1
|
Kok M, Huber F, Kalisch SM, Dogterom M. EB3-informed dynamics of the microtubule stabilizing cap during stalled growth. Biophys J 2025; 124:227-244. [PMID: 39604262 PMCID: PMC11788501 DOI: 10.1016/j.bpj.2024.11.3314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 09/16/2024] [Accepted: 11/25/2024] [Indexed: 11/29/2024] Open
Abstract
Microtubule stability is known to be governed by a stabilizing GTP/GDP-Pi cap, but the exact relation between growth velocity, GTP hydrolysis, and catastrophes remains unclear. We investigate the dynamics of the stabilizing cap through in vitro reconstitution of microtubule dynamics in contact with microfabricated barriers, using the plus-end binding protein GFP-EB3 as a marker for the nucleotide state of the tip. The interaction of growing microtubules with steric objects is known to slow down microtubule growth and accelerate catastrophes. We show that the lifetime distributions of stalled microtubules, as well as the corresponding lifetime distributions of freely growing microtubules, can be fully described with a simple phenomenological 1D model based on noisy microtubule growth and a single EB3-dependent hydrolysis rate. This same model is furthermore capable of explaining both the previously reported mild catastrophe dependence on microtubule growth rates and the catastrophe statistics during tubulin washout experiments.
Collapse
Affiliation(s)
- Maurits Kok
- Department of Bionanoscience, Kavli Institute of Nanoscience, Faculty of Applied Sciences, Delft University of Technology, Delft, the Netherlands
| | - Florian Huber
- Department of Bionanoscience, Kavli Institute of Nanoscience, Faculty of Applied Sciences, Delft University of Technology, Delft, the Netherlands; Netherlands eScience Center, Amsterdam, the Netherlands; Center for Digitalisation and Digitality, Düsseldorf University of Applied Sciences, Düsseldorf, Germany
| | - Svenja-Marei Kalisch
- Department of Bionanoscience, Kavli Institute of Nanoscience, Faculty of Applied Sciences, Delft University of Technology, Delft, the Netherlands
| | - Marileen Dogterom
- Department of Bionanoscience, Kavli Institute of Nanoscience, Faculty of Applied Sciences, Delft University of Technology, Delft, the Netherlands.
| |
Collapse
|
2
|
Nelson AC, Rolls MM, Ciocanel MV, McKinley SA. Minimal Mechanisms of Microtubule Length Regulation in Living Cells. Bull Math Biol 2024; 86:58. [PMID: 38627264 PMCID: PMC11413797 DOI: 10.1007/s11538-024-01279-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 03/05/2024] [Indexed: 04/19/2024]
Abstract
The microtubule cytoskeleton is responsible for sustained, long-range intracellular transport of mRNAs, proteins, and organelles in neurons. Neuronal microtubules must be stable enough to ensure reliable transport, but they also undergo dynamic instability, as their plus and minus ends continuously switch between growth and shrinking. This process allows for continuous rebuilding of the cytoskeleton and for flexibility in injury settings. Motivated by in vivo experimental data on microtubule behavior in Drosophila neurons, we propose a mathematical model of dendritic microtubule dynamics, with a focus on understanding microtubule length, velocity, and state-duration distributions. We find that limitations on microtubule growth phases are needed for realistic dynamics, but the type of limiting mechanism leads to qualitatively different responses to plausible experimental perturbations. We therefore propose and investigate two minimally-complex length-limiting factors: limitation due to resource (tubulin) constraints and limitation due to catastrophe of large-length microtubules. We combine simulations of a detailed stochastic model with steady-state analysis of a mean-field ordinary differential equations model to map out qualitatively distinct parameter regimes. This provides a basis for predicting changes in microtubule dynamics, tubulin allocation, and the turnover rate of tubulin within microtubules in different experimental environments.
Collapse
Affiliation(s)
- Anna C Nelson
- Department of Mathematics, Duke University, Durham, NC, 27710, USA.
| | - Melissa M Rolls
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, State College, PA, 16801, USA
| | - Maria-Veronica Ciocanel
- Department of Mathematics, Duke University, Durham, NC, 27710, USA
- Department of Biology, Duke University, Durham, NC, 27710, USA
| | - Scott A McKinley
- Department of Mathematics, Tulane University, New Orleans, LA, 70118, USA
| |
Collapse
|
3
|
Amoah-Darko FL, White D. Modelling microtubule dynamic instability: Microtubule growth, shortening and pause. J Theor Biol 2022; 553:111257. [PMID: 36057342 DOI: 10.1016/j.jtbi.2022.111257] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 08/11/2022] [Accepted: 08/18/2022] [Indexed: 11/26/2022]
Abstract
Microtubules (MTs) are protein polymers found in all eukaryotic cells. They are crucial for normal cell development, providing structural support for the cell and aiding in the transportation of proteins and organelles. In order to perform these functions, MTs go through periods of relatively slow polymerization (growth) and very fast depolymerization (shortening), where the switch from growth to shortening is called a catastrophe and the switch from shortening to growth is called a rescue. Although MT dynamic instability has traditionally been described solely in terms of growth and shortening, MTs have been shown to pause for extended periods of time, however the reason for pausing is not well understood. Here, we present a new mathematical model to describe MT dynamics in terms of growth, shortening, and pausing. Typically, MT dynamics are defined by four key parameters which include the MT growth rate, shortening rate, frequency of catastrophe, and the frequency of rescue. We derive a mathematical expression for the catastrophe frequency in the presence of pausing, as well as expressions to describe the total time that MTs spend in a state of growth and pause. In addition to exploring MT dynamics in a control-like setting, we explore the implicit effect of stabilizing MT associated proteins (MAPs) and stabilizing and destabilizing chemotherapeutic drugs that target MTs on MT dynamics through variations in model parameters.
Collapse
Affiliation(s)
| | - Diana White
- Clarkson University, 8 Clarkson Avenue, Potsdam, NY, United States of America.
| |
Collapse
|
4
|
Choudhury S, Ananthanarayanan V, Ayappa KG. Coupling of mitochondrial population evolution to microtubule dynamics in fission yeast cells: a kinetic Monte Carlo study. SOFT MATTER 2022; 18:4483-4492. [PMID: 35670055 DOI: 10.1039/d2sm00155a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Mitochondrial populations in cells are maintained by cycles of fission and fusion events. Perturbation of this balance has been observed in several diseases such as cancer and neurodegeneration. In fission yeast cells, the association of mitochondria with microtubules inhibits mitochondrial fission [Mehta et al., J. Biol. Chem., 2019, 294, 3385], illustrating the intricate coupling between mitochondria and the dynamic population of microtubules within the cell. In order to understand this coupling, we carried out kinetic Monte Carlo (KMC) simulations to predict the evolution of mitochondrial size distributions for different cases; wild-type cells, cells with short and long microtubules, and cells without microtubules. Comparisons are made with mitochondrial distributions reported in experiments with fission yeast cells. Using experimentally determined mitochondrial fission and fusion frequencies, simulations implemented without the coupling of microtubule dynamics predicted an increase in the mean number of mitochondria, equilibrating within 50 s. The mitochondrial length distribution in these models also showed a higher occurrence of shorter mitochondria, implying a greater tendency for fission, similar to the scenario observed in the absence of microtubules and cells with short microtubules. Interestingly, this resulted in overestimating the mean number of mitochondria and underestimating mitochondrial lengths in cells with wild-type and long microtubules. However, coupling mitochondria's fission and fusion events to the microtubule dynamics effectively captured the mitochondrial number and size distributions in wild-type and cells with long microtubules. Thus, the model provides greater physical insight into the temporal evolution of mitochondrial populations in different microtubule environments, allowing one to study both the short-time evolution as observed in the experiments (<5 minutes) as well as their transition towards a steady-state (>15 minutes). Our study illustrates the critical role of microtubules in mitochondrial dynamics and coupling microtubule growth and shrinkage dynamics is critical to predicting the evolution of mitochondrial populations within the cell.
Collapse
Affiliation(s)
- Samlesh Choudhury
- Department of Chemical Engineering, Indian Institute of Science, Bangalore, Karnataka, India.
| | | | - K Ganapathy Ayappa
- Department of Chemical Engineering, Indian Institute of Science, Bangalore, Karnataka, India.
| |
Collapse
|
5
|
Dieterle PB, Zheng J, Garner E, Amir A. Universal catastrophe time distributions of dynamically unstable polymers. Phys Rev E 2022; 105:064503. [PMID: 35854610 DOI: 10.1103/physreve.105.064503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 05/11/2022] [Indexed: 11/07/2022]
Abstract
Dynamic instability-the growth, catastrophe, and shrinkage of quasi-one-dimensional filaments-has been observed in multiple biopolymers. Scientists have long understood the catastrophic cessation of growth and subsequent depolymerization as arising from the interplay of hydrolysis and polymerization at the tip of the polymer. Here we show that for a broad class of catastrophe models, the expected catastrophe time distribution is exponential. We show that the distribution shape is insensitive to noise, but that depletion of monomers from a finite pool can dramatically change the distribution shape by reducing the polymerization rate. We derive a form for this finite-pool catastrophe time distribution and show that finite-pool effects can be important even when the depletion of monomers does not greatly alter the polymerization rate.
