1
|
Novikov VN. Temperature dependence of spatial nanoheterogeneities of shear modulus in supercooled glycerol. J Chem Phys 2024; 161:054501. [PMID: 39087539 DOI: 10.1063/5.0215095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/15/2024] [Indexed: 08/02/2024] Open
Abstract
The boson peak in the terahertz vibrational spectrum carries information about nano-heterogeneities in the shear modulus in glass formers. Its evolution upon heating or cooling in a supercooled liquid state may shed light on the temperature dependence of heterogeneities. For this purpose, an analysis of the light scattering spectra of supercooled glycerol in the spectral range of the boson peak and fast relaxation was carried out and the parameters of the boson peak in the temperature range 180-330 K were determined. The temperature dependent frequency of the boson peak was then expressed in terms of the mean-square amplitude of the shear modulus fluctuations. This was done using the heterogeneous elasticity theory in combination with the perturbation theory on small fluctuations and Ioffe-Regel criterion for transverse vibrations in glass formers. The contribution of structural relaxation effects to phonon damping becomes significant with increasing temperature. It is shown here that structural relaxation largely determines the temperature dependence of the mean-square fluctuations of the shear modulus at high temperatures. By solving the inverse problem, the temperature dependence of shear modulus fluctuations was obtained. It shows a rapid decrease above ∼250 K with a linear extrapolation going to zero at the so-called Arrhenius temperature TA = 350 K. Comparison with literature data on the Landau-Placzek ratio shows that they have a similar temperature dependence at T < TA, which is explained by the appearance of nanometer scale spatial heterogeneities below TA. This is confirmed by the temperature dependence of the amplitude of the boson peak.
Collapse
Affiliation(s)
- V N Novikov
- Institute of Automation and Electrometry of the Russian Academy of Sciences, 1 Koptyug Ave., Novosibirsk 630090, Russia
| |
Collapse
|
2
|
Schirmacher W, Paoluzzi M, Mocanu FC, Khomenko D, Szamel G, Zamponi F, Ruocco G. The nature of non-phononic excitations in disordered systems. Nat Commun 2024; 15:3107. [PMID: 38600083 PMCID: PMC11258284 DOI: 10.1038/s41467-024-46981-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 03/18/2024] [Indexed: 04/12/2024] Open
Abstract
The frequency scaling exponent of low-frequency excitations in microscopically small glasses, which do not allow for the existence of waves (phonons), has been in the focus of the recent literature. The density of states g(ω) of these modes obeys an ωs scaling, where the exponent s, ranging between 2 and 5, depends on the quenching protocol. The orgin of these findings remains controversal. Here we show, using heterogeneous-elasticity theory, that in a marginally-stable glass sample g(ω) follows a Debye-like scaling (s = 2), and the associated excitations (type-I) are of random-matrix type. Further, using a generalisation of the theory, we demonstrate that in more stable samples, other, (type-II) excitations prevail, which are non-irrotational oscillations, associated with local frozen-in stresses. The corresponding frequency scaling exponent s is governed by the statistics of small values of the stresses and, therefore, depends on the details of the interaction potential.
Collapse
Affiliation(s)
- Walter Schirmacher
- Institut für Physik, Staudinger Weg 7, Universität Mainz, D-55099, Mainz, Germany.
- Center for Life Nano Science @Sapienza, Istituto Italiano di Tecnologia, 291 Viale Regina Elena, I-00161, Roma, Italy.
| | - Matteo Paoluzzi
- Istituto per le Applicazioni del Calcolo del Consiglio Nazionale delle Ricerche, Via Pietro Castellino 111, 80131, Napoli, NA, Italy
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, Carrer de Martí i Franquès 1, 08028, Barcelona, Spain
- Dipartimento di Fisica, Universita' di Roma "La Sapienza", P'le Aldo Moro 5, I-00185, Roma, Italy
| | - Felix Cosmin Mocanu
- Dept. of Materials, Univ. of Oxford, Parks Road, Oxford, OX13PH, UK
- Laboratoire de Physique de l'Ecole Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris-Diderot, Sorbonne Paris Cité, Paris, France
| | - Dmytro Khomenko
- Dipartimento di Fisica, Universita' di Roma "La Sapienza", P'le Aldo Moro 5, I-00185, Roma, Italy
| | - Grzegorz Szamel
- Dept. of Chemistry, Colorado State University, Fort Collins, CO, 80523, USA
| | - Francesco Zamponi
- Dipartimento di Fisica, Universita' di Roma "La Sapienza", P'le Aldo Moro 5, I-00185, Roma, Italy
- Laboratoire de Physique de l'Ecole Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris-Diderot, Sorbonne Paris Cité, Paris, France
| | - Giancarlo Ruocco
- Center for Life Nano Science @Sapienza, Istituto Italiano di Tecnologia, 291 Viale Regina Elena, I-00161, Roma, Italy.
- Dipartimento di Fisica, Universita' di Roma "La Sapienza", P'le Aldo Moro 5, I-00185, Roma, Italy.
| |
Collapse
|
3
|
Baumgärtel P, Vogel F, Fuchs M. Properties of stable ensembles of Euclidean random matrices. Phys Rev E 2024; 109:014120. [PMID: 38366508 DOI: 10.1103/physreve.109.014120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 12/13/2023] [Indexed: 02/18/2024]
Abstract
We study the spectrum of a system of coupled disordered harmonic oscillators in the thermodynamic limit. This Euclidean random matrix ensemble has been suggested as a model for the low temperature vibrational properties of glass. Exact numerical diagonalization is performed in three and two spatial dimensions, which is accompanied by a detailed finite size analysis. It reveals a low-frequency regime of sound waves that are damped by Rayleigh scattering. At large frequencies localized modes exist. In between, the central peak in the vibrational density of states is well described by Wigner's semicircle law for not too large disorder, as is expected for simple random matrix systems. We compare our results with predictions from two recent self-consistent field theories.
Collapse
Affiliation(s)
| | - Florian Vogel
- Fachbereich Physik, Universität Konstanz, 78457 Konstanz, Germany
| | - Matthias Fuchs
- Fachbereich Physik, Universität Konstanz, 78457 Konstanz, Germany
| |
Collapse
|
4
|
Vogel F, Fuchs M. Vibrational Phenomena in Glasses at Low Temperatures Captured by Field Theory of Disordered Harmonic Oscillators. PHYSICAL REVIEW LETTERS 2023; 130:236101. [PMID: 37354405 DOI: 10.1103/physrevlett.130.236101] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 05/04/2023] [Indexed: 06/26/2023]
Abstract
We investigate the vibrational properties of topologically disordered materials by analytically studying particles that harmonically oscillate around random positions. Exploiting classical field theory in the thermodynamic limit at T=0, we build up a self-consistent model by analyzing the Hessian utilizing Euclidean random matrix theory. In accordance with earlier findings [T. S. Grigera et al.J. Stat. Mech. (2011) P02015.JSMTC61742-546810.1088/1742-5468/2011/02/P02015], we take nonplanar diagrams into account to correctly address multiple local scattering events. By doing so, we end up with a first principles theory that can predict the main anomalies of athermal disordered materials, including the boson peak, sound softening, and Rayleigh damping of sound. In the vibrational density of states, the sound modes lead to Debye's law for small frequencies. Additionally, an excess appears in the density of states starting as ω^{4} in the low frequency limit, which is attributed to (quasi-) localized modes.
Collapse
|
5
|
Probing Small-Angle Molecular Motions with EPR Spectroscopy: Dynamical Transition and Molecular Packing in Disordered Solids. MAGNETOCHEMISTRY 2022. [DOI: 10.3390/magnetochemistry8020019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Disordered molecular solids present a rather broad class of substances of different origin—amorphous polymers, materials for photonics and optoelectronics, amorphous pharmaceutics, simple molecular glass formers, and others. Frozen biological media in many respects also may be referred to this class. Theoretical description of dynamics and structure of disordered solids still does not exist, and only some phenomenological models can be developed to explain results of particular experiments. Among different experimental approaches, electron paramagnetic resonance (EPR) applied to spin probes and labels also can deliver useful information. EPR allows probing small-angle orientational molecular motions (molecular librations), which intrinsically are inherent to all molecular solids. EPR is employed in its conventional continuous wave (CW) and pulsed—electron spin echo (ESE)—versions. CW EPR spectra are sensitive to dynamical librations of molecules while ESE probes stochastic molecular librations. In this review, different manifestations of small-angle motions in EPR of spin probes and labels are discussed. It is shown that CW-EPR-detected dynamical librations provide information on dynamical transition in these media, similar to that explored with neutron scattering, and ESE-detected stochastic librations allow elucidating some features of nanoscale molecular packing. The possible EPR applications are analyzed for gel-phase lipid bilayers, for biological membranes interacting with proteins, peptides and cryoprotectants, for supercooled ionic liquids (ILs) and supercooled deep eutectic solvents (DESs), for globular proteins and intrinsically disordered proteins (IDPs), and for some other molecular solids.
