1
|
Jiang D, Hong Y, Wang W. Simulation of the continuous time random walk using subordination schemes. Phys Rev E 2024; 110:034113. [PMID: 39425381 DOI: 10.1103/physreve.110.034113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 07/30/2024] [Indexed: 10/21/2024]
Abstract
The continuous time random walk model has been widely applied in various fields, including physics, biology, chemistry, finance, social phenomena, etc. In this work, we present an algorithm that utilizes a subordinate formula to generate data of the continuous time random walk in the long time limit. The algorithm has been validated using commonly employed observables, such as typical fluctuations of the positional distribution, rare fluctuations, the mean and the variance of the position, and breakthrough curves with time-dependent bias, demonstrating a perfect match.
Collapse
|
2
|
Federbush A, Moscovich A, Bar-Sinai Y. Hidden Markov modeling of single-particle diffusion with stochastic tethering. Phys Rev E 2024; 109:034129. [PMID: 38632757 DOI: 10.1103/physreve.109.034129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 02/14/2024] [Indexed: 04/19/2024]
Abstract
The statistics of the diffusive motion of particles often serve as an experimental proxy for their interaction with the environment. However, inferring the physical properties from the observed trajectories is challenging. Inspired by a recent experiment, here we analyze the problem of particles undergoing two-dimensional Brownian motion with transient tethering to the surface. We model the problem as a hidden Markov model where the physical position is observed and the tethering state is hidden. We develop an alternating maximization algorithm to infer the hidden state of the particle and estimate the physical parameters of the system. The crux of our method is a saddle-point-like approximation, which involves finding the most likely sequence of hidden states and estimating the physical parameters from it. Extensive numerical tests demonstrate that our algorithm reliably finds the model parameters and is insensitive to the initial guess. We discuss the different regimes of physical parameters and the algorithm's performance in these regimes. We also provide a free software implementation of our algorithm.
Collapse
Affiliation(s)
- Amit Federbush
- Department of Condensed Matter Physics, Tel Aviv University, Tel Aviv 69978, Israel
- Center for Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv 69978, Israel
| | - Amit Moscovich
- Department of Statistics and Operations Research, Tel Aviv University, Tel Aviv 69978, Israel
| | - Yohai Bar-Sinai
- Department of Condensed Matter Physics, Tel Aviv University, Tel Aviv 69978, Israel
- Center for Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
3
|
Kurilovich AA, Mantsevich VN, Chechkin AV, Palyulin VV. Negative diffusion of excitons in quasi-two-dimensional systems. Phys Chem Chem Phys 2024; 26:922-935. [PMID: 38088027 DOI: 10.1039/d3cp03521b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
We show how two different mobile-immobile type models explain the observation of negative diffusion of excitons reported in experimental studies in quasi-two-dimensional semiconductor systems. The main reason for the effect is the initial trapping and a delayed release of free excitons in the area close to the original excitation spot. The density of trapped excitons is not registered experimentally. Hence, the signal from the free excitons alone includes the delayed release of not diffusing trapped particles. This is seen as the narrowing of the exciton density profile or decrease of mean-squared displacement which is then interpreted as a negative diffusion. The effect is enhanced with the increase of recombination intensity as well as the rate of the exciton-exciton binary interactions.
Collapse
Affiliation(s)
- Aleksandr A Kurilovich
- Center for Energy Science and Technology, Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, 121205, Moscow, Russia
| | - Vladimir N Mantsevich
- Chair of Semiconductors and Cryoelectronics, Physics department, Lomonosov Moscow State University, 119991, Moscow, Russia
| | - Aleksei V Chechkin
- Faculty of Pure and Applied Mathematics, Hugo Steinhaus Center, Wroclaw University of Science and Technology, Wyspianskiego 27, 50-370 Wroclaw, Poland
- Institute for Physics & Astronomy, University of Potsdam, D-14476 Potsdam-Golm, Germany
- Akhiezer Institute for Theoretical Physics National Science Center "Kharkov Institute of Physics and Technology", 61108, Kharkov, Ukraine
| | - Vladimir V Palyulin
- Applied AI centre, Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, Moscow, 121205, Russia.