Collapse
Affiliation(s)
- Paul B Dieterle
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Jenny Zheng
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Ethan Garner
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Ariel Amir
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
| |
Collapse
|
6
|
Jain K, Basu J, Roy M, Yadav J, Patil S, Athale CA. Polymerization kinetics of tubulin from mung seedlings modeled as a competition between nucleation and GTP-hydrolysis rates. Cytoskeleton (Hoboken) 2022; 78:436-447. [PMID: 35233933 DOI: 10.1002/cm.21694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 02/10/2022] [Accepted: 02/21/2022] [Indexed: 11/07/2022]
Abstract
Microtubules (MTs) form physiologically important cytoskeletal structures that assemble by tubulin polymerization in a nucleation- and GTP-dependent manner. GTP-hydrolysis competes with the addition of monomers, to determine the GTP-cap size, and onset of shrinkage, which alternates with growth. Multiple theoretical models of MT polymerization dynamics have been reconciled to the kinetics of animal brain tubulins, but more recently rapid kinetics seen in Arabidopsis tubulin polymerization suggest the need to sample a wider diversity in tubulin polymerization kinetics and reconcile it to theory. Here, we have isolated tubulin from seedlings of Vigna sp. (mung bean), compared polymerization kinetics to animal brain tubulin and used a computational model to understand the di_erences. We _nd that activity isolated mung tubulin polymerizes in a nucleation-dependent manner, based on turbidimetry, qualitatively similar to brain tubulin, but with a ten-fold smaller critical critical concentration. GTP-dependent polymerization kinetics also appear to be transient, indicative of high rates of GTP-hydrolysis. Computational modeling of tubulin nucleation and vectorial GTP-hydrolysis to examine the e_ect of high nucleation and GTP-hydrolysis rates predicts a dominance of the latter in determining MT lengths and numbers. Microscopy of mung tubulin _laments stabilized by GMPCPP or taxol result in few and short MTs, compared to the many long MTs arising from goat tubulin, qualitatively matching the model predictions. We _nd GTP-hydrolysis outcompetes nucleation rates in determining MT lengths and numbers. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Kunalika Jain
- Division of Biology, IISER Pune, Pune, Maharashtra, India
| | - Jashaswi Basu
- Division of Biology, IISER Pune, Pune, Maharashtra, India
| | - Megha Roy
- Division of Biology, IISER Pune, Pune, Maharashtra, India
| | - Jyoti Yadav
- Department of Chemistry, IISER Pune, Pune, Maharashtra, India
| | | | | |
Collapse
|
7
|
Nasedkin A, Ermilova I, Swenson J. Atomistic molecular dynamics simulations of tubulin heterodimers explain the motion of a microtubule. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2021; 50:927-940. [PMID: 34215900 PMCID: PMC8448678 DOI: 10.1007/s00249-021-01553-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/24/2021] [Accepted: 06/07/2021] [Indexed: 06/13/2023]
Abstract
Microtubules are essential parts of the cytoskeleton that are built by polymerization of tubulin heterodimers into a hollow tube. Regardless that their structures and functions have been comprehensively investigated in a modern soft matter, it is unclear how properties of tubulin heterodimer influence and promote the self-assembly. A detailed knowledge of such structural mechanisms would be helpful in drug design against neurodegenerative diseases, cancer, diabetes etc. In this work atomistic molecular dynamics simulations were used to investigate the fundamental dynamics of tubulin heterodimers in a sheet and a short microtubule utilizing well-equilibrated structures. The breathing motions of the tubulin heterodimers during assembly show that the movement at the lateral interface between heterodimers (wobbling) dominates in the lattice. The simulations of the protofilament curvature agrees well with recently published experimental data, showing curved protofilaments at polymerization of the microtubule plus end. The tubulin heterodimers exposed at the microtubule minus end were less curved and displayed altered interactions at the site of sheet closure around the outmost heterodimers, which may slow heterodimer binding and polymerization, providing a potential explanation for the limited dynamics observed at the minus end.
Collapse
Affiliation(s)
- Alexandr Nasedkin
- Department of Physics, Chalmers University of Technology, SE 41296 Göteborg, Sweden
| | - Inna Ermilova
- Department of Physics, Chalmers University of Technology, SE 41296 Göteborg, Sweden
| | - Jan Swenson
- Department of Physics, Chalmers University of Technology, SE 41296 Göteborg, Sweden
| |
Collapse
|
8
|
Yadav V, Srinivas B, Gopalakrishnan M. Microtubule catastrophe under force: mathematical and computational results from a Brownian ratchet model. Phys Biol 2020; 18:016006. [PMID: 33045690 DOI: 10.1088/1478-3975/abc057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
In the intracellular environment, the intrinsic dynamics of microtubule filaments is often hindered by the presence of barriers of various kind, such as kinetochore complexes and cell cortex, which impact their polymerisation force and dynamical properties such as catastrophe frequency. We present a theoretical study of the effect of a forced barrier, also subjected to thermal noise, on the statistics of catastrophe events in a single microtubule as well as a 'bundle' of two parallel microtubules. For microtubule dynamics, which includes growth, detachment, hydrolysis and the consequent dynamic instability, we employ a one-dimensional discrete stochastic model. The dynamics of the barrier is captured by over-damped Langevin equation, while its interaction with a growing filament is assumed to be hard-core repulsion. A unified treatment of the continuum dynamics of the barrier and the discrete dynamics of the filament is realized using a hybrid Fokker-Planck equation. An explicit mathematical formula for the force-dependent catastrophe frequency of a single microtubule is obtained by solving the above equation, under some assumptions. The prediction agrees well with results of numerical simulations in the appropriate parameter regime. More general situations are studied via numerical simulations. To investigate the extent of 'load-sharing' in a microtubule bundle, and its impact on the frequency of catastrophes, the dynamics of a two-filament bundle is also studied. Here, two parallel, non-interacting microtubules interact with a common, forced barrier. The equations for the two-filament model, when solved using a mean-field assumption, predicts equal sharing of load between the filaments. However, numerical results indicate the existence of a wide spectrum of load-sharing behaviour, which is characterized using a dimensionless parameter.
Collapse
Affiliation(s)
- Vandana Yadav
- Department of Physics, Indian Institute of Technology Madras, Chennai 600036, India
| | | | | |
Collapse
|
9
|
J S A, Padinhateeri R, Das D. Regulation of microtubule disassembly by spatially heterogeneous patterns of acetylation. SOFT MATTER 2020; 16:3125-3136. [PMID: 32159199 DOI: 10.1039/c9sm02198a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Microtubules (MTs) are bio-polymers, composed of tubulin proteins, involved in several functions such as cell division, transport of cargoes within cells, maintaining cellular structures etc. Their kinetics are often affected by chemical modifications on the filament known as Post Translational Modifications (PTMs). Acetylation is a PTM which occurs on the luminal surface of the MT lattice and has been observed to reduce the lateral interaction between tubulins on adjacent protofilaments. Depending on the properties of the acetylase enzyme αTAT1 and the structural features of MTs, the patterns of acetylation formed on MTs are observed to be quite diverse. In this study, we present a multi-protofilament model with spatially heterogeneous patterns of acetylation, and investigate how the local kinetic differences arising from heterogeneity affect the global kinetics of MT filaments. From the computational study we conclude that a filament with spatially uniform acetylation is least stable against disassembly, while ones with more clustered acetylation patterns may provide better resistance against disassembly. The increase in disassembly times for clustered pattern as compared to uniform pattern can be up to fifty percent for identical amounts of acetylation. Given that acetylated MTs affect several cellular functions as well as diseases such as cancer, our study indicates that spatial patterns of acetylation need to be focused on, apart from the overall amount of acetylation.
Collapse
Affiliation(s)
- Aparna J S
- Centre for Research in Nanotechnology and Science, Indian Institute of Technology Bombay, Mumbai, India.
| | | | | |
Collapse
|
10
|
Jonasson EM, Mauro AJ, Li C, Labuz EC, Mahserejian SM, Scripture JP, Gregoretti IV, Alber M, Goodson HV. Behaviors of individual microtubules and microtubule populations relative to critical concentrations: dynamic instability occurs when critical concentrations are driven apart by nucleotide hydrolysis. Mol Biol Cell 2019; 31:589-618. [PMID: 31577530 PMCID: PMC7202068 DOI: 10.1091/mbc.e19-02-0101] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The concept of critical concentration (CC) is central to understanding the behavior of microtubules (MTs) and other cytoskeletal polymers. Traditionally, these polymers are understood to have one CC, measured in multiple ways and assumed to be the subunit concentration necessary for polymer assembly. However, this framework does not incorporate dynamic instability (DI), and there is work indicating that MTs have two CCs. We use our previously established simulations to confirm that MTs have (at least) two experimentally relevant CCs and to clarify the behavior of individuals and populations relative to the CCs. At free subunit concentrations above the lower CC (CCElongation), growth phases of individual filaments can occur transiently; above the higher CC (CCNetAssembly), the population’s polymer mass will increase persistently. Our results demonstrate that most experimental CC measurements correspond to CCNetAssembly, meaning that “typical” DI occurs below the concentration traditionally considered necessary for polymer assembly. We report that [free tubulin] at steady state does not equal CCNetAssembly, but instead approaches CCNetAssembly asymptotically as [total tubulin] increases, and depends on the number of stable MT nucleation sites. We show that the degree of separation between CCElongation and CCNetAssembly depends on the rate of nucleotide hydrolysis. This clarified framework helps explain and unify many experimental observations.