Collapse
|
6
|
Shukla P. Average density of states of amorphous Hamiltonians: role of phonon mediated coupling of nano-clusters. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2022; 34:135701. [PMID: 34996057 DOI: 10.1088/1361-648x/ac4938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 01/07/2022] [Indexed: 06/14/2023]
Abstract
Based on a description of an amorphous solid as a collection of coupled nanosize molecular clusters referred as basic blocks, we analyse the statistical properties of its Hamiltonian. The information is then used to derive the ensemble averaged density of the vibrational states (non-phonon) which turns out to be a Gaussian in the bulk of the spectrum and an Airy function in the low frequency regime. A comparison with experimental data for six glasses confirms validity of our theoretical predictions.
Collapse
Affiliation(s)
- Pragya Shukla
- Department of Physics, Indian Institute of Technology, Kharagpur-721302, India
| |
Collapse
|
7
|
Zorn R. Resolution-intensity optimisation on quasielastic neutron scattering spectrometers. JOURNAL OF NEUTRON RESEARCH 2021. [DOI: 10.3233/jnr-210029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
In quasieleastic neutron scattering spectrometers one usually faces a trade-off between energy resolution and counting statistics. If the resolution is improved the intensity at the detectors reduces and vice versa. It is not immediately clear how to weigh both factors against each other. In this paper it is proposed to use the maximum time obtainable by Fourier transform of the spectra as the quantity to be optimised. It is shown that this leads to a well-defined criterion for the choice of the resolution.
Collapse
Affiliation(s)
- Reiner Zorn
- Jülich Centre for Neutron Science (JCNS-1) and Institute for Biological Information Processing (IBI-8), Forschungszentrum Jülich GmbH, Germany. E-mail:
| |
Collapse
|
8
|
Ngai KL. Why the Brillouin Light Scattering Relaxation Times of Molten Zinc Chloride Are Shorter and Weaker in Temperature Dependence than the Structural Relaxation Times from Depolarized Light and Neutron Spin Echo Spectroscopy. J Phys Chem A 2021; 125:2759-2763. [PMID: 33759529 DOI: 10.1021/acs.jpca.1c00761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A longstanding problem in the Brillouin light scattering (BLS) study of polymers is the relaxation times τBLS(T) being more than an order of magnitude shorter than the α-relaxation times τα(T) determined by dielectric, depolarized light scattering (DLS), and molecular dynamics simulations. In tackling the problem, τBLS(T) was identified with the relaxation time τ0(T) of the primitive relaxation in the coupling model, which can be calculated from τα(T) and the stretch exponent βK of the Kohlrausch correlation function for the α-relaxation.. The problem was solved by finding that indeed τ0(T) is in good agreement with τBLS(T). A recent work performed the neutron spin echo study of the structural α-relaxation of the network ionic liquid ZnCl2 and found the same anomaly as polymers. The α-relaxation time τNSE(T) from neutron spin echo (NSE) as well as the α-relaxation time τDLS(T) from DLS of ZnCl2 are much longer than τBLS(T) from BLS obtained before by several research groups. The finding of the same anomaly in ZnCl2 and polymers with very different chemical and physical structures offers an opportunity to critically test the explanation given before. The test was carried out by calculating the primitive relaxation times τ0,DLS(T) and τ0,NSE(T) from τDLS(T) and τNSE(T), respectively, in zinc chloride. Good agreements of τBLS(T) from BLS with τ0,DLS(T) and τ0,NSE(T) were found and thus the explanation given for polymers remains valid for ZnCl2. The test was extended to glycerol by comparing τBLS(T) with τ0,ICNS(T) and τ0,CNS(T) calculated from the α-relaxation time τICNS(T) and τCNS(T) from incoherent and coherent neutron scattering, respectively. There is good agreement between τBLS(T) and τ0,ICNS(T) in glycerol. There is also semiquantitative agreement of τBLS(T) with τ0,DS(T) from dielectric spectroscopy as well as τ0,CNS(T). Thus, the explanation for polymers is verified in the two very different glass formers, ZnCl2 and glycerol, and it is an advancement in the application of BLS to study the dynamics of glass formers.
Collapse
Affiliation(s)
- K L Ngai
- CNR-IPCF, Largo Bruno Pontecorvo 3, Pisa I-56127, Italy
| |
Collapse
|
9
|
Livshits VA, Meshkov BB, Avakyan VG, Titov SV. ESR, STESR, DFT, and MD Study of the Dynamical Structure of Cucurbituril[7]-Spin Probe Guest-Host Complexes. ACS OMEGA 2020; 5:11901-11914. [PMID: 32548369 PMCID: PMC7271031 DOI: 10.1021/acsomega.9b03772] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 05/07/2020] [Indexed: 06/11/2023]
Abstract
We study the molecular dynamics and structures of the guest-host complexes of cucurbituril, CB[7], with spin probes through the conventional electron spin resonance (ESR), saturation transfer ESR (STESR), density functional theory (DFT), and molecular dynamics (MD) computations. Protonated TEMPOamine (I), a derivative of TEMPO having a positive charge and an octyl group on the quaternary nitrogen atom (II), and the neutral spin-labeled indole (III) are used as guests. To eliminate the overall complex rotation, the solutions of complexes in a solid CB[7] matrix were prepared. Resultantly, for all of the spin probes, the combined study of the conventional ESR and STESR spectra indicates the librational character of the rotational motion within the CB[7] cavity as opposed to the diffusional rotation over the whole solid angle. The kinetic accessibilities of the reporter NO groups to the paramagnetic complexes in aqueous solutions, determined by Heisenberg exchange broadening of the ESR spectra, together with the environment polarities from the hyperfine interaction values, as well as DFT computation results and MD simulations, were used to estimate the spin probe location relative to CB[7]. Utilizing the concept of the aqueous clusters surrounding the spin probes and CB[7] molecules and MD simulations has allowed the application of DFT to estimate the aqueous environment effects on the complexation energy and spatial structure of the guest-host complexes.
Collapse
|
10
|
Golysheva EA, Shevelev GY, Dzuba SA. Dynamical transition in molecular glasses and proteins observed by spin relaxation of nitroxide spin probes and labels. J Chem Phys 2018; 147:064501. [PMID: 28810753 DOI: 10.1063/1.4997035] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In glassy substances and biological media, dynamical transitions are observed in neutron scattering that manifests itself as deviations of the translational mean-squared displacement, 〈x2〉, of hydrogen atoms from harmonic dynamics. In biological media, the deviation occurs at two temperature intervals, at ∼100-150 K and at ∼170-230 K, and it is attributed to the motion of methyl groups in the former case and to the transition from harmonic to anharmonic or diffusive motions in the latter case. In this work, electron spin echo (ESE) spectroscopy-a pulsed version of electron paramagnetic resonance-is applied to study the spin relaxation of nitroxide spin probes and labels introduced in molecular glass former o-terphenyl and in protein lysozyme. The anisotropic contribution to the rate of the two-pulse ESE decay, ΔW, is induced by spin relaxation appearing because of restricted orientational stochastic molecular motion; it is proportional to 〈α2〉τc, where 〈α2〉 is the mean-squared angle of reorientation of the nitroxide molecule around the equilibrium position and τc is the correlation time of reorientation. The ESE time window allows us to study motions with τc < 10-7 s. For glassy o-terphenyl, the 〈α2〉τc temperature dependence shows a transition near 240 K, which is in agreement with the literature data on 〈x2〉. For spin probes of essentially different size, the obtained data were found to be close, which evidences that motion is cooperative, involving a nanocluster of several neighboring molecules. For the dry lysozyme, the 〈α2〉τc values below 260 K were found to linearly depend on the temperature in the same way as it was observed in neutron scattering for 〈x2〉. As spin relaxation is influenced only by stochastic motion, the harmonic motions seen in ESE must be overdamped. In the hydrated lysozyme, ESE data show transitions near 130 K for all nitroxides, near 160 K for the probe located in the hydration layer, and near 180 K for the label in the protein interior. For this system, the two latter transitions are not observed in neutron scattering. The ESE-detected transitions are suggested to be related with water dynamics in the nearest hydration shell: with water glass transition near 130 K and with the onset of overall water molecular reorientations near 180 K; the disagreement with neutron scattering is ascribed to the larger time window for ESE-detected motions.
