
|
10
|
Ab Initio Study of Structure and Transport Properties of Warm Dense Nitric Oxide. INORGANICS 2022. [DOI: 10.3390/inorganics10080120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The structure, equation of state and transport properties of warm dense nitric oxide (NO) were investigated in wide density and temperature ranges by ab initio molecular dynamics simulations. Both the Perdew–Burke–Ernzerhof (PBE) and the strongly constrained and appropriately normed functional with revised Vydrov–van Voorhis nonlocal correlation (SCAN−rVV10) functionals were used in the simulations, and the pressures predicted by the SCAN−rVV10 functional were found to be systematically lower than those predicted using PBE and experimental data along the shock Hugoniot curve. Along the Hugoniot curve, as density increased, we found that the system transformed towards a mixture of atomic nitrogen and oxygen liquids with molecular NO that remained present up to the highest densities explored. The electrical conductivity along Hugoniot indicated that nonmetal to metal transition had taken place. We also calculated the electrical and thermal conductivities of nitric oxide in the warm dense matter regime, and used them to compute the Lorentz number. In addition, we also report the electronic density of states.
Collapse
|
11
|
Kovačević T, González-Cataldo F, Stewart ST, Militzer B. Miscibility of rock and ice in the interiors of water worlds. Sci Rep 2022; 12:13055. [PMID: 35906271 PMCID: PMC9338078 DOI: 10.1038/s41598-022-16816-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 07/15/2022] [Indexed: 11/17/2022] Open
Abstract
Super-Earths and sub-Neptunes are the most common planet types in our galaxy. A subset of these planets is predicted to be water worlds, bodies that are rich in water and poor in hydrogen gas. The interior structures of water worlds have been assumed to consist of water surrounding a rocky mantle and iron core. In small planets, water and rock form distinct layers with limited incorporation of water into silicate phases, but these materials may interact differently during the growth and evolution of water worlds due to greater interior pressures and temperatures. Here, we use density functional molecular dynamics (DFT-MD) simulations to study the miscibility and interactions of enstatite (MgSiO3), a major end-member silicate phase, and water (H2O) at extreme conditions in water world interiors. We explore pressures ranging from 30 to 120 GPa and temperatures from 500 to 8000 K. Our results demonstrate that enstatite and water are miscible in all proportions if the temperature exceeds the melting point of MgSiO3. Furthermore, we performed smoothed particle hydrodynamics simulations to demonstrate that the conditions necessary for rock-water miscibility are reached during giant impacts between water-rich bodies of 0.7–4.7 Earth masses. Our simulations lead to water worlds that include a mixed layer of rock and water.
Collapse
Affiliation(s)
- Tanja Kovačević
- Department of Earth and Planetary Science, University of California, Berkeley, CA, 94720, USA.
| | - Felipe González-Cataldo
- Department of Earth and Planetary Science, University of California, Berkeley, CA, 94720, USA
| | - Sarah T Stewart
- Department of Earth and Planetary Sciences, University of California, Davis, CA, 95616, USA
| | - Burkhard Militzer
- Department of Earth and Planetary Science, University of California, Berkeley, CA, 94720, USA.,Department of Astronomy, University of California, Berkeley, CA, 94720, USA
| |
Collapse
|
12
|
Kim YJ, Militzer B, Boates B, Bonev S, Celliers PM, Collins GW, Driver KP, Fratanduono DE, Hamel S, Jeanloz R, Rygg JR, Swift DC, Eggert JH, Millot M. Evidence for Dissociation and Ionization in Shock Compressed Nitrogen to 800 GPa. PHYSICAL REVIEW LETTERS 2022; 129:015701. [PMID: 35841582 DOI: 10.1103/physrevlett.129.015701] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
Triple bonding in the nitrogen molecule (N_{2}) is among the strongest chemical bonds with a dissociation enthalpy of 9.8 eV/molecule. Nitrogen is therefore an excellent test bed for theoretical and numerical methods aimed at understanding how bonding evolves under the influence of the extreme pressures and temperatures of the warm dense matter regime. Here, we report laser-driven shock experiments on fluid molecular nitrogen up to 800 GPa and 4.0 g/cm^{3}. Line-imaging velocimetry measurements and impedance matching method with a quartz reference yield shock equation of state data of initially precompressed nitrogen. Comparison with numerical simulations using path integral Monte Carlo and density functional theory molecular dynamics reveals clear signatures of chemical dissociation and the onset of L-shell ionization. Combining data along multiple shock Hugoniot curves starting from densities between 0.76 and 1.29 g/cm^{3}, our study documents how pressure and density affect these changes in chemical bonding and provides benchmarks for future theoretical developments in this regime, with applications for planetary interior modeling, high energy density science, and inertial confinement fusion research.