Collapse
Affiliation(s)
- Erin M Jonasson
- Department of Chemistry and Biochemistry.,Department of Natural Sciences, Saint Martin's University, Lacey, WA 98503
| | - Ava J Mauro
- Department of Chemistry and Biochemistry.,Department of Applied and Computational Mathematics and Statistics, and.,Department of Mathematics and Statistics, University of Massachusetts Amherst, Amherst, MA 01003
| | - Chunlei Li
- Department of Applied and Computational Mathematics and Statistics, and
| | | | | | | | | | - Mark Alber
- Department of Applied and Computational Mathematics and Statistics, and.,Department of Mathematics, University of California, Riverside, Riverside, CA 92521
| | - Holly V Goodson
- Department of Chemistry and Biochemistry.,Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556
| |
Collapse
|
11
|
Mateos-Gil P, Tarazona P, Vélez M. Bacterial cell division: modeling FtsZ assembly and force generation from single filament experimental data. FEMS Microbiol Rev 2019; 43:73-87. [PMID: 30376053 DOI: 10.1093/femsre/fuy039] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 10/26/2018] [Indexed: 12/24/2022] Open
Abstract
The bacterial cytoskeletal protein FtsZ binds and hydrolyzes GTP, self-aggregates into dynamic filaments and guides the assembly of the septal ring on the inner side of the membrane at midcell. This ring constricts the cell during division and is present in most bacteria. Despite exhaustive studies undertaken in the last 25 years after its discovery, we do not yet know the mechanism by which this GTP-dependent self-aggregating protein exerts force on the underlying membrane. This paper reviews recent experiments and theoretical models proposed to explain FtsZ filament dynamic assembly and force generation. It highlights how recent observations of single filaments on reconstituted model systems and computational modeling are contributing to develop new multiscale models that stress the importance of previously overlooked elements as monomer internal flexibility, filament twist and flexible anchoring to the cell membrane. These elements contribute to understand the rich behavior of these GTP consuming dynamic filaments on surfaces. The aim of this review is 2-fold: (1) to summarize recent multiscale models and their implications to understand the molecular mechanism of FtsZ assembly and force generation and (2) to update theoreticians with recent experimental results.
Collapse
Affiliation(s)
- Pablo Mateos-Gil
- Institute of Molecular Biology and Biotechnology, FO.R.T.H, Vassilika Vouton, 70013 Heraklion, Greece
| | - Pedro Tarazona
- Condensed Matter Physics Center (IFIMAC) and Instituto de Ciencia de Materiales Nicolás Cabrera, Universidad Autónoma de Madrid, E-28049 Madrid, Spain
| | - Marisela Vélez
- Instituto de Catálisis y Petroleoquímica CSIC, c/ Marie Curie 2, Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
12
|
Honoré S, Hubert F, Tournus M, White D. A Growth-Fragmentation Approach for Modeling Microtubule Dynamic Instability. Bull Math Biol 2018; 81:722-758. [PMID: 30484040 DOI: 10.1007/s11538-018-0531-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 10/31/2018] [Indexed: 10/27/2022]
Abstract
Microtubules (MTs) are protein filaments found in all eukaryotic cells which are crucial for many cellular processes including cell movement, cell differentiation, and cell division. Due to their role in cell division, they are often used as targets for chemotherapy drugs used in cancer treatment. Experimental studies of MT dynamics have played an important role in the development and administration of many novel cancer drugs; however, a complete description of MT dynamics is lacking. Here, we propose a new mathematical model for MT dynamics, that can be used to study the effects of chemotherapy drugs on MT dynamics. Our model consists of a growth-fragmentation equation describing the dynamics of a length distribution of MTs, coupled with two ODEs that describe the dynamics of free GTP- and GDP-tubulin concentrations (the individual dimers that comprise of MTs). Here, we prove the well-posedness of our system and perform a numerical exploration of the influence of certain model parameters on the systems dynamics. In particular, we focus on a qualitative description for how a certain class of destabilizing drugs, the vinca alkaloids, alter MT dynamics. Through variation of certain model parameters which we know are altered by these drugs, we make comparisons between simulation results and what is observed in in vitro studies.
Collapse
Affiliation(s)
- Stéphane Honoré
- CNRS, INP, Inst Neurophysiopathol, Faculté de Pharmacie de Marseille, Aix Marseille University, 13385, Marseille, France.,Service pharmacie, CHU Hôpital de La Timone, APHM, Marseille, France
| | - Florence Hubert
- CNRS, Centrale Marseille, I2M, Aix Marseille University, Marseille, France
| | - Magali Tournus
- CNRS, Centrale Marseille, I2M, Aix Marseille University, Marseille, France
| | - Diana White
- Department of Mathematics, Clarkson University, Potsdam, NY, USA.
| |
Collapse
|
13
|
Nakamura M, Lindeboom JJ, Saltini M, Mulder BM, Ehrhardt DW. SPR2 protects minus ends to promote severing and reorientation of plant cortical microtubule arrays. J Cell Biol 2018; 217:915-927. [PMID: 29339437 PMCID: PMC5839793 DOI: 10.1083/jcb.201708130] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 11/01/2017] [Accepted: 12/04/2017] [Indexed: 01/05/2023] Open
Abstract
The cortical microtubule arrays of higher plants are organized without centrosomes and feature treadmilling polymers that are dynamic at both ends. The control of polymer end stability is fundamental for the assembly and organization of cytoskeletal arrays, yet relatively little is understood about how microtubule minus ends are controlled in acentrosomal microtubule arrays, and no factors have been identified that act at the treadmilling minus ends in higher plants. Here, we identify Arabidopsis thaliana SPIRAL2 (SPR2) as a protein that tracks minus ends and protects them against subunit loss. SPR2 function is required to facilitate the rapid reorientation of plant cortical arrays as stimulated by light perception, a process that is driven by microtubule severing to create a new population of microtubules. Quantitative live-cell imaging and computer simulations reveal that minus protection by SPR2 acts by an unexpected mechanism to promote the lifetime of potential SPR2 severing sites, increasing the likelihood of severing and thus the rapid amplification of the new microtubule array.
Collapse
Affiliation(s)
- Masayoshi Nakamura
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA
| | - Jelmer J Lindeboom
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA
| | | | - Bela M Mulder
- Institute AMOLF, Amsterdam, Netherlands.,Laboratory of Cell Biology, Wageningen University, Wageningen, Netherlands
| | - David W Ehrhardt
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA .,Department of Biology, Stanford University, Stanford, CA
| |
Collapse
|
14
|
Michaels TCT, Liu LX, Meisl G, Knowles TPJ. Physical principles of filamentous protein self-assembly kinetics. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2017; 29:153002. [PMID: 28170349 DOI: 10.1088/1361-648x/aa5f10] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The polymerization of proteins and peptides into filamentous supramolecular structures is an elementary form of self-organization of key importance to the functioning biological systems, as in the case of actin biofilaments that compose the cellular cytoskeleton. Aberrant filamentous protein self-assembly, however, is associated with undesired effects and severe clinical disorders, such as Alzheimer's and Parkinson's diseases, which, at the molecular level, are associated with the formation of certain forms of filamentous protein aggregates known as amyloids. Moreover, due to their unique physicochemical properties, protein filaments are finding extensive applications as biomaterials for nanotechnology. With all these different factors at play, the field of filamentous protein self-assembly has experienced tremendous activity in recent years. A key question in this area has been to elucidate the microscopic mechanisms through which filamentous aggregates emerge from dispersed proteins with the goal of uncovering the underlying physical principles. With the latest developments in the mathematical modeling of protein aggregation kinetics as well as the improvement of the available experimental techniques it is now possible to tackle many of these complex systems and carry out detailed analyses of the underlying microscopic steps involved in protein filament formation. In this paper, we review some classical and modern kinetic theories of protein filament formation, highlighting their use as a general strategy for quantifying the molecular-level mechanisms and transition states involved in these processes.
Collapse
Affiliation(s)
- Thomas C T Michaels
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, United States of America
| | | | | | | |
Collapse
|
15
|
Aparna JS, Padinhateeri R, Das D. Signatures of a macroscopic switching transition for a dynamic microtubule. Sci Rep 2017; 7:45747. [PMID: 28374844 PMCID: PMC5379563 DOI: 10.1038/srep45747] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 03/02/2017] [Indexed: 11/17/2022] Open
Abstract
Characterising complex kinetics of non-equilibrium self-assembly of bio-filaments is of general interest. Dynamic instability in microtubules, consisting of successive catastrophes and rescues, is observed to occur as a result of the non-equilibrium conversion of GTP-tubulin to GDP-tubulin. We study this phenomenon using a model for microtubule kinetics with GTP/GDP state-dependent polymerisation, depolymerisation and hydrolysis of subunits. Our results reveal a sharp switch-like transition in the mean velocity of the filaments, from a growth phase to a shrinkage phase, with an associated co-existence of the two phases. This transition is reminiscent of the discontinuous phase transition across the liquid-gas boundary. We probe the extent of discontinuity in the transition quantitatively using characteristic signatures such as bimodality in velocity distribution, variance and Binder cumulant, and also hysteresis behaviour of the system. We further investigate ageing behaviour in catastrophes of the filament, and find that the multi-step nature of catastrophes is intensified in the vicinity of the switching transition. This assumes importance in the context of Microtubule Associated Proteins which have the potential of altering kinetic parameter values.