Collapse
Affiliation(s)
- Elena A Golysheva
- Institute of Chemical Kinetics and Combustion, Russian Academy of Sciences, Novosibirsk 630090, Russian Federation
| | - Georgiy Yu Shevelev
- Department of Physics, Novosibirsk State University, Novosibirsk 630090, Russian Federation
| | - Sergei A Dzuba
- Institute of Chemical Kinetics and Combustion, Russian Academy of Sciences, Novosibirsk 630090, Russian Federation
| |
Collapse
|
11
|
Synchrotron radiation-based quasi-elastic scattering using time-domain interferometry with multi-line gamma rays. Sci Rep 2017; 7:12558. [PMID: 28970499 PMCID: PMC5624928 DOI: 10.1038/s41598-017-12216-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 09/05/2017] [Indexed: 11/12/2022] Open
Abstract
We developed a multi-line time-domain interferometry (TDI) system using 14.4 keV Mössbauer gamma rays with natural energy widths of 4.66 neV from 57Fe nuclei excited using synchrotron radiation. Electron density fluctuations can be detected at unique lengths ranging from 0.1 nm to a few nm on time scales from several nanoseconds to the sub-microsecond order by quasi-elastic gamma-ray scattering (QGS) experiments using multi-line TDI. In this report, we generalize the established expression for a time spectrum measured using an identical single-line gamma-ray emitter pair to the case of a nonidentical pair of multi-line gamma-ray emitters by considering the finite energy width of the incident synchrotron radiation. The expression obtained illustrates the unique characteristics of multi-line TDI systems, where the finite incident energy width and use of a nonidentical emitter pair produces further information on faster sub-picosecond-scale dynamics in addition to the nanosecond dynamics; this was demonstrated experimentally. A normalized intermediate scattering function was extracted from the spectrum and its relaxation form was determined for a relaxation time of the order of 1 μs, even for relatively large momentum transfer of ~31 nm−1. The multi-line TDI method produces a microscopic relaxation picture more rapidly and accurately than conventional single-line TDI.
Collapse
|
12
|
Ahart M, Aihaiti D, Hemley RJ, Kojima S. Pressure Dependence of the Boson Peak of Glassy Glycerol. J Phys Chem B 2017; 121:6667-6672. [PMID: 28561592 DOI: 10.1021/acs.jpcb.7b01993] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The pressure dependence of the boson peak (BP) of glycerol, including its behavior across the liquid-glass transition, has been studied using Raman scattering. A significant increase of the BP frequency was observed with pressure up to 11 GPa at room temperature. The pressure dependence of BP frequency νBP is proportional to (1+P/P0)1/3, where P and P0 are the pressure and a constant, respectively, consistent with a soft potential model. The characteristic length of medium range order is close in size to a cyclic trimer of glycerol molecules, as predicted by the medium range order of a BP excitation using molecular dynamics simulations, and the pressure dependence of a characteristic medium range order is nearly constant. The pressure induced structural changes in glycerol can be understood in terms of the shrinkage of voids with cyclic trimers persisting to at least 11 GPa. Pressure dependence of the intermolecular O-H stretching mode indicates that the intermolecular hydrogen bond distances gradually decrease up to the glass transition pressure of ∼5 GPa and become nearly constant in the glassy state, indicating the disappearance of free volume in the dense glass.
Collapse
Affiliation(s)
- Muhtar Ahart
- Geophysical Laboratory, Carnegie Institution of Washington , Washington D.C. 20015, United States
| | - Dilare Aihaiti
- College of Science, George Mason University , Fairfax, Virginia 22030, United States
| | - Russell J Hemley
- Department of Civil and Environmental Engineering, The George Washington University , Washington D.C. 20052, United States
| | - Seiji Kojima
- Division of Materials Science, Faculty of Pure and Applied Sciences, University of Tsukuba , Tsukuba, Ibaraki 305-8573, Japan
| |
Collapse
|
13
|
Gupta S, Fischer JKH, Lunkenheimer P, Loidl A, Novak E, Jalarvo N, Ohl M. Effect of adding nanometre-sized heterogeneities on the structural dynamics and the excess wing of a molecular glass former. Sci Rep 2016; 6:35034. [PMID: 27725747 PMCID: PMC5057163 DOI: 10.1038/srep35034] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 09/21/2016] [Indexed: 11/17/2022] Open
Abstract
We present the relaxation dynamics of glass-forming glycerol mixed with 1.1 nm sized polyhedral oligomeric silsesquioxane (POSS) molecules using dielectric spectroscopy (DS) and two different neutron scattering (NS) techniques. Both, the reorientational dynamics as measured by DS and the density fluctuations detected by NS reveal a broadening of the α relaxation when POSS molecules are added. Moreover, we find a significant slowing down of the α-relaxation time. These effects are in accord with the heterogeneity scenario considered for the dynamics of glasses and supercooled liquids. The addition of POSS also affects the excess wing in glycerol arising from a secondary relaxation process, which seems to exhibit a dramatic increase in relative strength compared to the α relaxation.
Collapse
Affiliation(s)
- S Gupta
- Juelich Centre for Neutron science (JCNS) outstation at SNS, POB 2008, 1 Bethel Valley Road, TN 37831, Oak Ridge, USA.,Biology and Soft Matter Division, Neutron Sciences Directorate, Oak Ridge National Laboratory (ORNL), POB 2008, 1 Bethel Valley Road, TN 37831, Oak Ridge, USA.,Department of Chemistry and Macromolecular Studies Group, Louisiana State University, Baton Rouge, LA 70803, USA
| | - J K H Fischer
- Experimental Physics V, Center for Electronic Correlations and Magnetism, University of Augsburg, 86135 Augsburg, Germany
| | - P Lunkenheimer
- Experimental Physics V, Center for Electronic Correlations and Magnetism, University of Augsburg, 86135 Augsburg, Germany
| | - A Loidl
- Experimental Physics V, Center for Electronic Correlations and Magnetism, University of Augsburg, 86135 Augsburg, Germany
| | - E Novak
- Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN 37996, USA
| | - N Jalarvo
- Juelich Centre for Neutron science (JCNS) outstation at SNS, POB 2008, 1 Bethel Valley Road, TN 37831, Oak Ridge, USA.,Chemical and Engineering Materials Division, Oak Ridge National Laboratory (ORNL), PO BOX 2008 MS6473, TN 37831, Oak Ridge, USA
| | - M Ohl
- Juelich Centre for Neutron science (JCNS) outstation at SNS, POB 2008, 1 Bethel Valley Road, TN 37831, Oak Ridge, USA.,Biology and Soft Matter Division, Neutron Sciences Directorate, Oak Ridge National Laboratory (ORNL), POB 2008, 1 Bethel Valley Road, TN 37831, Oak Ridge, USA
| |
Collapse
|
14
|
Seyedi S, Martin DR, Matyushov DV. Dynamical and orientational structural crossovers in low-temperature glycerol. Phys Rev E 2016; 94:012616. [PMID: 27575188 DOI: 10.1103/physreve.94.012616] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Indexed: 06/06/2023]
Abstract
Mean-square displacements of hydrogen atoms in glass-forming materials and proteins, as reported by incoherent elastic neutron scattering, show kinks in their temperature dependence. This crossover, known as the dynamical transition, connects two approximately linear regimes. It is often assigned to the dynamical freezing of subsets of molecular modes at the point of equality between their corresponding relaxation times and the instrumental observation window. The origin of the dynamical transition in glass-forming glycerol is studied here by extensive molecular dynamics simulations. We find the dynamical transition to occur for both the center-of-mass translations and the molecular rotations at the same temperature, insensitive to changes of the observation window. Both the translational and rotational dynamics of glycerol show a dynamic crossover from the structural to a secondary relaxation at the temperature of the dynamical transition. A significant and discontinuous increase in the orientational Kirkwood factor and in the dielectric constant is observed in the same range of temperatures. No indication is found of a true thermodynamic transition to an ordered low-temperature phase. We therefore suggest that all observed crossovers are dynamic in character. The increase in the dielectric constant is related to the dynamic freezing of dipolar domains on the time scale of simulations.