| |
Collapse
|
4
|
Hu M, Chen H, Wang H, Burov S, Barkai E, Wang D. Triggering Gaussian-to-Exponential Transition of Displacement Distribution in Polymer Nanocomposites via Adsorption-Induced Trapping. ACS NANO 2023; 17:21708-21718. [PMID: 37879044 DOI: 10.1021/acsnano.3c06897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
In many disordered systems, the diffusion of classical particles is described by a displacement distribution P(x, t) that displays exponential tails instead of Gaussian statistics expected for Brownian motion. However, the experimental demonstration of control of this behavior by increasing the disorder strength has remained challenging. In this work, we explore the Gaussian-to-exponential transition by using diffusion of poly(ethylene glycol) (PEG) in attractive nanoparticle-polymer mixtures and controlling the volume fraction of the nanoparticles. In this work, we find "knobs", namely nanoparticle concentration and interaction, which enable the change in the shape of P(x,t) in a well-defined way. The Gaussian-to-exponential transition is consistent with a modified large deviation approach for a continuous time random walk and also with Monte Carlo simulations involving a microscopic model of polymer trapping via reversible adsorption to the nanoparticle surface. Our work bears significance in unraveling the fundamental physics behind the exponential decay of the displacement distribution at the tails, which is commonly observed in soft materials and nanomaterials.
Collapse
Affiliation(s)
- Ming Hu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, People's Republic of China
- University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Hongbo Chen
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, People's Republic of China
| | - Hongru Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, People's Republic of China
- University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Stanislav Burov
- Department of Physics, Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Eli Barkai
- Department of Physics, Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Dapeng Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, People's Republic of China
- University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| |
Collapse
|
5
|
Wei Q, Wang W, Zhou H, Metzler R, Chechkin A. Time-fractional Caputo derivative versus other integrodifferential operators in generalized Fokker-Planck and generalized Langevin equations. Phys Rev E 2023; 108:024125. [PMID: 37723675 DOI: 10.1103/physreve.108.024125] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 07/21/2023] [Indexed: 09/20/2023]
Abstract
Fractional diffusion and Fokker-Planck equations are widely used tools to describe anomalous diffusion in a large variety of complex systems. The equivalent formulations in terms of Caputo or Riemann-Liouville fractional derivatives can be derived as continuum limits of continuous-time random walks and are associated with the Mittag-Leffler relaxation of Fourier modes, interpolating between a short-time stretched exponential and a long-time inverse power-law scaling. More recently, a number of other integrodifferential operators have been proposed, including the Caputo-Fabrizio and Atangana-Baleanu forms. Moreover, the conformable derivative has been introduced. We study here the dynamics of the associated generalized Fokker-Planck equations from the perspective of the moments, the time-averaged mean-squared displacements, and the autocovariance functions. We also study generalized Langevin equations based on these generalized operators. The differences between the Fokker-Planck and Langevin equations with different integrodifferential operators are discussed and compared with the dynamic behavior of established models of scaled Brownian motion and fractional Brownian motion. We demonstrate that the integrodifferential operators with exponential and Mittag-Leffler kernels are not suitable to be introduced to Fokker-Planck and Langevin equations for the physically relevant diffusion scenarios discussed in our paper. The conformable and Caputo Langevin equations are unveiled to share similar properties with scaled and fractional Brownian motion, respectively.