Collapse
Affiliation(s)
- J S Aparna
- Centre for Research in Nanotechnology and Sciences, Indian Institute of Technology Bombay, Mumbai, India
| | - Ranjith Padinhateeri
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Dibyendu Das
- Department of Physics, Indian Institute of Technology Bombay, Mumbai, India
| |
Collapse
|
16
|
Steady-state EB cap size fluctuations are determined by stochastic microtubule growth and maturation. Proc Natl Acad Sci U S A 2017; 114:3427-3432. [PMID: 28280102 DOI: 10.1073/pnas.1620274114] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Growing microtubules are protected from depolymerization by the presence of a GTP or GDP/Pi cap. End-binding proteins of the EB1 family bind to the stabilizing cap, allowing monitoring of its size in real time. The cap size has been shown to correlate with instantaneous microtubule stability. Here we have quantitatively characterized the properties of cap size fluctuations during steady-state growth and have developed a theory predicting their timescale and amplitude from the kinetics of microtubule growth and cap maturation. In contrast to growth speed fluctuations, cap size fluctuations show a characteristic timescale, which is defined by the lifetime of the cap sites. Growth fluctuations affect the amplitude of cap size fluctuations; however, cap size does not affect growth speed, indicating that microtubules are far from instability during most of their time of growth. Our theory provides the basis for a quantitative understanding of microtubule stability fluctuations during steady-state growth.
Collapse
|
17
|
Šarić A, Michaels TCT, Zaccone A, Knowles TPJ, Frenkel D. Kinetics of spontaneous filament nucleation via oligomers: Insights from theory and simulation. J Chem Phys 2016; 145:211926. [DOI: 10.1063/1.4965040] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Anđela Šarić
- Department of Physics and Astronomy, Institute for the
Physics of Living Systems, University College London,
Gower Street, London WC1E 6BT, United Kingdom
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Thomas C. T. Michaels
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
- Paulson School of Engineering and Applied Sciences,
Harvard University, Cambridge, Massachusetts 02138,
USA
| | - Alessio Zaccone
- Department of Chemical Engineering, University of Cambridge, Pembroke St., Cambridge CB2 3RA, United Kingdom
| | - Tuomas P. J. Knowles
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Daan Frenkel
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
18
|
Michaels TC, Dear AJ, Knowles TP. Scaling and dimensionality in the chemical kinetics of protein filament formation. INT REV PHYS CHEM 2016. [DOI: 10.1080/0144235x.2016.1239335] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
19
|
Bowne-Anderson H, Hibbel A, Howard J. Regulation of Microtubule Growth and Catastrophe: Unifying Theory and Experiment. Trends Cell Biol 2016; 25:769-779. [PMID: 26616192 DOI: 10.1016/j.tcb.2015.08.009] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 08/27/2015] [Accepted: 08/27/2015] [Indexed: 10/22/2022]
Abstract
Recent studies have found that microtubule-associated proteins (MAPs) can regulate the dynamical properties of microtubules in unexpected ways. For most MAPs, there is an inverse relationship between their effects on the speed of growth and the frequency of catastrophe, the conversion of a growing microtubule to a shrinking one. Such a negative correlation is predicted by the standard GTP-cap model, which posits that catastrophe is due to loss of a stabilizing cap of GTP-tubulin at the end of a growing microtubule. However, many other MAPs, notably Kinesin-4 and combinations of EB1 with XMAP215, contradict this general rule. In this review, we show that a more nuanced, but still simple, GTP-cap model, can account for the diverse regulatory activities of MAPs.
Collapse
Affiliation(s)
| | - Anneke Hibbel
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden 01307, Germany; ETH Zurich, Institute for Biochemistry, HPM E8.1, Otto-Stern-Weg 3, 8093 Zurich, Switzerland
| | | |
Collapse
|
20
|
Duellberg C, Cade NI, Surrey T. Microtubule aging probed by microfluidics-assisted tubulin washout. Mol Biol Cell 2016; 27:3563-3573. [PMID: 27489342 PMCID: PMC5221588 DOI: 10.1091/mbc.e16-07-0548] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 07/28/2016] [Indexed: 11/24/2022] Open
Abstract
Microtubule aging—the decrease of stability with age—is an interesting but mechanistically not understood property of microtubules. It constrains possible mechanisms of catastrophe induction and is believed to be crucial for length regulation. New in vitro experiments and model fits provide insight into the origin of microtubule aging. Microtubules switch stochastically between phases of growth and shrinkage. The molecular mechanism responsible for the end of a growth phase, an event called catastrophe, is still not understood. The probability for a catastrophe to occur increases with microtubule age, putting constraints on the possible molecular mechanism of catastrophe induction. Here we used microfluidics-assisted fast tubulin washout experiments to induce microtubule depolymerization in a controlled manner at different times after the start of growth. We found that aging can also be observed in this assay, providing valuable new constraints against which theoretical models of catastrophe induction can be tested. We found that the data can be quantitatively well explained by a simple kinetic threshold model that assumes an age-dependent broadening of the protective cap at the microtubule end as a result of an evolving tapered end structure; this leads to a decrease of the cap density and its stability. This analysis suggests an intuitive picture of the role of morphological changes of the protective cap for the age dependence of microtubule stability.
Collapse
Affiliation(s)
- Christian Duellberg
- Lincoln's Inn Fields Laboratory, Francis Crick Institute, London WC2A 3LY, United Kingdom
| | - Nicholas Ian Cade
- Lincoln's Inn Fields Laboratory, Francis Crick Institute, London WC2A 3LY, United Kingdom
| | - Thomas Surrey
- Lincoln's Inn Fields Laboratory, Francis Crick Institute, London WC2A 3LY, United Kingdom
| |
Collapse
|
21
|
Michaels TCT, Lazell HW, Arosio P, Knowles TPJ. Dynamics of protein aggregation and oligomer formation governed by secondary nucleation. J Chem Phys 2016; 143:054901. [PMID: 26254664 DOI: 10.1063/1.4927655] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The formation of aggregates in many protein systems can be significantly accelerated by secondary nucleation, a process where existing assemblies catalyse the nucleation of new species. In particular, secondary nucleation has emerged as a central process controlling the proliferation of many filamentous protein structures, including molecular species related to diseases such as sickle cell anemia and a range of neurodegenerative conditions. Increasing evidence suggests that the physical size of protein filaments plays a key role in determining their potential for deleterious interactions with living cells, with smaller aggregates of misfolded proteins, oligomers, being particularly toxic. It is thus crucial to progress towards an understanding of the factors that control the sizes of protein aggregates. However, the influence of secondary nucleation on the time evolution of aggregate size distributions has been challenging to quantify. This difficulty originates in large part from the fact that secondary nucleation couples the dynamics of species distant in size space. Here, we approach this problem by presenting an analytical treatment of the master equation describing the growth kinetics of linear protein structures proliferating through secondary nucleation and provide closed-form expressions for the temporal evolution of the resulting aggregate size distribution. We show how the availability of analytical solutions for the full filament distribution allows us to identify the key physical parameters that control the sizes of growing protein filaments. Furthermore, we use these results to probe the dynamics of the populations of small oligomeric species as they are formed through secondary nucleation and discuss the implications of our work for understanding the factors that promote or curtail the production of these species with a potentially high deleterious biological activity.
Collapse
Affiliation(s)
- Thomas C T Michaels
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Hamish W Lazell
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Paolo Arosio
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Tuomas P J Knowles
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
22
|
Zeitz M, Kierfeld J. Feedback mechanism for microtubule length regulation by stathmin gradients. Biophys J 2016; 107:2860-2871. [PMID: 25517152 DOI: 10.1016/j.bpj.2014.10.056] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 09/22/2014] [Accepted: 10/22/2014] [Indexed: 12/22/2022] Open
Abstract
We formulate and analyze a theoretical model for the regulation of microtubule (MT) polymerization dynamics by the signaling proteins Rac1 and stathmin. In cells, the MT growth rate is inhibited by cytosolic stathmin, which, in turn, is inactivated by Rac1. Growing MTs activate Rac1 at the cell edge, which closes a positive feedback loop. We investigate both tubulin sequestering and catastrophe promotion as mechanisms for MT growth inhibition by stathmin. For a homogeneous stathmin concentration in the absence of Rac1, we find a switchlike regulation of the MT mean length by stathmin. For constitutively active Rac1 at the cell edge, stathmin is deactivated locally, which establishes a spatial gradient of active stathmin. In this gradient, we find a stationary bimodal MT-length distribution for both mechanisms of MT growth inhibition by stathmin. One subpopulation of the bimodal length distribution can be identified with fast-growing and long pioneering MTs in the region near the cell edge, which have been observed experimentally. The feedback loop is closed through Rac1 activation by MTs. For tubulin sequestering by stathmin, this establishes a bistable switch with two stable states: one stable state corresponds to upregulated MT mean length and bimodal MT length distributions, i.e., pioneering MTs; the other stable state corresponds to an interrupted feedback with short MTs. Stochastic effects as well as external perturbations can trigger switching events. For catastrophe-promoting stathmin, we do not find bistability.