Collapse
Affiliation(s)
- Salman Seyedi
- Department of Physics and School of Molecular Sciences, Arizona State University, P. O. Box 871504, Tempe, Arizona 85287, USA
| | - Daniel R Martin
- Department of Physics and School of Molecular Sciences, Arizona State University, P. O. Box 871504, Tempe, Arizona 85287, USA
| | - Dmitry V Matyushov
- Department of Physics and School of Molecular Sciences, Arizona State University, P. O. Box 871504, Tempe, Arizona 85287, USA
| |
Collapse
|
15
|
Gupta S, Mamontov E, Jalarvo N, Stingaciu L, Ohl M. Characteristic length scales of the secondary relaxations in glass-forming glycerol. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2016; 39:40. [PMID: 27021657 DOI: 10.1140/epje/i2016-16040-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Accepted: 02/26/2016] [Indexed: 06/05/2023]
Abstract
We investigate the secondary relaxations and their link to the main structural relaxation in glass-forming liquids using glycerol as a model system. We analyze the incoherent neutron scattering signal dependence on the scattering momentum transfer, Q , in order to obtain the characteristic length scale for different secondary relaxations. Such a capability of neutron scattering makes it somewhat unique and highly complementary to the traditional techniques of glass physics, such as light scattering and broadband dielectric spectroscopy, which provide information on the time scale, but not the length scales, of relaxation processes. The choice of suitable neutron scattering techniques depends on the time scale of the relaxation of interest. We use neutron backscattering to identify the characteristic length scale of 0.7 Å for the faster secondary relaxation described in the framework of the mode-coupling theory (MCT). Neutron spin-echo is employed to probe the slower secondary relaxation of the excess wing type at a low temperature ( ∼ 1.13T g . The characteristic length scale for this excess wing dynamics is approximately 4.7 Å. Besides the Q -dependence, the direct coupling of neutron scattering signal to density fluctuation makes this technique indispensable for measuring the length scale of the microscopic relaxation dynamics.
Collapse
Affiliation(s)
- S Gupta
- JCNS-SNS, Biology and Soft-matter Division, Neutron Sciences Directorate, Oak Ridge National Laboratory (ORNL), Bethel Valley Road, PO BOX 2008 MS6473, 37831, Oak Ridge, TN, USA.
| | - E Mamontov
- Chemical and Engineering Materials Division, Neutron Sciences Directorate, Oak Ridge National Laboratory (ORNL), PO BOX 2008 MS6473, 37831-6473, Oak Ridge, TN, USA
| | - N Jalarvo
- JCNS-SNS, Biology and Soft-matter Division, Neutron Sciences Directorate, Oak Ridge National Laboratory (ORNL), Bethel Valley Road, PO BOX 2008 MS6473, 37831, Oak Ridge, TN, USA
- Chemical and Engineering Materials Division, Neutron Sciences Directorate, Oak Ridge National Laboratory (ORNL), PO BOX 2008 MS6473, 37831-6473, Oak Ridge, TN, USA
| | - L Stingaciu
- JCNS-SNS, Biology and Soft-matter Division, Neutron Sciences Directorate, Oak Ridge National Laboratory (ORNL), Bethel Valley Road, PO BOX 2008 MS6473, 37831, Oak Ridge, TN, USA
| | - M Ohl
- JCNS-SNS, Biology and Soft-matter Division, Neutron Sciences Directorate, Oak Ridge National Laboratory (ORNL), Bethel Valley Road, PO BOX 2008 MS6473, 37831, Oak Ridge, TN, USA
| |
Collapse
|
16
|
Vispa A, Busch S, Tamarit JL, Unruh T, Fernandez-Alonso F, Pardo LC. A robust comparison of dynamical scenarios in a glass-forming liquid. Phys Chem Chem Phys 2016; 18:3975-81. [DOI: 10.1039/c5cp05143f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We use Bayesian inference methods to provide fresh insights into the sub-nanosecond dynamics of glycerol, a prototypical glass-forming liquid.
Collapse
Affiliation(s)
- Alessandro Vispa
- Grup de Caracterització de Materials
- Departament de Física i Enginyeria Nuclear
- ETSEIB
- Universitat Politècnica de Catalunya
- E-08028 Barcelona
| | - Sebastian Busch
- German Engineering Materials Science Centre (GEMS) at Heinz Maier-Leibnitz Zentrum (MLZ)
- Helmholtz-Zentrum Geesthacht GmbH
- 85747 Garching bei München
- Germany
| | - Josep Lluis Tamarit
- Grup de Caracterització de Materials
- Departament de Física i Enginyeria Nuclear
- ETSEIB
- Universitat Politècnica de Catalunya
- E-08028 Barcelona
| | - Tobias Unruh
- Chair for Crystallography and Structural Physics
- Friedrich-Alexander-Universität Erlangen-Nürnberg
- 91058 Erlangen
- Germany
| | | | - Luis Carlos Pardo
- Grup de Caracterització de Materials
- Departament de Física i Enginyeria Nuclear
- ETSEIB
- Universitat Politècnica de Catalunya
- E-08028 Barcelona
| |
Collapse
|
17
|
Busselez R, Pezeril T, Gusev VE. Structural heterogeneities at the origin of acoustic and transport anomalies in glycerol glass-former. J Chem Phys 2015; 140:234505. [PMID: 24952550 DOI: 10.1063/1.4883504] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
By means of large scale molecular dynamics simulations, we explore mesoscopic properties of prototypical glycerol glass-former above and below the glass transition. The model used, in excellent agreement with various experimental techniques, permits to carefully study the structure and the vibrational dynamics. We find that a medium range order is present in glycerol glass-former and arises from hydrogen bond network extension. The characteristic size of the structural heterogeneities is related to the anomalous properties of acoustic vibrations (Rayleigh scattering, "mode softening," and Boson Peak) in the glassy state. Finally the characteristic size of these heterogeneities, nearly constant in temperature, is also connected to the cross-over between structural relaxation and diffusion in liquid glycerol.
Collapse
Affiliation(s)
- Rémi Busselez
- Institut des Molécules et Matériaux du Mans UMR-CNRS 6283, Université du Maine, Le Mans, France
| | - Thomas Pezeril
- Institut des Molécules et Matériaux du Mans UMR-CNRS 6283, Université du Maine, Le Mans, France
| | - Vitalyi E Gusev
- Laboratoire d'Acoustique de l'Université du Maine, UMR-CNRS 6613 Université du Maine, Le Mans, France
| |
Collapse
|
18
|
Gupta S, Arend N, Lunkenheimer P, Loidl A, Stingaciu L, Jalarvo N, Mamontov E, Ohl M. Excess wing in glass-forming glycerol and LiCl-glycerol mixtures detected by neutron scattering. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2015; 38:1. [PMID: 25612850 DOI: 10.1140/epje/i2015-15001-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 10/22/2014] [Accepted: 12/02/2014] [Indexed: 06/04/2023]
Abstract
The relaxational dynamics in glass-forming glycerol and glycerol mixed with LiCl is investigated using different neutron scattering techniques. The performed neutron spin echo experiments, which extend up to relatively long relaxation time scales of the order of 10 ns, should allow for the detection of contributions from the so-called excess wing. This phenomenon, whose microscopic origin is controversially discussed, arises in a variety of glass formers and, until now, was almost exclusively investigated by dielectric spectroscopy and light scattering. Here we show that the relaxational process causing the excess wing can also be detected by neutron scattering, which directly couples to density fluctuations.
Collapse
Affiliation(s)
- S Gupta
- Jülich Centre for Neutron Science JCNS, Forschungszentrum Jülich GmbH, Outstation at SNS-Oak Ridge National Laboratory (ORNL), 1 Bethel Valley Road, 37831, Oak Ridge, TN, USA,
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Buchenau U, Zorn R, Ramos MA. Probing cooperative liquid dynamics with the mean square displacement. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 90:042312. [PMID: 25375499 DOI: 10.1103/physreve.90.042312] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Indexed: 06/04/2023]
Abstract
Literature data for picosecond mean square displacements show that the anharmonicity explains only about half of the fragility (with different fractions for different glass formers). The other half must be ascribed to the Adam-Gibbs mechanism of a growing cooperatively rearranging region. One can measure both influences separately by a simultaneous measurement of liquid and crystal in the coexistence region.