Collapse
Affiliation(s)
- Qing Wei
- School of Mechanics and Civil Engineering, China University of Mining and Technology, Beijing 100083, People's Republic of China
- University of Potsdam, Institute of Physics & Astronomy, 14476 Potsdam-Golm, Germany
| | - Wei Wang
- University of Potsdam, Institute of Physics & Astronomy, 14476 Potsdam-Golm, Germany
| | - Hongwei Zhou
- School of Energy and Mining Engineering, China University of Mining and Technology, Beijing 100083, People's Republic of China
| | - Ralf Metzler
- University of Potsdam, Institute of Physics & Astronomy, 14476 Potsdam-Golm, Germany
- Asia Pacific Center for Theoretical Physics, Pohang 37673, Republic of Korea
| | - Aleksei Chechkin
- University of Potsdam, Institute of Physics & Astronomy, 14476 Potsdam-Golm, Germany
- Faculty of Pure and Applied Mathematics, Hugo Steinhaus Center, Wroclaw University of Science and Technology, Wyspianskiego 27, 50-370 Wroclaw, Poland
- Akhiezer Institute for Theoretical Physics National Science Center, Kharkiv Institute of Physics and Technology, Akademichna 1, Kharkiv 61108, Ukraine
| |
Collapse
|
6
|
Kosztołowicz T, Dutkiewicz A, Lewandowska KD, Wąsik S, Arabski M. Subdiffusion equation with Caputo fractional derivative with respect to another function in modeling diffusion in a complex system consisting of a matrix and channels. Phys Rev E 2022; 106:044138. [PMID: 36397549 DOI: 10.1103/physreve.106.044138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Anomalous diffusion of an antibiotic (colistin) in a system consisting of packed gel (alginate) beads immersed in water is studied experimentally and theoretically. The experimental studies are performed using the interferometric method of measuring concentration profiles of a diffusing substance. We use the g-subdiffusion equation with the fractional Caputo time derivative with respect to another function g to describe the process. The function g and relevant parameters define anomalous diffusion. We show that experimentally measured time evolution of the amount of antibiotic released from the system determines the function g. The process can be interpreted as subdiffusion in which the subdiffusion parameter (exponent) α decreases over time. The g-subdiffusion equation, which is more general than the "ordinary" fractional subdiffusion equation, can be widely used in various fields of science to model diffusion in a system in which parameters, and even a type of diffusion, evolve over time. We postulate that diffusion in a system composed of channels and a matrix can be described by the g-subdiffusion equation, just like diffusion in a system of packed gel beads placed in water.
Collapse
Affiliation(s)
- Tadeusz Kosztołowicz
- Institute of Physics, Jan Kochanowski University, Uniwersytecka 7, 25-406 Kielce, Poland
| | - Aldona Dutkiewicz
- Faculty of Mathematics and Computer Science, Adam Mickiewicz University, Uniwersytetu Poznańskiego 4, 61-614 Poznań, Poland
| | - Katarzyna D Lewandowska
- Department of Radiological Informatics and Statistics, Medical University of Gdańsk, Tuwima 15, 80-210 Gdańsk, Poland
| | - Sławomir Wąsik
- Department of Medical Physics and Biophysics, Institute of Physics, Jan Kochanowski University, Uniwersytecka 7, 25-406 Kielce, Poland
| | - Michał Arabski
- Institute of Biology, Jan Kochanowski University, Uniwersytecka 7, 25-406 Kielce, Poland
| |
Collapse
|
7
|
Doerries TJ, Chechkin AV, Metzler R. Apparent anomalous diffusion and non-Gaussian distributions in a simple mobile-immobile transport model with Poissonian switching. J R Soc Interface 2022; 19:20220233. [PMID: 35857918 PMCID: PMC9257594 DOI: 10.1098/rsif.2022.0233] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 06/15/2022] [Indexed: 09/01/2023] Open
Abstract
We analyse mobile-immobile transport of particles that switch between the mobile and immobile phases with finite rates. Despite this seemingly simple assumption of Poissonian switching, we unveil a rich transport dynamics including significant transient anomalous diffusion and non-Gaussian displacement distributions. Our discussion is based on experimental parameters for tau proteins in neuronal cells, but the results obtained here are expected to be of relevance for a broad class of processes in complex systems. Specifically, we obtain that, when the mean binding time is significantly longer than the mean mobile time, transient anomalous diffusion is observed at short and intermediate time scales, with a strong dependence on the fraction of initially mobile and immobile particles. We unveil a Laplace distribution of particle displacements at relevant intermediate time scales. For any initial fraction of mobile particles, the respective mean squared displacement (MSD) displays a plateau. Moreover, we demonstrate a short-time cubic time dependence of the MSD for immobile tracers when initially all particles are immobile.