Collapse
Affiliation(s)
- Maria Zeitz
- Physics Department, TU Dortmund University, Dortmund, Germany
| | - Jan Kierfeld
- Physics Department, TU Dortmund University, Dortmund, Germany.
| |
Collapse
|
23
|
Duellberg C, Cade NI, Holmes D, Surrey T. The size of the EB cap determines instantaneous microtubule stability. eLife 2016; 5. [PMID: 27050486 PMCID: PMC4829430 DOI: 10.7554/elife.13470] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 02/23/2016] [Indexed: 12/24/2022] Open
Abstract
The function of microtubules relies on their ability to switch between phases of growth and shrinkage. A nucleotide-dependent stabilising cap at microtubule ends is thought to be lost before this switch can occur; however, the nature and size of this protective cap are unknown. Using a microfluidics-assisted multi-colour TIRF microscopy assay with close-to-nm and sub-second precision, we measured the sizes of the stabilizing cap of individual microtubules. We find that the protective caps are formed by the extended binding regions of EB proteins. Cap lengths vary considerably and longer caps are more stable. Nevertheless, the trigger of instability lies in a short region at the end of the cap, as a quantitative model of cap stability demonstrates. Our study establishes the spatial and kinetic characteristics of the protective cap and provides an insight into the molecular mechanism by which its loss leads to the switch from microtubule growth to shrinkage. DOI:http://dx.doi.org/10.7554/eLife.13470.001 Much like the skeleton supports the human body, a structure called the cytoskeleton provides support and structure to cells. Part of this cytoskeleton is made up of small tubes called microtubules that – unlike bones – can shrink and grow very quickly. This allows the cell to change shape, move and split into two new cells. Exactly how the microtubules switch between growing and shrinking was not clear. One suggestion is that a protective cap at the end of microtubule allows it to keep growing and prevents it from shrinking. However, the nature and size of this cap have been debated. Now, Duellberg et al. have measured the caps of microtubules with high precision by combining the techniques of microfluidics, TIRF microscopy and recently developed image analysis tools. This revealed that the cap sizes change, with longer caps being more stable. In addition, proteins called end-binding proteins can destabilize the cap by binding to it. This allows microtubules to switch from a growing to a shrinking state more often. Future work could now investigate how changes in cap length cause the microtubules to switch from growing to shrinking. It also remains to be seen whether other proteins also influence the cap to control this switching behaviour. DOI:http://dx.doi.org/10.7554/eLife.13470.002
Collapse
Affiliation(s)
- Christian Duellberg
- Lincoln's Inn Fields Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Nicholas I Cade
- Lincoln's Inn Fields Laboratory, The Francis Crick Institute, London, United Kingdom
| | - David Holmes
- London Centre of Nanotechnology, London, United Kingdom
| | - Thomas Surrey
- Lincoln's Inn Fields Laboratory, The Francis Crick Institute, London, United Kingdom
| |
Collapse
|
24
|
Abstract
Cell biologists now have tools and knowledge to generate useful quantitative data. But how can we make sense of these data, and are we measuring the correct parameters? Moreover, how can we test hypotheses quantitatively? To answer these questions, the theory of physics is required and is essential to the future of quantitative cell biology.
Collapse
Affiliation(s)
- Marcos Gonzalez-Gaitan
- Biochemistry Department, University of Geneva, CH-1211 Geneva, Switzerland Swiss National Centre for Competence in Research Programme Chemical Biology, CH-1211 Geneva, Switzerland
| | - Aurélien Roux
- Biochemistry Department, University of Geneva, CH-1211 Geneva, Switzerland Swiss National Centre for Competence in Research Programme Chemical Biology, CH-1211 Geneva, Switzerland
| |
Collapse
|
25
|
Michaels TCT, Yde P, Willis JCW, Jensen MH, Otzen D, Dobson CM, Buell AK, Knowles TPJ. The length distribution of frangible biofilaments. J Chem Phys 2015; 143:164901. [DOI: 10.1063/1.4933230] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Thomas C. T. Michaels
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Pernille Yde
- Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100 Copenhagen, Denmark
| | - Julian C. W. Willis
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Mogens H. Jensen
- Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100 Copenhagen, Denmark
| | - Daniel Otzen
- Interdisciplinary Nanoscience Center, Department of Molecular Biology and Genetics, Center for Insoluble Protein Structures, Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
| | - Christopher M. Dobson
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Alexander K. Buell
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Tuomas P. J. Knowles
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
26
|
The use of compressive sensing and peak detection in the reconstruction of microtubules length time series in the process of dynamic instability. Comput Biol Med 2015; 65:25-33. [DOI: 10.1016/j.compbiomed.2015.07.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 07/15/2015] [Accepted: 07/16/2015] [Indexed: 12/23/2022]
|
27
|
Jemseena V, Gopalakrishnan M. Effects of aging in catastrophe on the steady state and dynamics of a microtubule population. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 91:052704. [PMID: 26066196 DOI: 10.1103/physreve.91.052704] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Indexed: 06/04/2023]
Abstract
Several independent observations have suggested that the catastrophe transition in microtubules is not a first-order process, as is usually assumed. Recent in vitro observations by Gardner et al. [M. K. Gardner et al., Cell 147, 1092 (2011)] showed that microtubule catastrophe takes place via multiple steps and the frequency increases with the age of the filament. Here we investigate, via numerical simulations and mathematical calculations, some of the consequences of the age dependence of catastrophe on the dynamics of microtubules as a function of the aging rate, for two different models of aging: exponential growth, but saturating asymptotically, and purely linear growth. The boundary demarcating the steady-state and non-steady-state regimes in the dynamics is derived analytically in both cases. Numerical simulations, supported by analytical calculations in the linear model, show that aging leads to nonexponential length distributions in steady state. More importantly, oscillations ensue in microtubule length and velocity. The regularity of oscillations, as characterized by the negative dip in the autocorrelation function, is reduced by increasing the frequency of rescue events. Our study shows that the age dependence of catastrophe could function as an intrinsic mechanism to generate oscillatory dynamics in a microtubule population, distinct from hitherto identified ones.
Collapse
Affiliation(s)
- V Jemseena
- Department of Physics, Indian Institute of Technology Madras, Chennai 600036, India
| | - Manoj Gopalakrishnan
- Department of Physics, Indian Institute of Technology Madras, Chennai 600036, India
| |
Collapse
|
28
|
Hariadi RF, Yurke B, Winfree E. Thermodynamics and kinetics of DNA nanotube polymerization from single-filament measurements. Chem Sci 2015; 6:2252-2267. [PMID: 29308139 PMCID: PMC5645730 DOI: 10.1039/c3sc53331j] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 01/20/2015] [Indexed: 12/26/2022] Open
Abstract
Single-filament measurement of the thermodynamic and kinetic parameters of DNA nanotube assembly supports a polymerization/depolymerization model sharing common features with cytoskeletal polymer models.
DNA nanotubes provide a programmable architecture for molecular self-assembly and can serve as model systems for one-dimensional biomolecular assemblies. While a variety of DNA nanotubes have been synthesized and employed as models for natural biopolymers, an extensive investigation of DNA nanotube kinetics and thermodynamics has been lacking. Using total internal reflection microscopy, DNA nanotube polymerization was monitored in real time at the single filament level over a wide range of free monomer concentrations and temperatures. The measured polymerization rates were subjected to a global nonlinear fit based on polymerization theory in order to simultaneously extract kinetic and thermodynamic parameters. For the DNA nanotubes used in this study, the association rate constant is (5.99 ± 0.15) × 105 M–1 s–1, the enthalpy is 87.9 ± 2.0 kcal mol–1, and the entropy is 0.252 ± 0.006 kcal mol–1 K–1. The qualitative and quantitative similarities between the kinetics of DNA nanotubes, actin filaments, and microtubules polymerization highlight the prospect of building complex dynamic systems from DNA molecules inspired by biological architecture.
Collapse
Affiliation(s)
- Rizal F Hariadi
- Applied Physics , California Institute of Technology , Pasadena , California 91125 , USA
| | - Bernard Yurke
- Materials Science and Engineering Department and Electrical and Computer Engineering Department , Boise State University , Boise , Idaho 83725 , USA
| | - Erik Winfree
- Bioengineering , California Institute of Technology , Pasadena , California 91125 , USA .
| |
Collapse
|
29
|
Das D, Das D, Padinhateeri R. Force-induced dynamical properties of multiple cytoskeletal filaments are distinct from that of single filaments. PLoS One 2014; 9:e114014. [PMID: 25531397 PMCID: PMC4273989 DOI: 10.1371/journal.pone.0114014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 11/02/2014] [Indexed: 12/12/2022] Open
Abstract
How cytoskeletal filaments collectively undergo growth and shrinkage is an intriguing question. Collective properties of multiple bio-filaments (actin or microtubules) undergoing hydrolysis have not been studied extensively earlier within simple theoretical frameworks. In this paper, we study the collective dynamical properties of multiple filaments under force, and demonstrate the distinct properties of a multi-filament system in comparison to a single filament. Comparing stochastic simulation results with recent experimental data, we show that multi-filament collective catastrophes are slower than catastrophes of single filaments. Our study also shows further distinctions as follows: (i) force-dependence of the cap-size distribution of multiple filaments are quantitatively different from that of single filaments, (ii) the diffusion constant associated with the system length fluctuations is distinct for multiple filaments, and (iii) switching dynamics of multiple filaments between capped and uncapped states and the fluctuations therein are also distinct. We build a unified picture by establishing interconnections among all these collective phenomena. Additionally, we show that the collapse times during catastrophes can be sharp indicators of collective stall forces exceeding the additive contributions of single filaments.