Collapse
Affiliation(s)
- U Buchenau
- Jülich Center for Neutron Science, Forschungszentrum Jülich Postfach 1913, D-52425 Jülich, Federal Republic of Germany
| | - R Zorn
- Jülich Center for Neutron Science, Forschungszentrum Jülich Postfach 1913, D-52425 Jülich, Federal Republic of Germany
| | - M A Ramos
- Laboratorio de Bajas Temperaturas, Departamento de Fisica de la Materia Condensada, Condensed Matter Physics Center (IFIMAC) and Instituto Nicolas Cabrera, Universidad Autonoma de Madrid, Cantoblanco, E-28049 Madrid, Spain
| |
Collapse
|
20
|
Lang RJ, Merling WL, Simmons DS. Combined Dependence of Nanoconfined Tg on Interfacial Energy and Softness of Confinement. ACS Macro Lett 2014; 3:758-762. [PMID: 35590695 DOI: 10.1021/mz500361v] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We employ molecular dynamics simulations of nanolayered polymers to systematically quantify the dependence of Tg nanoconfinement effects on interfacial energy and the "softness" of confinement. Results indicate that nanoconfined Tg depends linearly on interfacial adhesion energy, with a slope that scales exponentially with the ratio of the bulk Debye-Waller factors ⟨u2⟩ of the confined and confining materials. These trends, together with a convergence at low interfacial adhesion energy to the Tg of an equivalent freestanding film, are captured in a single functional form, with only three parameters explicitly referring to the confined state. The observed dependence on ⟨u2⟩ indicates that softness of nanoconfinement should be defined in terms of the relative high frequency shear moduli, rather than low frequency moduli or relaxation times, of the confined and confining materials.
Collapse
Affiliation(s)
- Ryan J. Lang
- Department of Polymer Engineering, The University of Akron, 250 South Forge Street, Akron, Ohio 44325-0301, United States
| | - Weston L. Merling
- Department of Polymer Engineering, The University of Akron, 250 South Forge Street, Akron, Ohio 44325-0301, United States
| | - David S. Simmons
- Department of Polymer Engineering, The University of Akron, 250 South Forge Street, Akron, Ohio 44325-0301, United States
| |
Collapse
|
21
|
Surovtsev NV, Dzuba SA. Flexibility of phospholipids with saturated and unsaturated chains studied by Raman scattering: The effect of cholesterol on dynamical and phase transitions. J Chem Phys 2014; 140:235103. [DOI: 10.1063/1.4883237] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
22
|
Doster W, Nakagawa H, Appavou MS. Scaling analysis of bio-molecular dynamics derived from elastic incoherent neutron scattering experiments. J Chem Phys 2014; 139:045105. [PMID: 23902030 DOI: 10.1063/1.4816513] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Numerous neutron scattering studies of bio-molecular dynamics employ a qualitative analysis of elastic scattering data and atomic mean square displacements. We provide a new quantitative approach showing that the intensity at zero energy exchange can be a rich source of information of bio-structural fluctuations on a pico- to nano-second time scale. Elastic intensity scans performed either as a function of the temperature (back-scattering) and∕or by varying the instrumental resolution (time of flight spectroscopy) yield the activation parameters of molecular motions and the approximate structural correlation function in the time domain. The two methods are unified by a scaling function, which depends on the ratio of correlation time and instrumental resolution time. The elastic scattering concept is illustrated with a dynamic characterization of alanine-dipeptide, protein hydration water, and water-coupled protein motions of lysozyme, per-deuterated c-phycocyanin (CPC) and hydrated myoglobin. The complete elastic scattering function versus temperature, momentum exchange, and instrumental resolution is analyzed instead of focusing on a single cross-over temperature of mean square displacements at the apparent onset temperature of an-harmonic motions. Our method predicts the protein dynamical transition (PDT) at Td from the collective (α) structural relaxation rates of the solvation shell as input. By contrast, the secondary (β) relaxation enhances the amplitude of fast local motions in the vicinity of the glass temperature Tg. The PDT is specified by step function in the elastic intensity leading from elastic to viscoelastic dynamic behavior at a transition temperature Td.
Collapse
Affiliation(s)
- W Doster
- Physik-Department, Technische Universität München, D-85748 Garching, Germany.
| | | | | |
Collapse
|
23
|
Dynamics of supercooled liquids and glasses: comparison of experiments with theoretical predictions. ACTA ACUST UNITED AC 2014. [DOI: 10.1007/s002570050405] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
24
|
Simmons DS, Cicerone MT, Zhong Q, Tyagi M, Douglas JF. Generalized localization model of relaxation in glass-forming liquids. SOFT MATTER 2012; 8:11455-11461. [PMID: 23393495 PMCID: PMC3563295 DOI: 10.1039/c2sm26694f] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Glassy solidification is characterized by two essential phenomena: localization of the solidifying material's constituent particles and a precipitous increase in its structural relaxation time τ. Determining how these two phenomena relate is key to understanding glass formation. Leporini and coworkers have recently argued that τ universally depends on a localization length-scale <u(2)> (the Debye-Waller factor) in a way that depends only upon the value of <u(2)> at the glass transition. Here we find that this 'universal' model does not accurately describe τ in several simulated and experimental glass-forming materials. We develop a new localization model of solidification, building upon the classical Hall-Wolynes and free volume models of glass formation, that accurately relates τ to <u(2)> in all systems considered. This new relationship is based on a consideration of the the anisotropic nature of particle localization. The model also indicates the presence of a particle delocalization transition at high temperatures associated with the onset of glass formation.
Collapse
|
25
|
Syryamina VN, Dzuba SA. Phospholipid bilayer relaxation dynamics as revealed by the pulsed electron-electron double resonance of spin labels. J Chem Phys 2012; 137:145102. [PMID: 23061866 DOI: 10.1063/1.4757385] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Electron paramagnetic resonance (EPR) spectroscopy in the form of pulsed electron-electron double resonance (ELDOR) was applied to 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) phospholipid bilayers containing lipids that were spin-labeled at different carbon positions along the lipid acyl chain. Pulsed ELDOR detects motionally induced spin flips of nitrogen nuclei in the nitroxide spin labels, which manifests itself as magnetization transfer (MT) in the nitroxide EPR spectrum. The MT effect was observed over a wide temperature range (100-225 K) on a microsecond time scale. In line with a previous study on molecular glasses [N. P. Isaev and S. A. Dzuba, J. Chem. Phys. 135, 094508 (2011)], the motions that induce MT effect were suggested to have the same nature as those in dielectric secondary (β) Johari-Goldstein fast relaxation. The results were compared with literature dielectric relaxation data for POPC bilayers, revealing some common features. Molecular motions resulting in MT are faster for deeper spin labels in the membrane interior. The addition of cholesterol to the bilayer suppresses the lipid motions near the steroid nucleus and accelerates the lipid motions beyond the steroid nucleus, in the bilayer interior. This finding was attributed to the lipid acyl chains being more ordered near the steroid nucleus and less ordered in the bilayer interior. The motions are absent in dry lipids, indicating that the motions are determined by intermolecular interactions in the bilayer.