Collapse
Affiliation(s)
- Timo J. Doerries
- Institute of Physics and Astronomy, University of Potsdam, 14476 Potsdam, Germany
| | - Aleksei V. Chechkin
- Institute of Physics and Astronomy, University of Potsdam, 14476 Potsdam, Germany
- Faculty of Pure and Applied Mathematics, Hugo Steinhaus Center, Wrocław University of Science and Technology, Wyspianskiego 27, 50-370 Wrocław, Poland
- Akhiezer Institute for Theoretical Physics, National Science Center ‘Kharkiv Institute of Physics and Technology’, 61108 Kharkiv, Ukraine
| | - Ralf Metzler
- Institute of Physics and Astronomy, University of Potsdam, 14476 Potsdam, Germany
| |
Collapse
|
8
|
Kurilovich AA, Mantsevich VN, Mardoukhi Y, Stevenson KJ, Chechkin AV, Palyulin VV. Non-Markovian diffusion of excitons in layered perovskites and transition metal dichalcogenides. Phys Chem Chem Phys 2022; 24:13941-13950. [PMID: 35621272 DOI: 10.1039/d2cp00557c] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The diffusion of excitons in perovskites and transition metal dichalcogenides shows clear anomalous, subdiffusive behaviour in experiments. In this paper we develop a non-Markovian mobile-immobile model which provides an explanation of this behaviour through paired theoretical and simulation approaches. The simulation model is based on a random walk on a 2D lattice with randomly distributed deep traps such that the trapping time distribution involves slowly decaying power-law asymptotics. The theoretical model uses coupled diffusion and rate equations for free and trapped excitons, respectively, with an integral term responsible for trapping. The model provides a good fitting of the experimental data, thus, showing a way for quantifying the exciton diffusion dynamics.
Collapse
Affiliation(s)
- Aleksandr A Kurilovich
- Center for Energy Science and Technology, Skolkovo Institute of Science and Technology, 121205, Moscow, Russia
| | - Vladimir N Mantsevich
- Chair of Semiconductors and Cryoelectronics & Quantum Technology Center, Physics Department, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Yousof Mardoukhi
- Institute for Physics & Astronomy, University of Potsdam, D-14476 Potsdam-Golm, Germany
| | - Keith J Stevenson
- Center for Energy Science and Technology, Skolkovo Institute of Science and Technology, 121205, Moscow, Russia
| | - Aleksei V Chechkin
- Institute for Physics & Astronomy, University of Potsdam, D-14476 Potsdam-Golm, Germany.,Faculty of Pure and Applied Mathematics, Hugo Steinhaus Center, Wroclaw University of Science and Technology, Wyspianskiego 27, 50-370 Wroclaw, Poland.,Akhiezer Institute for Theoretical Physics National Science Center "Kharkov Institute of Physics and Technology", 61108, Kharkov, Ukraine
| | - Vladimir V Palyulin
- RAIC Center, Skolkovo Institute of Science and Technology, 121205, Moscow, Russia.
| |
Collapse
|
9
|
Petrov OF, Statsenko KB, Vasiliev MM. Active Brownian motion of strongly coupled charged grains driven by laser radiation in plasma. Sci Rep 2022; 12:8618. [PMID: 35597777 PMCID: PMC9124211 DOI: 10.1038/s41598-022-12354-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 05/10/2022] [Indexed: 11/08/2022] Open
Abstract
The systems of active Brownian grains can be considered as open systems, in which there is an exchange of energy and matter with the environment. The collective phenomena of active Brownian grains can demonstrate analogies with ordinary phase transitions. We study the active Brownian motion of light-absorbing and strongly interacting grains far from equilibrium suspended in gas discharge under laser irradiation when the nature and intensity of the active motion depend on the effect of radiation. Active Brownian motion is caused by photophoresis, i.e., absorption of laser radiation at the metal-coated surface of the grain creates radiometric force, which in turn drives the grains. We experimentally observed the active Brownian motion of charged grains in the transition of the grain monolayer from the solid to liquid state. An analysis of the character of motion, including the mean-square and linear displacement and persistence length at various values of the randomization (coupling parameter) of the grain structure, was presented.
Collapse
Affiliation(s)
- Oleg F Petrov
- Joint Institute for High Temperatures, Russian Academy of Sciences, Moscow, 125412, Russia.
| | - Konstantin B Statsenko
- Joint Institute for High Temperatures, Russian Academy of Sciences, Moscow, 125412, Russia
| | - Mikhail M Vasiliev
- Joint Institute for High Temperatures, Russian Academy of Sciences, Moscow, 125412, Russia
| |
Collapse
|