Collapse
Affiliation(s)
- Dipjyoti Das
- Department of Physics, Indian Institute of Technology Bombay, Mumbai 400076, India
- * E-mail: (DD); (DD); (RP)
| | - Dibyendu Das
- Department of Physics, Indian Institute of Technology Bombay, Mumbai 400076, India
- * E-mail: (DD); (DD); (RP)
| | - Ranjith Padinhateeri
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
- * E-mail: (DD); (DD); (RP)
| |
Collapse
|
30
|
Michaels TCT, Garcia GA, Knowles TPJ. Asymptotic solutions of the Oosawa model for the length distribution of biofilaments. J Chem Phys 2014; 140:194906. [PMID: 24852562 DOI: 10.1063/1.4875897] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Nucleated polymerisation phenomena are general linear growth processes that underlie the formation of a range of biofilaments in nature, including actin and tubulin that are key components of the cellular cytoskeleton. The conventional theoretical framework for describing this process is the Oosawa model that takes into account homogeneous nucleation coupled to linear growth. In his original work, Oosawa provided an analytical solution to the total mass concentration of filaments; the time evolution of the full length distribution has, however, been challenging to access, in large part due to the nonlinear nature of the rate equations inherent in the description of such phenomena and to date analytical solutions for the filament distribution are known only in certain special cases. Here, by exploiting a technique based on the method of matched asymptotics, we present an analytical treatment of the Oosawa model that describes the shape of the length distribution of biofilaments reversibly growing through primary nucleation and filament elongation. Our work highlights the power of matched asymptotics for obtaining closed-form analytical solutions to nonlinear master equations in biophysics and allows us to identify the key time scales that characterize biological polymerization processes.
Collapse
Affiliation(s)
- Thomas C T Michaels
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Gonzalo A Garcia
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Tuomas P J Knowles
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
31
|
Brownian dynamics of subunit addition-loss kinetics and thermodynamics in linear polymer self-assembly. Biophys J 2014; 105:2528-40. [PMID: 24314083 DOI: 10.1016/j.bpj.2013.10.009] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 09/23/2013] [Accepted: 10/16/2013] [Indexed: 11/23/2022] Open
Abstract
The structure and free energy of multistranded linear polymer ends evolves as individual subunits are added and lost. Thus, the energetic state of the polymer end is not constant, as assembly theory has assumed. Here we utilize a Brownian dynamics approach to simulate the addition and loss of individual subunits at the polymer tip. Using the microtubule as a primary example, we examined how the structure of the polymer tip dictates the rate at which units are added to and lost from individual protofilaments. We find that freely diffusing subunits arrive less frequently to lagging protofilaments but bind more efficiently, such that there is no kinetic difference between leading and lagging protofilaments within a tapered tip. However, local structure at the nanoscale has up to an order-of-magnitude effect on the rate of addition. Thus, the kinetic on-rate constant, integrated across the microtubule tip (kon,MT), is an ensemble average of the varying individual protofilament on-rate constants (kon,PF). Our findings have implications for both catastrophe and rescue of the dynamic microtubule end, and provide a subnanoscale framework for understanding the mechanism of action of microtubule-associated proteins and microtubule-directed drugs. Although we utilize the specific example of the microtubule here, the findings are applicable to multistranded polymers generally.
Collapse
|
32
|
Abstract
We introduce a model for microtubule (MT) mechanics containing lateral bonds between dimers in neighboring protofilaments, bending rigidity of dimers, and repulsive interactions between protofilaments modeling steric constraints to investigate the influence of mechanical forces on hydrolysis and catastrophes. We use the allosteric dimer model, where tubulin dimers are characterized by an equilibrium bending angle, which changes from 0° to 22° by hydrolysis of a dimer. This also affects the lateral interaction and bending energies and, thus, the mechanical equilibrium state of the MT. As hydrolysis gives rise to conformational changes in dimers, mechanical forces also influence the hydrolysis rates by mechanical energy changes modulating the hydrolysis rate. The interaction via the MT mechanics then gives rise to correlation effects in the hydrolysis dynamics, which have not been taken into account before. Assuming a dominant influence of mechanical energies on hydrolysis rates, we investigate the most probable hydrolysis pathways both for vectorial and random hydrolysis. Investigating the stability with respect to lateral bond rupture, we identify initiation configurations for catastrophes along the hydrolysis pathways and values for a lateral bond rupture force. If we allow for rupturing of lateral bonds between dimers in neighboring protofilaments above this threshold force, our model exhibits avalanche-like catastrophe events.
Collapse
Affiliation(s)
- N Müller
- Department of Physics, TU Dortmund University, D-44221 Dortmund, Germany
| | | |
Collapse
|
33
|
Jemseena V, Gopalakrishnan M. Microtubule catastrophe from protofilament dynamics. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013; 88:032717. [PMID: 24125304 DOI: 10.1103/physreve.88.032717] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Revised: 07/29/2013] [Indexed: 06/02/2023]
Abstract
The disappearance of the guanosine triphosphate- (GTP) tubulin cap is widely believed to be the forerunner event for the growth-shrinkage transition ("catastrophe") in microtubule filaments in eukaryotic cells. We study a discrete version of a stochastic model of the GTP cap dynamics, originally proposed by Flyvbjerg, Holy, and Leibler [Phys. Rev. Lett. 73, 2372 (1994)]. Our model includes both spontaneous and vectorial hydrolysis, as well as dissociation of a nonhydrolyzed dimer from the filament after incorporation. In the first part of the paper, we apply this model to a single protofilament of a microtubule. A catastrophe transition is defined for each protofilament, similarly to the earlier one-dimensional models, the frequency of occurrence of which is then calculated under various conditions but without explicit assumption of steady-state conditions. Using a perturbative approach, we show that the leading asymptotic behavior of the protofilament catastrophe in the limit of large growth velocities is remarkably similar across different models. In the second part of the paper, we extend our analysis to the entire filament by making a conjecture that a minimum number of such transitions are required to occur for the onset of microtubule catastrophe. The frequency of microtubule catastrophe is then determined using numerical simulations and compared with analytical and semianalytical estimates made under steady-state and quasi-steady-state assumptions, respectively, for the protofilament dynamics. A few relevant experimental results are analyzed in detail and compared with predictions from the model. Our results indicate that loss of GTP cap in two to three protofilaments is necessary to trigger catastrophe in a microtubule.
Collapse
Affiliation(s)
- V Jemseena
- Department of Physics, Indian Institute of Technology Madras, Chennai 600036, India
| | | |
Collapse
|
34
|
Bowne-Anderson H, Zanic M, Kauer M, Howard J. Microtubule dynamic instability: a new model with coupled GTP hydrolysis and multistep catastrophe. Bioessays 2013; 35:452-61. [PMID: 23532586 PMCID: PMC3677417 DOI: 10.1002/bies.201200131] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
A key question in understanding microtubule dynamics is how GTP hydrolysis leads to catastrophe, the switch from slow growth to rapid shrinkage. We first provide a review of the experimental and modeling literature, and then present a new model of microtubule dynamics. We demonstrate that vectorial, random, and coupled hydrolysis mechanisms are not consistent with the dependence of catastrophe on tubulin concentration and show that, although single-protofilament models can explain many features of dynamics, they do not describe catastrophe as a multistep process. Finally, we present a new combined (coupled plus random hydrolysis) multiple-protofilament model that is a simple, analytically solvable generalization of a single-protofilament model. This model accounts for the observed lifetimes of growing microtubules, the delay to catastrophe following dilution and describes catastrophe as a multistep process.
Collapse
Affiliation(s)
- Hugo Bowne-Anderson
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | | | | | | |
Collapse
|
35
|
Tuszynski JA, Brown JA, Sept D. Models of the collective behavior of proteins in cells: tubulin, actin and motor proteins. J Biol Phys 2013; 29:401-28. [PMID: 23345857 DOI: 10.1023/a:1027318920964] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
One of the most important issues of molecular biophysics is the complex and multifunctional behavior of the cell's cytoskeleton. Interiors of living cells are structurally organized by the cytoskeleton networks of filamentous protein polymers: microtubules, actin and intermediate filaments with motor proteins providing force and directionality needed for transport processes. Microtubules (MT's) take active part in material transport within the cell, constitute the most rigid elements of the cell and hence found many uses in cell motility (e.g. flagella andcilia). At present there is, however, no quantitatively predictable explanation of how these important phenomena are orchestrated at a molecular level. Moreover, microtubules have been demonstrated to self-organize leading to pattern formation. We discuss here several models which attempt to shed light on the assembly of microtubules and their interactions with motor proteins. Subsequently, an overview of actin filaments and their properties isgiven with particular emphasis on actin assembly processes. The lengths of actin filaments have been reported that were formed by spontaneous polymerization of highly purified actin monomers after labeling with rhodamine-phalloidin. The length distributions are exponential with a mean of about 7 μm. This length is independent of the initial concentration of actin monomer, an observation inconsistent with a simple nucleation-elongation mechanism. However, with the addition of physically reasonable rates of filament annealing and fragmenting, a nucleation-elongation mechanism can reproduce the observed average length of filaments in two types of experiments: (1) filaments formed from a wide range of highly purified actin monomer concentrations, and (2) filaments formed from 24 mM actin over a range of CapZ concentrations. In the final part of the paper we briefly review the stochastic models used to describe the motion of motor proteins on protein filaments. The vast majority of these models are based on ratchet potentials with the presence of thermal noise and forcing due to ATP binding and a subsequent hydrolysis. Many outstanding questions remain to be quantitatively addressed on a molecular level in order to explain the structure-to-function relationship for the key elements of the cytoskeleton discussed in this review.
Collapse
Affiliation(s)
- J A Tuszynski
- Department of Physics, University of Alberta, Edmonton, Alberta T6G 2J1 Canada
| | | | | |
Collapse
|
36
|
Bolterauer H, Limbach HJ, Tuszyński JA. Models of assembly and disassembly of individual microtubules: stochastic and averaged equations. J Biol Phys 2013; 25:1-22. [PMID: 23345684 DOI: 10.1023/a:1005159215657] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In this paper we present solutions of the master equations for the microtubule length and show that the local probability for rescues or catastrophes can lead to bell-shaped length histograms. Conversely, as already known, non-local probabilities for these events result in exponential length histograms. We also derive master equations for a stabilizing cap and obtain a new boundary condition which provides an explanation of the results obtained in dilution and cutting experiments.