Collapse
Affiliation(s)
- V N Syryamina
- Voevodsky Institute of Chemical Kinetics and Combustion, Russian Academy of Sciences, Institutskaya-3, 630090 Novosibirsk, Russia
| | | |
Collapse
|
26
|
Gerstl C, Schneider GJ, Fuxman A, Zamponi M, Frick B, Seydel T, Koza M, Genix AC, Allgaier J, Richter D, Colmenero J, Arbe A. Quasielastic Neutron Scattering Study on the Dynamics of Poly(alkylene oxide)s. Macromolecules 2012. [DOI: 10.1021/ma3003399] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- C. Gerstl
- Jülich Centre
for Neutron Science (JCNS 1) and Institut for Complex Systems (ICS
1), Forschungszentrum Jülich GmbH, D−52425 Jülich, Germany
- Jülich Centre for Neutron Science (JCNS 1), Outstation at FRM II, 85747 Garching, Germany
| | - G. J. Schneider
- Jülich Centre for Neutron Science (JCNS 1), Outstation at FRM II, 85747 Garching, Germany
| | - A. Fuxman
- Jülich Centre for Neutron Science (JCNS 1), Outstation at FRM II, 85747 Garching, Germany
| | - M. Zamponi
- Jülich Centre for Neutron Science (JCNS 1), Outstation at FRM II, 85747 Garching, Germany
| | - B. Frick
- Institut Laue−Langevin, BP 156, 38042 Grenoble Cedex 9, France
| | - T. Seydel
- Institut Laue−Langevin, BP 156, 38042 Grenoble Cedex 9, France
| | - M. Koza
- Institut Laue−Langevin, BP 156, 38042 Grenoble Cedex 9, France
| | - A.-C. Genix
- Laboratoire Charles Coulomb, UMR 5221, CNRS and Université Montpellier 2, 34095 Montpellier,
France
| | - J. Allgaier
- Jülich Centre
for Neutron Science (JCNS 1) and Institut for Complex Systems (ICS
1), Forschungszentrum Jülich GmbH, D−52425 Jülich, Germany
| | - D. Richter
- Jülich Centre
for Neutron Science (JCNS 1) and Institut for Complex Systems (ICS
1), Forschungszentrum Jülich GmbH, D−52425 Jülich, Germany
- Jülich Centre for Neutron Science (JCNS 1), Outstation at FRM II, 85747 Garching, Germany
| | - J. Colmenero
- Centro de Física de Materiales (CSIC, UPV/EHU) and Materials Physics Center MPC, Paseo Manuel de Lardizabal 5, E-20018 San
Sebastián, Spain
- Departamento de Física de Materiales (UPV/EHU), Apartado 1072, 20080 San Sebastián, Spain
- Donostia International Physics Center, Paseo Manuel de Lardizabal 4, 20018 San Sebastián,
Spain
| | - A. Arbe
- Centro de Física de Materiales (CSIC, UPV/EHU) and Materials Physics Center MPC, Paseo Manuel de Lardizabal 5, E-20018 San
Sebastián, Spain
| |
Collapse
|
27
|
Flores-Ruiz HM, Naumis GG. Mean-square-displacement distribution in crystals and glasses: An analysis of the intrabasin dynamics. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2012; 85:041503. [PMID: 22680479 DOI: 10.1103/physreve.85.041503] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Revised: 03/29/2012] [Indexed: 06/01/2023]
Abstract
In the energy landscape picture, the dynamics of glasses and crystals is usually decomposed into two separate contributions: interbasin and intrabasin dynamics. The intrabasin dynamics depends partially on the quadratic displacement distribution on a given metabasin. Here we show that such a distribution can be approximated by a Gamma function, with a mean that depends linearly on the temperature and on the inverse second moment of the density of vibrational states. The width of the distribution also depends on this last quantity, and thus the contribution of the boson peak in glasses is evident on the tail of the distribution function. It causes the distribution of the mean-square displacement to decay slower in glasses than in crystals. When a statistical analysis is performed under many energy basins, we obtain a Gaussian in which the width is regulated by the mean inverse second moment of the density of states. Simulations performed in binary glasses are in agreement with such a result.
Collapse
Affiliation(s)
- Hugo M Flores-Ruiz
- Instituto de Física, Universidad Nacional Autónoma de México, Apartado Postal 20-364, 01000, México, Distrito Federal, Mexico
| | | |
Collapse
|
28
|
Capaccioli S, Ngai KL, Ancherbak S, Paciaroni A. Evidence of Coexistence of Change of Caged Dynamics at Tg and the Dynamic Transition at Td in Solvated Proteins. J Phys Chem B 2012; 116:1745-57. [DOI: 10.1021/jp2057892] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- S. Capaccioli
- CNR-IPCF, Consiglio Nazionale delle Ricerche, Istituto per i Processi Chimico-Fisici,
c/o Dipartimento di Fisica, Largo Bruno Pontecorvo 3, I-56127 Pisa,
Italy
- Dipartimento di Fisica, Università di Pisa, Largo Bruno Pontecorvo 3,
I-56127 Pisa, Italy
| | - K. L. Ngai
- CNR-IPCF, Consiglio Nazionale delle Ricerche, Istituto per i Processi Chimico-Fisici,
c/o Dipartimento di Fisica, Largo Bruno Pontecorvo 3, I-56127 Pisa,
Italy
| | - S. Ancherbak
- Dipartimento di Fisica, Università di Pisa, Largo Bruno Pontecorvo 3,
I-56127 Pisa, Italy
| | - A. Paciaroni
- Dipartimento di Fisica, Università di Perugia & IOM-CNR, Via A. Pascoli 1, 06123 Perugia, Italy
| |
Collapse
|
29
|
Busselez R, Lefort R, Ghoufi A, Beuneu B, Frick B, Affouard F, Morineau D. The non-Gaussian dynamics of glycerol. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2011; 23:505102. [PMID: 22051524 DOI: 10.1088/0953-8984/23/50/505102] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
We have combined incoherent quasielastic neutron scattering experiments and atomistic molecular simulations to investigate the microscopic dynamics of glycerol moving away from the hydrodynamic limit. We relate changes in the momentum transfer (Q) dependence of the relaxation time to distinct changes of the single-particle dynamics. Going from small to large values of Q, a first crossover at about 0.5 Å(-1) is related to the coupling of the translational diffusion dynamics to the non-Debye structural relaxation, while the second crossover at a Q-value near the main diffraction peak is associated with the Gaussian to non-Gaussian crossover of the short-time molecular dynamics, related to the decaging processes. We offer an unprecedented extension of previous studies on polymeric systems towards the case of the typical low-molecular-weight glass-forming system glycerol.
Collapse
Affiliation(s)
- R Busselez
- Institute of Physics of Rennes, CNRS-University of Rennes 1, UMR 6251, F-35042 Rennes, France
| | | | | | | | | | | | | |
Collapse
|
30
|
Comez L, Monaco G, Masciovecchio C, Paciaroni A, Gessini A, Scarponi F, Ruocco G, Fioretto D. Acoustic dissipation and density of states in liquid, supercooled, and glassy glycerol. PHYSICAL REVIEW LETTERS 2011; 106:155701. [PMID: 21568574 DOI: 10.1103/physrevlett.106.155701] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2010] [Revised: 02/22/2011] [Indexed: 05/30/2023]
Abstract
Combined Brillouin spectra collected at visible, ultraviolet, and x-ray frequencies are used to reconstruct the imaginary part of the acoustic compliance J'' over a wide frequency range between 0.5 GHz and 5 THz. For liquid, supercooled, and glassy glycerol, J'' is found to be linearly dependent on the tagged-particle susceptibility measured by incoherent neutron scattering up to ≃1 THz, giving evidence of a clear relation between acoustic power dissipation and density of states. A simple but general formalism is presented to quantitatively explain this relation, thus clarifying the connection between the quasielastic component observed in neutron scattering experiments and the fast relaxation dynamics probed by Brillouin scattering.
Collapse
Affiliation(s)
- L Comez
- IOM-CNR, c/o Università di Perugia, I-06123, Perugia, Italy
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Prisk TR, Tyagi M, Sokol PE. Dynamics of small-molecule glass formers confined in nanopores. J Chem Phys 2011; 134:114506. [DOI: 10.1063/1.3560039] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
32
|
Lunkenhemer P, Pimenov A, Dressel M, Gorshunov B, Schneider U, Schiener B, Böhmer R, Loedl A. Dielectric Spectroscopy at High Frequencies on Glass Forming Liquids. ACTA ACUST UNITED AC 2011. [DOI: 10.1557/proc-455-47] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
ABSTRACTDielectric spectroscopy up to 950 GHz has been performed on various glass formers as glycerol, propylene-carbonate, and Salol. Special attention is given to the dielectric loss, ε″, in the crossover regime from the a-relaxation to the far-infrared (FIR) response where it can be directly compared to the dynamic susceptibilities obtained by neutron and light scattering techniques. We observe a minimum in ε″(ν) at high frequencies which cannot be explained by a simple transition from a-relaxation peak to the FIR bands but has to be attributed to additional fast processes. In all materials investigated, ε″(ν) increases significantly sublinear above the minimum. The ratio of the intensity of the α-process and the fast process as determined from our dielectric experiments is significantly higher compared to the results from the scattering experiments.
Collapse
|
33
|
Cicerone MT, Zhong Q, Johnson J, Aamer KA, Tyagi M. A Surrogate for Debye-Waller Factors from Dynamic Stokes Shifts. J Phys Chem Lett 2011; 2:1464-1468. [PMID: 21701673 PMCID: PMC3118574 DOI: 10.1021/jz200490h] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
We show that the short-time behavior of time-resolved fluorescence Stokes shifts (TRSS) are similar to that of the intermediate scattering function obtained from neutron scattering at q near the peak in the static structure factor for glycerol. This allows us to extract a Debye-Waller (DW) factor analog from TRSS data at times as short as 1 ps in a relatively simple way. Using the time-domain relaxation data obtained by this method we show that DW factors evaluated at times ≥ 40 ps can be directly influenced by α relaxation and thus should be used with caution when evaluating relationships between fast and slow dynamics in glassforming systems.
