1
|
Goswami K, Cherstvy AG, Godec A, Metzler R. Anomalous diffusion of active Brownian particles in responsive elastic gels: Nonergodicity, non-Gaussianity, and distributions of trapping times. Phys Rev E 2024; 110:044609. [PMID: 39562954 DOI: 10.1103/physreve.110.044609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 09/24/2024] [Indexed: 11/21/2024]
Abstract
Understanding actual transport mechanisms of self-propelled particles (SPPs) in complex elastic gels-such as in the cell cytoplasm, in in vitro networks of chromatin or of F-actin fibers, or in mucus gels-has far-reaching consequences. Implications beyond biology/biophysics are in engineering and medicine, with a particular focus on microrheology and on targeted drug delivery. Here, we examine via extensive computer simulations the dynamics of SPPs in deformable gellike structures responsive to thermal fluctuations. We treat tracer particles comparable to and larger than the mesh size of the gel. We observe distinct trapping events of active tracers at relatively short times, leading to subdiffusion; it is followed by an escape from meshwork-induced traps due to the flexibility of the network, resulting in superdiffusion. We thus find crossovers between different transport regimes. We also find pronounced nonergodicity in the dynamics of SPPs and non-Gaussianity at intermediate times. The distributions of trapping times of the tracers escaping from "cages" in our quasiperiodic gel often reveal the existence of two distinct timescales in the dynamics. At high activity of the tracers these timescales become comparable. Furthermore, we find that the mean waiting time exhibits a power-law dependence on the activity of SPPs (in terms of their Péclet number). Our results additionally showcase both exponential and nonexponential trapping events at high activities. Extensions of this setup are possible, with the factors such as anisotropy of the particles, different topologies of the gel network, and various interactions between the particles (also of a nonlocal nature) to be considered.
Collapse
|
2
|
Anthuparambil ND, Girelli A, Timmermann S, Kowalski M, Akhundzadeh MS, Retzbach S, Senft MD, Dargasz M, Gutmüller D, Hiremath A, Moron M, Öztürk Ö, Poggemann HF, Ragulskaya A, Begam N, Tosson A, Paulus M, Westermeier F, Zhang F, Sprung M, Schreiber F, Gutt C. Exploring non-equilibrium processes and spatio-temporal scaling laws in heated egg yolk using coherent X-rays. Nat Commun 2023; 14:5580. [PMID: 37696830 PMCID: PMC10495384 DOI: 10.1038/s41467-023-41202-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 08/23/2023] [Indexed: 09/13/2023] Open
Abstract
The soft-grainy microstructure of cooked egg yolk is the result of a series of out-of-equilibrium processes of its protein-lipid contents; however, it is unclear how egg yolk constituents contribute to these processes to create the desired microstructure. By employing X-ray photon correlation spectroscopy, we investigate the functional contribution of egg yolk constituents: proteins, low-density lipoproteins (LDLs), and yolk-granules to the development of grainy-gel microstructure and microscopic dynamics during cooking. We find that the viscosity of the heated egg yolk is solely determined by the degree of protein gelation, whereas the grainy-gel microstructure is controlled by the extent of LDL aggregation. Overall, protein denaturation-aggregation-gelation and LDL-aggregation follows Arrhenius-type time-temperature superposition (TTS), indicating an identical mechanism with a temperature-dependent reaction rate. However, above 75 °C TTS breaks down and temperature-independent gelation dynamics is observed, demonstrating that the temperature can no longer accelerate certain non-equilibrium processes above a threshold value.
Collapse
Affiliation(s)
- Nimmi Das Anthuparambil
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany.
- Department Physik, Universität Siegen, 57072, Siegen, Germany.
| | - Anita Girelli
- Institut für Angewandte Physik, Universität Tübingen, 72076, Tübingen, Germany
| | | | - Marvin Kowalski
- Department Physik, Universität Siegen, 57072, Siegen, Germany
| | | | - Sebastian Retzbach
- Institut für Angewandte Physik, Universität Tübingen, 72076, Tübingen, Germany
| | - Maximilian D Senft
- Institut für Angewandte Physik, Universität Tübingen, 72076, Tübingen, Germany
| | | | - Dennis Gutmüller
- Institut für Angewandte Physik, Universität Tübingen, 72076, Tübingen, Germany
| | - Anusha Hiremath
- Institut für Angewandte Physik, Universität Tübingen, 72076, Tübingen, Germany
| | - Marc Moron
- Fakultät Physik/DELTA, Technische Universität Dortmund, 44221, Dortmund, Germany
| | - Özgül Öztürk
- Department Physik, Universität Siegen, 57072, Siegen, Germany
| | | | | | - Nafisa Begam
- Institut für Angewandte Physik, Universität Tübingen, 72076, Tübingen, Germany
| | - Amir Tosson
- Department Physik, Universität Siegen, 57072, Siegen, Germany
| | - Michael Paulus
- Fakultät Physik/DELTA, Technische Universität Dortmund, 44221, Dortmund, Germany
| | - Fabian Westermeier
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
| | - Fajun Zhang
- Institut für Angewandte Physik, Universität Tübingen, 72076, Tübingen, Germany
| | - Michael Sprung
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
| | - Frank Schreiber
- Institut für Angewandte Physik, Universität Tübingen, 72076, Tübingen, Germany
| | - Christian Gutt
- Department Physik, Universität Siegen, 57072, Siegen, Germany.