Collapse
Affiliation(s)
- H Bolterauer
- Institut für Theoretische Physik, Justus-Liebig Universität Gießen, Gießen, Germany
| | | | | |
Collapse
|
37
|
Zelinski B, Kierfeld J. Cooperative dynamics of microtubule ensembles: polymerization forces and rescue-induced oscillations. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013; 87:012703. [PMID: 23410355 DOI: 10.1103/physreve.87.012703] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 11/05/2012] [Indexed: 06/01/2023]
Abstract
We investigate the cooperative dynamics of an ensemble of N microtubules growing against an elastic barrier. Microtubules undergo so-called catastrophes, which are abrupt stochastic transitions from a growing to a shrinking state, and rescues, which are transitions back to the growing state. Microtubules can exert pushing or polymerization forces on an obstacle, such as an elastic barrier, if the growing end is in contact with the obstacle. We use dynamical mean-field theory and stochastic simulations to analyze a model where each microtubule undergoes catastrophes and rescues and where microtubules interact by force sharing. For zero rescue rate, cooperative growth terminates in a collective catastrophe. The maximal polymerization force before catastrophes grows linearly with N for small N or a stiff elastic barrier, in agreement with available experimental results, whereas it crosses over to a logarithmic dependence for larger N or a soft elastic barrier. For a nonzero rescue rate and a soft elastic barrier, the dynamics becomes oscillatory with both collective catastrophe and rescue events, which are part of a robust limit cycle. Both the average and maximal polymerization forces then grow linearly with N, and we investigate their dependence on tubulin on-rates and rescue rates, which can be involved in cellular regulation mechanisms. We further investigate the robustness of the collective catastrophe and rescue oscillations with respect to different catastrophe models.
Collapse
Affiliation(s)
- Björn Zelinski
- Physics Department, TU Dortmund University, 44221 Dortmund, Germany
| | | |
Collapse
|
38
|
Zelinski B, Müller N, Kierfeld J. Dynamics and length distribution of microtubules under force and confinement. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2012; 86:041918. [PMID: 23214626 DOI: 10.1103/physreve.86.041918] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Indexed: 05/05/2023]
Abstract
We investigate the microtubule polymerization dynamics with catastrophe and rescue events for three different confinement scenarios, which mimic typical cellular environments: (i) The microtubule is confined by rigid and fixed walls, (ii) it grows under constant force, and (iii) it grows against an elastic obstacle with a linearly increasing force. We use realistic catastrophe models and analyze the microtubule dynamics, the resulting microtubule length distributions, and force generation by stochastic and mean field calculations; in addition, we perform stochastic simulations. Freely growing microtubules exhibit a phase of bounded growth with finite microtubule length and a phase of unbounded growth. The main results for the three confinement scenarios are as follows: (i) In confinement by fixed rigid walls, we find exponentially decreasing or increasing stationary microtubule length distributions instead of bounded or unbounded phases, respectively. We introduce a realistic model for wall-induced catastrophes and investigate the behavior of the average length as a function of microtubule growth parameters. (ii) Under a constant force, the boundary between bounded and unbounded growth is shifted to higher tubulin concentrations and rescue rates. The critical force f(c) for the transition from unbounded to bounded growth increases logarithmically with tubulin concentration and the rescue rate, and it is smaller than the stall force. (iii) For microtubule growth against an elastic obstacle, the microtubule length and polymerization force can be regulated by microtubule growth parameters. For zero rescue rate, we find that the average polymerization force depends logarithmically on the tubulin concentration and is always smaller than the stall force in the absence of catastrophes and rescues. For a nonzero rescue rate, we find a sharply peaked steady-state length distribution, which is tightly controlled by microtubule growth parameters. The corresponding average microtubule length self-organizes such that the average polymerization force equals the critical force f(c) for the transition from unbounded to bounded growth. We also investigate the force dynamics if growth parameters are perturbed in dilution experiments. Finally, we show the robustness of our results against changes of catastrophe models and load distribution factors.
Collapse
Affiliation(s)
- Björn Zelinski
- Physics Department, TU Dortmund University, 44221 Dortmund, Germany.
| | | | | |
Collapse
|
39
|
On the nature and shape of tubulin trails: implications on microtubule self-organization. Acta Biotheor 2012; 60:55-82. [PMID: 22331498 DOI: 10.1007/s10441-012-9149-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Accepted: 01/23/2012] [Indexed: 10/28/2022]
Abstract
Microtubules, major elements of the cell skeleton are, most of the time, well organized in vivo, but they can also show self-organizing behaviors in time and/or space in purified solutions in vitro. Theoretical studies and models based on the concepts of collective dynamics in complex systems, reaction-diffusion processes and emergent phenomena were proposed to explain some of these behaviors. In the particular case of microtubule spatial self-organization, it has been advanced that microtubules could behave like ants, self-organizing by 'talking to each other' by way of hypothetic (because never observed) concentrated chemical trails of tubulin that are expected to be released by their disassembling ends. Deterministic models based on this idea yielded indeed like-looking spatio-temporal self-organizing behaviors. Nevertheless the question remains of whether microscopic tubulin trails produced by individual or bundles of several microtubules are intense enough to allow microtubule self-organization at a macroscopic level. In the present work, by simulating the diffusion of tubulin in microtubule solutions at the microscopic scale, we measure the shape and intensity of tubulin trails and discuss about the assumption of microtubule self-organization due to the production of chemical trails by disassembling microtubules. We show that the tubulin trails produced by individual microtubules or small microtubule arrays are very weak and not elongated even at very high reactive rates. Although the variations of concentration due to such trails are not significant compared to natural fluctuations of the concentration of tubuline in the chemical environment, the study shows that heterogeneities of biochemical composition can form due to microtubule disassembly. They could become significant when produced by numerous microtubule ends located in the same place. Their possible formation could play a role in certain conditions of reaction. In particular, it gives a mesoscopic basis to explain the collective dynamics observed in excitable microtubule solutions showing the propagation of concentration waves of microtubules at the millimeter scale, although we doubt that individual microtubules or bundles can behave like molecular ants.
Collapse
|
40
|
Padinhateeri R, Kolomeisky AB, Lacoste D. Random hydrolysis controls the dynamic instability of microtubules. Biophys J 2012; 102:1274-83. [PMID: 22455910 DOI: 10.1016/j.bpj.2011.12.059] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2011] [Revised: 10/15/2011] [Accepted: 12/01/2011] [Indexed: 01/20/2023] Open
Abstract
Uncovering mechanisms that control the dynamics of microtubules is fundamental for our understanding of multiple cellular processes such as chromosome separation and cell motility. Building on previous theoretical work on the dynamic instability of microtubules, we propose here a stochastic model that includes all relevant biochemical processes that affect the dynamics of microtubule plus-end, namely, the binding of GTP-bound monomers, unbinding of GTP- and GDP-bound monomers, and hydrolysis of GTP monomers. The inclusion of dissociation processes, present in our approach but absent from many previous studies, is essential to guarantee the thermodynamic consistency of the model. Our theoretical method allows us to compute all dynamic properties of microtubules explicitly. Using experimentally determined rates, it is found that the cap size is ∼3.6 layers, an estimate that is compatible with several experimental observations. In the end, our model provides a comprehensive description of the dynamic instability of microtubules that includes not only the statistics of catastrophes but also the statistics of rescues.
Collapse
Affiliation(s)
- Ranjith Padinhateeri
- Department of Biosciences and Bioengineering and Wadhwani Research Centre for Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | | | | |
Collapse
|
41
|
Hinow P, Rezania V, Lopus M, Jordan MA, Tuszyński JA. Modeling the effects of drug binding on the dynamic instability of microtubules. Phys Biol 2011; 8:056004. [PMID: 21836336 DOI: 10.1088/1478-3975/8/5/056004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We propose a stochastic model that accounts for the growth, catastrophe and rescue processes of steady-state microtubules assembled from MAP-free tubulin in the possible presence of a microtubule-associated drug. As an example of the latter, we both experimentally and theoretically study the perturbation of microtubule dynamic instability by S-methyl-D-DM1, a synthetic derivative of the microtubule-targeted agent maytansine and a potential anticancer agent. Our model predicts that among the drugs that act locally at the microtubule tip, primary inhibition of the loss of GDP tubulin results in stronger damping of microtubule dynamics than inhibition of GTP tubulin addition. On the other hand, drugs whose action occurs in the interior of the microtubule need to be present in much higher concentrations to have visible effects.
Collapse
Affiliation(s)
- Peter Hinow
- Department of Mathematical Sciences, University of Wisconsin-Milwaukee, PO Box 413, Milwaukee, WI 53201, USA.
| | | | | | | | | |
Collapse
|
42
|
Macroscopic simulations of microtubule dynamics predict two steady-state processes governing array morphology. Comput Biol Chem 2011; 35:269-81. [PMID: 22000798 DOI: 10.1016/j.compbiolchem.2011.06.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Revised: 05/10/2011] [Accepted: 06/17/2011] [Indexed: 01/21/2023]
Abstract
Microtubule polymers typically function through their collective organization into a patterned array. The formation of the pattern, whether it is a relatively simple astral array or a highly complex mitotic spindle, relies on controlled microtubule nucleation and the basal dynamics parameters governing polymer growth and shortening. We have investigated the interaction between the microtubule nucleation and dynamics parameters, using macroscopic Monte Carlo simulations, to determine how these parameters contribute to the underlying microtubule array morphology (i.e. polymer density and length distribution). In addition to the well-characterized steady state achieved between free tubulin subunits and microtubule polymer, we propose that microtubule nucleation and extinction constitute a second, interdependent steady state process. Our simulation studies show that the magnitude of both nucleation and extinction additively impacts the final steady state free subunit concentration. We systematically varied individual microtubule dynamics parameters to survey the effects on array morphology and find specific sensitivity to perturbations of catastrophe frequency. Altering the cellular context for the microtubule array, we find that nucleation template number plays a defining role in shaping the microtubule length distribution and polymer density.