Collapse
|
34
|
Swenson J, Sjöström J, Fernandez-Alonso F. Reduced mobility of di-propylene glycol methylether in its aqueous mixtures by quasielastic neutron scattering. J Chem Phys 2010; 133:234506. [PMID: 21186874 DOI: 10.1063/1.3515958] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The hydrogen (H-) bonding interplay between water and other organic molecules is important both in nature and in a wide range of technological applications. Structural relaxation and, thus, diffusion in aqueous mixtures are generally dependent on both the strength and the structure of the H-bonds. To investigate diffusion in H-bonding mixtures, we present a quasielastic neutron scattering study of di-propylene glycol methylether (2PGME) mixed with H(2)O (or D(2)O) over the concentration range 0-90 wt.% water. We observe a nonmonotonic behavior of the dynamics with a maximum in average relaxation time for the mixture with 30 wt.% water, which is more than a factor 2 larger compared to that of either of the pure constituents. This is a result in qualitative agreement with previous calorimetric studies and the behavior of aqueous mixtures of simple mono-alcohols. More surprisingly, we notice that the dynamics of the 2PGME molecules in the mixture is slowed down by more than a factor 3 at 30 wt.% water but that the water dynamics indicates an almost monotonous behavior. Furthermore, in the low momentum transfer (Q) range of the 2PGME, where the intermediate scattering function I(Q,t) is considerably stretched in time (i.e., the stretching parameter β ≪ 1), it is evident for the 2PGME-D(2)O samples that the Q-dependence of the inverse average relaxation time, <τ>(-1), is greater than 2. This implies that the relaxation dynamics is partly homogenously stretched, i.e., the relaxation of each relaxing unit is somewhat intrinsically stretched in time.
Collapse
Affiliation(s)
- Jan Swenson
- Department of Applied Physics, Chalmers University of Technology, SE-41296 Göteborg, Sweden
| | | | | |
Collapse
|
35
|
Niss K, Dalle-Ferrier C, Frick B, Russo D, Dyre J, Alba-Simionesco C. Connection between slow and fast dynamics of molecular liquids around the glass transition. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2010; 82:021508. [PMID: 20866819 DOI: 10.1103/physreve.82.021508] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2009] [Revised: 06/01/2010] [Indexed: 05/29/2023]
Abstract
The mean-square displacement (MSD) was measured by neutron scattering at various temperatures and pressures for a number of molecular glass-forming liquids. The MSD is invariant along the glass-transition line at the pressure studied, thus establishing an "intrinsic" Lindemann criterion for any given liquid. A one-to-one connection between the MSD's temperature dependence and the liquid's fragility is found when the MSD is evaluated on a time scale of ∼4 ns , but does not hold when the MSD is evaluated at shorter times. The findings are discussed in terms of the elastic model and the role of relaxations, and the correlations between slow and fast dynamics are addressed.
Collapse
|
36
|
Uvarov MN, Kulik LV, Dzuba SA. Spin relaxation of fullerene C70 photoexcited triplet in molecular glasses: Evidence for onset of fast orientational motions of molecules in the matrix near 100 K. J Chem Phys 2009; 131:144501. [DOI: 10.1063/1.3244983] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
37
|
Wischnewski A, Buchenau U, Dianoux AJ, Kamitakahara WA, Zarestky JL. Neutron scattering analysis of low-frequency modes in silica. ACTA ACUST UNITED AC 2009. [DOI: 10.1080/13642819808204986] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- A. Wischnewski
- a Institut für Festkörperforschung , Forschungszentrum Jülich, D-52425 , Jülich , Germany
| | - U. Buchenau
- a Institut für Festkörperforschung , Forschungszentrum Jülich, D-52425 , Jülich , Germany
| | - A. J. Dianoux
- b Institut Laue-Langevin , BP 156, F-38042, Grenoble Cedex , 9 , France
| | - W. A. Kamitakahara
- c National Institute of Standards and Technology, Reactor Radiation Division , Gaithersburg , Maryland , 20899 , USA
| | - J. L. Zarestky
- d Ames Laboratory , Iowa State University , Ames , Iowa , 50011 , USA
| |
Collapse
|
38
|
Busselez R, Lefort R, Guendouz M, Frick B, Merdrignac-Conanec O, Morineau D. Molecular dynamics of glycerol and glycerol-trehalose bioprotectant solutions nanoconfined in porous silicon. J Chem Phys 2009; 130:214502. [DOI: 10.1063/1.3147222] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
39
|
Breakdown of the Debye approximation for the acoustic modes with nanometric wavelengths in glasses. Proc Natl Acad Sci U S A 2009; 106:3659-63. [PMID: 19240211 DOI: 10.1073/pnas.0808965106] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
On the macroscopic scale, the wavelengths of sound waves in glasses are large enough that the details of the disordered microscopic structure are usually irrelevant, and the medium can be considered as a continuum. On decreasing the wavelength this approximation must of course fail at one point. We show here that this takes place unexpectedly on the mesoscopic scale characteristic of the medium range order of glasses, where it still works well for the corresponding crystalline phases. Specifically, we find that the acoustic excitations with nanometric wavelengths show the clear signature of being strongly scattered, indicating the existence of a cross-over between well-defined acoustic modes for larger wavelengths and ill-defined ones for smaller wavelengths. This cross-over region is accompanied by a softening of the sound velocity that quantitatively accounts for the excess observed in the vibrational density of states of glasses over the Debye level at energies of a few milli-electronvolts. These findings thus highlight the acoustic contribution to the well-known universal low-temperature anomalies found in the specific heat of glasses.
Collapse
|
40
|
Isaev NP, Dzuba SA. Fast Stochastic Librations and Slow Rotations of Spin Labeled Stearic Acids in a Model Phospholipid Bilayer at Cryogenic Temperatures. J Phys Chem B 2008; 112:13285-91. [DOI: 10.1021/jp805794c] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Nikolay P. Isaev
- Institute of Chemical Kinetics and Combustion, Institutskaya-3, 630090 Novosibirsk, Russia, and Novosibirsk State University, 630090, Pirogova-2, Novosibirsk, Russia
| | - Sergei A. Dzuba
- Institute of Chemical Kinetics and Combustion, Institutskaya-3, 630090 Novosibirsk, Russia, and Novosibirsk State University, 630090, Pirogova-2, Novosibirsk, Russia
| |
Collapse
|
41
|
Surovtsev NV, Salnikov ES, Malinovsky VK, Sveshnikova LL, Dzuba SA. On the Low-Temperature Onset of Molecular Flexibility in Lipid Bilayers Seen by Raman Scattering. J Phys Chem B 2008; 112:12361-5. [DOI: 10.1021/jp801575d] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Nikolay V. Surovtsev
- Institute of Automatics and Electrometry, Ak. Koptyuga 1, 630090, Novosibirsk, Russia, Novosibirsk State University, Pirogova 2, 630090, Novosibirsk, Russia, Institute of Chemical Kinetics and Combustion, Institutskaya 3, 630090, Novosibirsk, Russia, and Institute of Semiconductor Physics, Lavrent’eva 13, 630090, Novosibirsk, Russia
| | - Evgeniy S. Salnikov
- Institute of Automatics and Electrometry, Ak. Koptyuga 1, 630090, Novosibirsk, Russia, Novosibirsk State University, Pirogova 2, 630090, Novosibirsk, Russia, Institute of Chemical Kinetics and Combustion, Institutskaya 3, 630090, Novosibirsk, Russia, and Institute of Semiconductor Physics, Lavrent’eva 13, 630090, Novosibirsk, Russia
| | - Valeriy K. Malinovsky
- Institute of Automatics and Electrometry, Ak. Koptyuga 1, 630090, Novosibirsk, Russia, Novosibirsk State University, Pirogova 2, 630090, Novosibirsk, Russia, Institute of Chemical Kinetics and Combustion, Institutskaya 3, 630090, Novosibirsk, Russia, and Institute of Semiconductor Physics, Lavrent’eva 13, 630090, Novosibirsk, Russia
| | - Larisa L. Sveshnikova
- Institute of Automatics and Electrometry, Ak. Koptyuga 1, 630090, Novosibirsk, Russia, Novosibirsk State University, Pirogova 2, 630090, Novosibirsk, Russia, Institute of Chemical Kinetics and Combustion, Institutskaya 3, 630090, Novosibirsk, Russia, and Institute of Semiconductor Physics, Lavrent’eva 13, 630090, Novosibirsk, Russia
| | - Sergey A. Dzuba
- Institute of Automatics and Electrometry, Ak. Koptyuga 1, 630090, Novosibirsk, Russia, Novosibirsk State University, Pirogova 2, 630090, Novosibirsk, Russia, Institute of Chemical Kinetics and Combustion, Institutskaya 3, 630090, Novosibirsk, Russia, and Institute of Semiconductor Physics, Lavrent’eva 13, 630090, Novosibirsk, Russia
| |
Collapse
|
42
|
Tarek M, Tobias DJ. The role of protein–solvent hydrogen bond dynamics in the structural relaxation of a protein in glycerol versus water. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2008; 37:701-9. [DOI: 10.1007/s00249-008-0324-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2007] [Revised: 03/28/2008] [Accepted: 04/01/2008] [Indexed: 11/28/2022]
|
43
|
Rufflé B, Parshin DA, Courtens E, Vacher R. Boson peak and its relation to acoustic attenuation in glasses. PHYSICAL REVIEW LETTERS 2008; 100:015501. [PMID: 18232782 DOI: 10.1103/physrevlett.100.015501] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2007] [Indexed: 05/25/2023]
Abstract
Experimental results on the density of states and on the acoustic modes of glasses in the THz region are compared to the predictions of two categories of models. A recent one, solely based on an elastic instability, does not account for most observations. Good agreement without adjustable parameters is obtained with models including the existence of nonacoustic vibrational modes at THz frequency, providing in many cases a comprehensive picture for a range of glass anomalies.