Collapse
Affiliation(s)
- Yong-Jae Kim
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - Burkhard Militzer
- Departments of Earth and Planetary Science and Astronomy, University of California, Berkeley, California 94720, USA
| | - Brian Boates
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - Stanimir Bonev
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - Peter M Celliers
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - Gilbert W Collins
- Departments of Mechanical Engineering, Physics and Astronomy, and the Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623, USA
| | - Kevin P Driver
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | | | - Sebastien Hamel
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - Raymond Jeanloz
- Departments of Earth and Planetary Science and Astronomy, University of California, Berkeley, California 94720, USA
| | - J Ryan Rygg
- Departments of Mechanical Engineering, Physics and Astronomy, and the Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623, USA
| | - Damian C Swift
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - Jon H Eggert
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - Marius Millot
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| |
Collapse
|
13
|
On the Wigner-Kirkwood Expansion of the Free Energy and the Evaluation of the Quantum Correction. ATOMS 2022. [DOI: 10.3390/atoms10020065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2022] Open
Abstract
The Wigner-Kirkwood expansion of the quantum correction to the classical free energy is generally said to be in powers of ℏ2 and only its first few terms are presented. In this work, we use the Bloch differential equation to obtain a general description of all terms in a dimensionless form. The first corrective term turns out to be proportional to the product of λ2/a2, where λ is the thermal de Broglie wavelength and a3 is the volume per particle, by an effective coupling constant. This dimensionless parameter can be used to assess the magnitude of the quantum correction. Using the one-component plasma as an illustration we highlight the importance of the magnitude of the potential on the quantum correction. The results presented are not formally new; the emphasis is placed on a simple and didactic presentation.
Collapse
|
14
|
Ottoway CF, Rehn DA, Saumon D, Starrett CE. Effect of ionic disorder on the principal shock Hugoniot. Phys Rev E 2021; 104:055208. [PMID: 34942703 DOI: 10.1103/physreve.104.055208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/11/2021] [Indexed: 11/07/2022]
Abstract
The effect of ionic disorder on the principal Hugoniot is investigated using multiple scattering theory to very high pressure (Gbar). Calculations using molecular dynamics to simulate ionic disorder are compared to those with a fixed crystal lattice, for both carbon and aluminum. For the range of conditions considered here we find that ionic disorder has a relatively minor influence. It is most important at the onset of shell ionization and we find that, at higher pressures, the subtle effect of the ionic environment is overwhelmed by the larger number of ionized electrons with higher thermal energies.