| |
Collapse
|
3
|
Sakamoto K, Akimoto T, Muramatsu M, Sansom MSP, Metzler R, Yamamoto E. Heterogeneous biological membranes regulate protein partitioning via fluctuating diffusivity. PNAS NEXUS 2023; 2:pgad258. [PMID: 37593200 PMCID: PMC10427746 DOI: 10.1093/pnasnexus/pgad258] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 06/22/2023] [Accepted: 07/27/2023] [Indexed: 08/19/2023]
Abstract
Cell membranes phase separate into ordered L o and disordered L d domains depending on their compositions. This membrane compartmentalization is heterogeneous and regulates the localization of specific proteins related to cell signaling and trafficking. However, it is unclear how the heterogeneity of the membranes affects the diffusion and localization of proteins in L o and L d domains. Here, using Langevin dynamics simulations coupled with the phase-field (LDPF) method, we investigate several tens of milliseconds-scale diffusion and localization of proteins in heterogeneous biological membrane models showing phase separation into L o and L d domains. The diffusivity of proteins exhibits temporal fluctuations depending on the field composition. Increases in molecular concentrations and domain preference of the molecule induce subdiffusive behavior due to molecular collisions by crowding and confinement effects, respectively. Moreover, we quantitatively demonstrate that the protein partitioning into the L o domain is determined by the difference in molecular diffusivity between domains, molecular preference of domain, and molecular concentration. These results pave the way for understanding how biological reactions caused by molecular partitioning may be controlled in heterogeneous media. Moreover, the methodology proposed here is applicable not only to biological membrane systems but also to the study of diffusion and localization phenomena of molecules in various heterogeneous systems.
Collapse
Affiliation(s)
- Ken Sakamoto
- Department of System Design Engineering, Keio University, Yokohama, Kanagawa 223-8522, Japan
| | - Takuma Akimoto
- Department of Physics, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Mayu Muramatsu
- Department of Mechanical Engineering, Keio University, Yokohama, Kanagawa 223-8522, Japan
| | - Mark S P Sansom
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Ralf Metzler
- Institute of Physics & Astronomy, University of Potsdam, Potsdam-Golm 14476, Germany
- Asia Pacific Centre for Theoretical Physics, Pohang 37673, Republic of Korea
| | - Eiji Yamamoto
- Department of System Design Engineering, Keio University, Yokohama, Kanagawa 223-8522, Japan
| |
Collapse
|
4
|
Yadav RS, Das C, Chakrabarti R. Dynamics of a spherical self-propelled tracer in a polymeric medium: interplay of self-propulsion, stickiness, and crowding. SOFT MATTER 2023; 19:689-700. [PMID: 36598025 DOI: 10.1039/d2sm01626e] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
We employ computer simulations to study the dynamics of a self-propelled spherical tracer particle in a viscoelastic medium, made of a long polymer chain. Here, the interplay between viscoelasticity, stickiness, and activity (self-propulsion) brings additional complexity to the tracer dynamics. Our simulations show that on increasing the stickiness of the tracer particle to the polymer beads, the dynamics of the tracer particle slows down as it gets stuck to the polymer chain and moves along with it. But with increasing self-propulsion velocity, the dynamics gets enhanced. In the case of increasing stickiness as well as activity, the non-Gaussian parameter (NGP) exhibits non-monotonic behavior, which also shows up in the re-scaled self part of the van-Hove function. Non-Gaussianity results owing to the enhanced binding events and the sticky motion of the tracer along with the chain with increasing stickiness. On the other hand, with increasing activity, initially non-Gaussianity increases as the tracer moves through the heterogeneous polymeric environment but for higher activity, the tracer escapes resulting in a negative NGP. For higher values of stickiness, the trapping time distributions of the passive tracer particle broaden and have long tails. On the other hand, for a given stickiness with increasing self-propulsion force, the trapping time distributions become narrower and have short tails. We believe that our current simulation study will be helpful in elucidating the complex motion of activity-driven probes in viscoelastic media.