Collapse
Affiliation(s)
- B Rufflé
- Laboratoire des Colloïdes, Verres et Nanomatériaux, UMR 5587 CNRS Université Montpellier II, F-34095 Montpellier Cedex 5, France
| | | | | | | |
Collapse
|
44
|
|
45
|
Ruocco G, Matic A, Scopigno T, Yannopoulos SN. Comment on "glass-specific behavior in the damping of acousticlike vibrations". PHYSICAL REVIEW LETTERS 2007; 98:079601; author reply 079602. [PMID: 17359067 DOI: 10.1103/physrevlett.98.079601] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2006] [Indexed: 05/14/2023]
|
46
|
Schirmacher W, Ruocco G, Scopigno T. Acoustic attenuation in glasses and its relation with the boson peak. PHYSICAL REVIEW LETTERS 2007; 98:025501. [PMID: 17358618 DOI: 10.1103/physrevlett.98.025501] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2006] [Indexed: 05/14/2023]
Abstract
A theory for the vibrational dynamics in disordered solids [W. Schirmacher, Europhys. Lett. 73, 892 (2006), based on the random spatial variation of the shear modulus, has been applied to determine the wave vector (k) dependence of the Brillouin peak position (Omega(k)) and width (Gamma(k)), as well as the density of vibrational states [g(omega)], in disordered systems. As a result, we give a firm theoretical ground to the ubiquitous k2 dependence of Gamma(k) observed in glasses. Moreover, we derive a quantitative relation between the excess of the density of states (the boson peak) and Gamma(k), two quantities that were not considered related before. The successful comparison of this relation with the outcome of experiments and numerical simulations gives further support to the theory.
Collapse
Affiliation(s)
- W Schirmacher
- Physik-Department E13, Technische Universität München, Garching, Germany
| | | | | |
Collapse
|
47
|
Dzuba SA, Kirilina EP, Salnikov ES. On the possible manifestation of harmonic-anharmonic dynamical transition in glassy media in electron paramagnetic resonance of nitroxide spin probes. J Chem Phys 2006; 125:054502. [PMID: 16942221 DOI: 10.1063/1.2220571] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Continuous wave (cw) electron paramagnetic resonance (EPR) and echo-detected (ED) EPR were applied to study molecular motions of nitroxide spin probes in glassy glycerol and o-terphenyl. A linear decrease with increasing temperature of the total splitting in the cw EPR line shape was observed at low temperatures in both solvents. Above some temperature points the temperature dependencies become sharper. Within the model of molecular librations, this behavior is in qualitative and quantitative agreement with the numerical data on neutron scattering and Mossbauer absorption for molecular glasses and biomolecules, where temperature dependence of the mean-squared amplitude of the vibrational motion was obtained. In analogy with these data the departure from linear temperature dependence in cw EPR may be ascribed to the transition from harmonic to anharmonic motion (this transition is called dynamical transition). ED EPR spectra were found to change drastically above 195 K in glycerol and above 245 K in o-terphenyl, indicating the appearance of anisotropic transverse spin relaxation. This appearance may also be attributed to the dynamical transition as an estimation shows the anisotropic relaxation rates for harmonic and anharmonic librational motions and because these temperature points correspond well to those known from neutron scattering for these solvents. The low sensitivity of ED EPR to harmonic motion and its high sensitivity to the anharmonic one suggests that ED EPR may serve as a sensitive tool to detect dynamical transition in glasses and biomolecules.
Collapse
Affiliation(s)
- S A Dzuba
- Institute of Chemical Kinetics and Combustion, 630090, Institutskaya 3, Novosibirsk, Russia.
| | | | | |
Collapse
|
48
|
Rufflé B, Guimbretière G, Courtens E, Vacher R, Monaco G. Glass-specific behavior in the damping of acousticlike vibrations. PHYSICAL REVIEW LETTERS 2006; 96:045502. [PMID: 16486840 DOI: 10.1103/physrevlett.96.045502] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2005] [Indexed: 05/06/2023]
Abstract
High frequency sound is observed in lithium diborate glass, Li2O-2B2O3, using Brillouin scattering of light and x rays. The sound attenuation exhibits a nontrivial dependence on the wave vector, with a remarkably rapid increase towards a Ioffe-Regel crossover as the frequency approaches the boson peak from below. An analysis of literature results reveals that the boson-peak frequency is closely related with a Ioffe-Regel limit for sound in many glasses. We conjecture that this relation, specific to glassy materials, might be rather common among them.
Collapse
Affiliation(s)
- B Rufflé
- Laboratoire des Colloïdes, Verres et Nanomatériaux, UMR 5587 CNRS, Université Montpellier II, F-34095 Montpellier Cedex 5, France
| | | | | | | | | |
Collapse
|
49
|
Shi X, Mandanici A, McKenna GB. Shear stress relaxation and physical aging study on simple glass-forming materials. J Chem Phys 2005; 123:174507. [PMID: 16375546 DOI: 10.1063/1.2085050] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Relaxation and aging behaviors in three supercooled liquids: m-toluidine, glycerol, and sucrose benzoate have been studied by shear stress relaxation experiments in the time domain above and below their nominal glass transition temperatures. For the equilibrium state, the current study provides new data on the behavior of organic complex fluids. The shape of the relaxation function as characterized by the stretching exponent beta is discussed considering that a time-temperature master curve can be constructed even though the beta's for the individual response curves at each temperature vary systematically. In the nonequilibrium state, isothermal physical aging experiments at different glassy structures reveal that the effect of the aging process on the mechanical shear relaxation in these simple glass formers is similar to that observed in polymeric and other systems. Departure from the Vogel-Fulcher-Tamman behavior after the samples have aged back to equilibrium in the glassy state is observed for m-toluidine and, less strongly, for glycerol but not for sucrose benzoate. An inherent structure-based energy landscape concept is briefly discussed to account for the slow dynamics during the physical aging process.
Collapse
Affiliation(s)
- Xiangfu Shi
- Department of Chemical Engineering, Texas Tech University, Lubbock, Texas 79409, USA
| | | | | |
Collapse
|
50
|
Cornicchi E, Onori G, Paciaroni A. Picosecond-time-scale fluctuations of proteins in glassy matrices: the role of viscosity. PHYSICAL REVIEW LETTERS 2005; 95:158104. [PMID: 16241767 DOI: 10.1103/physrevlett.95.158104] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2005] [Indexed: 05/05/2023]
Abstract
Through elastic neutron scattering we investigated the fast dynamics of lysozyme in hydrated powder form or embedded in glycerol-water and glucose-water matrices. We calculated the relaxational contribution to the mean square displacements of protein hydrogen atoms. We found that the inverse of this quantity is linearly proportional to the logarithm of the viscosity of the solvent glassy matrix. This relationship suggests a close connection between the picosecond-time-scale dynamics of protein side chains and the solvent structural relaxation.
Collapse
Affiliation(s)
- Elena Cornicchi
- Dipartimento di Fisica, Università di Perugia, INFM-CRS SOFT Unità di Perugia, and Centro per i Materiali Innovativi e Nanostrutturati (CEMIN), Via A. Pascoli, I-06123 Perugia, Italy
| | | | | |
Collapse
|