Collapse
Affiliation(s)
- Crystal F Ottoway
- Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, New Mexico 87545, USA
| | - Daniel A Rehn
- Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, New Mexico 87545, USA
| | - Didier Saumon
- Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, New Mexico 87545, USA
| | - C E Starrett
- Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, New Mexico 87545, USA
| |
Collapse
|
15
|
Hunger K, Schoof T, Dornheim T, Bonitz M, Filinov A. Momentum distribution function and short-range correlations of the warm dense electron gas: Ab initio quantum Monte Carlo results. Phys Rev E 2021; 103:053204. [PMID: 34134307 DOI: 10.1103/physreve.103.053204] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/19/2021] [Indexed: 01/22/2023]
Abstract
In a classical plasma the momentum distribution, n(k), decays exponentially, for large k, and the same is observed for an ideal Fermi gas. However, when quantum and correlation effects are relevant simultaneously, an algebraic decay, n_{∞}(k)∼k^{-8} has been predicted. This is of relevance for cross sections and threshold processes in dense plasmas that depend on the number of energetic particles. Here we present extensive ab initio results for the momentum distribution of the nonideal uniform electron gas at warm dense matter conditions. Our results are based on first principle fermionic path integral Monte Carlo (CPIMC) simulations and clearly confirm the k^{-8} asymptotic. This asymptotic behavior is directly linked to short-range correlations which are analyzed via the on-top pair distribution function (on-top PDF), i.e., the PDF of electrons with opposite spin. We present extensive results for the density and temperature dependence of the on-top PDF and for the momentum distribution in the entire momentum range.
Collapse
Affiliation(s)
- Kai Hunger
- Institut für Theoretische Physik und Astrophysik, Christian-Albrechts-Universität zu Kiel, Leibnizstraße 15, 24098 Kiel, Germany
| | - Tim Schoof
- Institut für Theoretische Physik und Astrophysik, Christian-Albrechts-Universität zu Kiel, Leibnizstraße 15, 24098 Kiel, Germany.,Deutsches Elektronen Synchotron (DESY), Hamburg, Germany
| | - Tobias Dornheim
- Center for Advanced Systems Understanding (CASUS), D-02826 Görlitz, Germany.,Helmholtz-Zentrum Dresden-Rossendorf (HZDR), D-01328 Dresden, Germany
| | - Michael Bonitz
- Institut für Theoretische Physik und Astrophysik, Christian-Albrechts-Universität zu Kiel, Leibnizstraße 15, 24098 Kiel, Germany
| | - Alexey Filinov
- Institut für Theoretische Physik und Astrophysik, Christian-Albrechts-Universität zu Kiel, Leibnizstraße 15, 24098 Kiel, Germany.,Joint Institute for High Temperatures, Russian Academy of Sciences, Izhorskaya 13, Moscow 125412, Russia
| |
Collapse
|
16
|
Ovechkin AA, Loboda PA, Falkov AL, Sapozhnikov PA. Equation of state modeling with pseudoatom molecular dynamics. Phys Rev E 2021; 103:053206. [PMID: 34134221 DOI: 10.1103/physreve.103.053206] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/28/2021] [Indexed: 11/07/2022]
Abstract
Using a modified version of the pseudoatom molecular-dynamics approach, the silicon and oxygen equations of state were generated and then employed to construct the equation of state of silicon dioxide. The results are supported by the close agreement with ab initio simulations of the silicon pressure and experimental shock Hugoniot of silicon dioxide. Ion thermal contributions to thermodynamic functions provided by the PAMD simulations are compared to their counterparts obtained with the one-component plasma and charged-hard-sphere approximations.
Collapse
Affiliation(s)
- A A Ovechkin
- Russian Federal Nuclear Center, Zababakhin All-Russian Research Institute of Technical Physics (RFNC-VNIITF), Snezhinsk, Chelyabinsk region 456770, Russia
| | - P A Loboda
- Russian Federal Nuclear Center, Zababakhin All-Russian Research Institute of Technical Physics (RFNC-VNIITF), Snezhinsk, Chelyabinsk region 456770, Russia.,National Research Nuclear University, Moscow Engineering Physics Institute (MEPhI), Moscow 115409, Russia
| | - A L Falkov
- Russian Federal Nuclear Center, Zababakhin All-Russian Research Institute of Technical Physics (RFNC-VNIITF), Snezhinsk, Chelyabinsk region 456770, Russia
| | - P A Sapozhnikov
- Russian Federal Nuclear Center, Zababakhin All-Russian Research Institute of Technical Physics (RFNC-VNIITF), Snezhinsk, Chelyabinsk region 456770, Russia
| |
Collapse
|