Collapse
Affiliation(s)
- Ramanand Singh Yadav
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India.
| | - Chintu Das
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India.
| | - Rajarshi Chakrabarti
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India.
| |
Collapse
|
5
|
Theeyancheri L, Sahoo R, Kumar P, Chakrabarti R. In Silico Studies of Active Probe Dynamics in Crowded Media. ACS OMEGA 2022; 7:33637-33650. [PMID: 36188301 PMCID: PMC9520552 DOI: 10.1021/acsomega.2c04709] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 09/07/2022] [Indexed: 06/16/2023]
Abstract
Active systems are made of agents, each of which takes energy from the environment and converts it to directed motion. Therefore, by construction, these systems function out of equilibrium and cannot be described using equilibrium statistical mechanics. Though the most studied aspect has been the collective motion of active particles, the motion at the individual particle level in crowded media is also of prime importance. Examples include the motion of bacteria in hydrogels, single cell migration as a way to search for food or escape from toxic agents, and synthetic active agents transporting through soft crowded media. This review presents an overview of our understanding of single active probe dynamics in crowded media from computer simulations. The active probe is a Janus or a dumbbell-shaped particle, and the medium is made of crowders that are either sticky or repulsive to the probe and could be frozen or mobile. The density and the topology of the crowders also play an important role. We hope our in silico studies will help to elucidate the mechanism of activity-driven transport in crowded media in general and design nanomachines for targeted delivery.
Collapse
|
6
|
Słyk E, Skóra T, Kondrat S. How macromolecules softness affects diffusion under crowding. SOFT MATTER 2022; 18:5366-5370. [PMID: 35833511 DOI: 10.1039/d2sm00357k] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Diffusion in a macromolecularly crowded environment is essential for many intracellular processes, from metabolism and catalysis to gene transcription and translation. So far, theoretical and experimental work has focused on anomalous subdiffusion, and the effects of interactions, shapes, and composition, while the compactness or softness of macromolecules has received less attention. Herein, we use Brownian dynamics simulations to study how the softness of crowders affects macromolecular diffusion. We find that in most cases, soft crowders slow down the diffusion less effectively than hard crowders like Ficoll. For instance, at a 30% occupied volume fraction, the diffusion in Ficoll70 is about 20% slower than in soft crowders of the same size. However, our simulations indicate that elongated macromolecules, such as double-stranded DNA pieces, can diffuse comparably or even faster in hard crowders. We relate these effects to the volume excluded by soft and hard crowders to different tracers. Our results show that the softness and shape of macromolecules are crucial factors determining diffusion under crowding, relevant to diverse intracellular environments.
Collapse
Affiliation(s)
- Edyta Słyk
- Institute of Physical Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland.
- Department of Theoretical Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University in Lublin, 20-031 Lublin, Poland
| | - Tomasz Skóra
- Institute of Physical Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland.
| | - Svyatoslav Kondrat
- Institute of Physical Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland.
- Max-Planck-Institut für Intelligente Systeme, Heisenbergstraße 3, 70569 Stuttgart, Germany
- IV. Institut für Theoretische Physik, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
- Institut für Computerphysik, Universität Stuttgart, Allmandring 3, 70569 Stuttgart, Germany
| |
Collapse
|
7
|
Kumar P, Theeyancheri L, Chakrabarti R. Chemically symmetric and asymmetric self-driven rigid dumbbells in a 2D polymer gel. SOFT MATTER 2022; 18:2663-2671. [PMID: 35311848 DOI: 10.1039/d1sm01820e] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
We employ computer simulations to unveil the translational and rotational dynamics of self-driven chemically symmetric and asymmetric rigid dumbbells in a two-dimensional polymer gel. Our results show that the activity or the self-propulsion always enhances the dynamics of the dumbbells. Making the self-propelled dumbbell chemically asymmetric leads to further enhancement in dynamics. Additionally, the direction of self-propulsion is a key factor for chemically asymmetric dumbbells, where self-propulsion towards the non-sticky half of the dumbbell results in faster translational and rotational dynamics compared to the case with the self-propulsion towards the sticky half of the dumbbell. Our analyses show that both the symmetric and asymmetric passive rigid dumbbells get trapped inside the mesh of the polymer gel, but the chemical asymmetry always facilitates the mesh to mesh motion of the dumbbell and it is even more pronounced when the dumbbell is self-propelled. This results in multiple peaks in the van Hove function with increasing self-propulsion. In a nutshell, we believe that our in silico study can guide researchers to design efficient artificial microswimmers possessing potential applications in site-specific delivery.
Collapse
Affiliation(s)
- Praveen Kumar
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India.
| | - Ligesh Theeyancheri
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India.
| | - Rajarshi Chakrabarti
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India.
| |
Collapse
|