Collapse
|
43
|
Hagan MF, Chakraborty B. Prolonging assembly through dissociation: a self-assembly paradigm in microtubules. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2011; 83:051904. [PMID: 21732705 DOI: 10.1103/physreve.83.051904] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2009] [Revised: 03/29/2011] [Indexed: 05/31/2023]
Abstract
We study a one-dimensional model of microtubule assembly and disassembly in which GTP bound to tubulins within the microtubule undergoes stochastic hydrolysis. In contrast to models that consider only a cap of GTP-bound tubulin, stochastic hydrolysis allows GTP-bound tubulin remnants to exist within the microtubule. We find that these buried GTP remnants enable an alternative mechanism of recovery from shrinkage and enhances fluctuations of filament lengths. Under conditions for which this alternative mechanism dominates, an increasing depolymerization rate leads to a decrease in dissociation rate and thus a net increase in assembly.
Collapse
|
44
|
A first-passage-time theory for search and capture of chromosomes by microtubules in mitosis. Bull Math Biol 2011; 73:2483-506. [PMID: 21301981 DOI: 10.1007/s11538-011-9633-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Accepted: 01/21/2011] [Indexed: 10/18/2022]
Abstract
The mitotic spindle is an important intermediate structure in eukaryotic cell division, in which each of a pair of duplicated chromosomes is attached through microtubules to centrosomal bodies located close to the two poles of the dividing cell. Several mechanisms are at work toward the formation of the spindle, one of which is the 'capture' of chromosome pairs, held together by kinetochores, by randomly searching microtubules. Although the entire cell cycle can be up to 24 hours long, the mitotic phase typically takes only less than an hour. How does the cell keep the duration of mitosis within this limit? Previous theoretical studies have suggested that the chromosome search and capture is optimized by tuning the microtubule dynamic parameters to minimize the search time. In this paper, we examine this conjecture. We compute the mean search time for a single target by microtubules from a single nucleating site, using a systematic and rigorous theoretical approach, for arbitrary kinetic parameters. The result is extended to multiple targets and nucleating sites by physical arguments. Estimates of mitotic time scales are then obtained for different cells using experimental data. In yeast and mammalian cells, the observed changes in microtubule kinetics between interphase and mitosis are beneficial in reducing the search time. In Xenopus extracts, by contrast, the opposite effect is observed, in agreement with the current understanding that large cells use additional mechanisms to regulate the duration of the mitotic phase.
Collapse
|
45
|
Ranjith P, Mallick K, Joanny JF, Lacoste D. Role of ATP-hydrolysis in the dynamics of a single actin filament. Biophys J 2010; 98:1418-27. [PMID: 20409460 DOI: 10.1016/j.bpj.2009.12.4306] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2009] [Revised: 12/09/2009] [Accepted: 12/15/2009] [Indexed: 11/18/2022] Open
Abstract
We study the stochastic dynamics of growth and shrinkage of single actin filaments taking into account insertion, removal, and ATP hydrolysis of subunits either according to the vectorial mechanism or to the random mechanism. In a previous work, we developed a model for a single actin or microtubule filament where hydrolysis occurred according to the vectorial mechanism: the filament could grow only from one end, and was in contact with a reservoir of monomers. Here we extend this approach in two ways--by including the dynamics of both ends and by comparing two possible mechanisms of ATP hydrolysis. Our emphasis is mainly on two possible limiting models for the mechanism of hydrolysis within a single filament, namely the vectorial or the random model. We propose a set of experiments to test the nature of the precise mechanism of hydrolysis within actin filaments.
Collapse
|
46
|
Popp D, Iwasa M, Erickson HP, Narita A, Maéda Y, Robinson RC. Suprastructures and dynamic properties of Mycobacterium tuberculosis FtsZ. J Biol Chem 2010; 285:11281-9. [PMID: 20139085 PMCID: PMC2857006 DOI: 10.1074/jbc.m109.084079] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2009] [Revised: 01/12/2010] [Indexed: 11/06/2022] Open
Abstract
Tuberculosis causes the most death in humans by any bacterium. Drug targeting of bacterial cytoskeletal proteins requires detailed knowledge of the various filamentous suprastructures and dynamic properties. Here, we have investigated by high resolution electron microscopy the assembly of cell division protein and microtubule homolog FtsZ from Mycobacterium tuberculosis (MtbFtsZ) in vitro in the presence of various monovalent salts, crowding agents and polycations. Supramolecular structures, including two-dimensional rings, three-dimensional toroids, and multistranded helices formed in the presence of molecular crowding, were similar to those observed by fluorescence microscopy in bacteria in vivo. Dynamic properties of MtbFtsZ filaments were visualized by light scattering and real time total internal reflection fluorescence microscopy. Interestingly, MtbFtsZ revealed a form of dynamic instability at steady state. Cation-induced condensation phenomena of bacterial cytomotive polymers have not been investigated in any detail, although it is known that many bacteria can contain high amounts of polycations, which may modulate the prokaryotic cytoskeleton. We find that above a threshold concentration of polycations which varied with the valence of the cation, ionic strength, and pH, MtbFtsZ mainly formed sheets. The general features of these cation-induced condensation phenomena could be explained in the framework of the Manning condensation theory. Chirality and packing defects limited the dimensions of sheets and toroids at steady state as predicted by theoretical models. In first approximation simple physical principles seem to govern the formation of MtbFtsZ suprastructures.
Collapse
Affiliation(s)
- David Popp
- ERATO Actin Filament Dynamics Project, Japan Science and Technology Corporation, RIKEN Harima Institute at Spring 8, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan.
| | | | | | | | | | | |
Collapse
|
47
|
Semenov AN, Subbotin AV. Theory of Self-Assembling Structures of Model Oligopeptides. Macromolecules 2010. [DOI: 10.1021/ma902701z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- A. N. Semenov
- Institut Charles Sadron, CNRS-UPR 22, Université de Strasbourg, 23 rue du Loess, BP 84047, 67034 Strasbourg Cedex 2, France
- Institute of Petrochemical Synthesis, Russian Academy of Sciences, Moscow, 119991, Russia
| | - A. V. Subbotin
- Institut Charles Sadron, CNRS-UPR 22, Université de Strasbourg, 23 rue du Loess, BP 84047, 67034 Strasbourg Cedex 2, France
- Institute of Petrochemical Synthesis, Russian Academy of Sciences, Moscow, 119991, Russia
| |
Collapse
|
48
|
Hinow P, Rezania V, Tuszyński JA. Continuous model for microtubule dynamics with catastrophe, rescue, and nucleation processes. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2009; 80:031904. [PMID: 19905143 DOI: 10.1103/physreve.80.031904] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2008] [Revised: 05/14/2009] [Indexed: 05/28/2023]
Abstract
Microtubules are a major component of the cytoskeleton distinguished by highly dynamic behavior both in vitro and in vivo referred to as dynamic instability. We propose a general mathematical model that accounts for the growth, catastrophe, rescue, and nucleation processes in the polymerization of microtubules from tubulin dimers. Our model is an extension of various mathematical models developed earlier formulated in order to capture and unify the various aspects of tubulin polymerization. While attempting to use a minimal number of adjustable parameters, the proposed model covers a broad range of behaviors and has predictive features discussed in the paper. We have analyzed the range of resultant dynamical behavior of the microtubules by changing each of the parameter values at a time and observing the emergence of various dynamical regimes that agree well with the previously reported experimental data and behavior.
Collapse
Affiliation(s)
- Peter Hinow
- Institute for Mathematics and its Applications, University of Minnesota, 114 Lind Hall, Minneapolis, Minnesota 55455, USA.
| | | | | |
Collapse
|
49
|
Chen Y, Erickson HP. FtsZ filament dynamics at steady state: subunit exchange with and without nucleotide hydrolysis. Biochemistry 2009; 48:6664-73. [PMID: 19527070 DOI: 10.1021/bi8022653] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We have measured three aspects of FtsZ filament dynamics at steady state: rates of GTP hydrolysis, subunit exchange between protofilaments, and disassembly induced by dilution or excess GDP. All three reactions were slowed with an increase in the potassium concentration from 100 to 500 mM, via replacement of potassium with rubidium, or with an increase in the magnesium concentration from 5 to 20 mM. Electron microscopy showed that the polymers assembled under the conditions of fastest assembly were predominantly short, one-stranded protofilaments, whereas under conditions of slower dynamics, the protofilaments tended to associate into long, thin bundles. We suggest that exchange of subunits between protofilaments at steady state involves two separate mechanisms: (1) fragmentation or dissociation of subunits from protofilament ends following GTP hydrolysis and (2) reversible association and dissociation of subunits from protofilament ends independent of hydrolysis. Exchange of nucleotides on these recycling subunits could give the appearance of exchange directly into the polymer. Several of our observations suggest that exchange of nucleotide can take place on these recycling subunits, but not directly into the FtsZ polymer. Annealing of protofilaments was demonstrated for the L68W mutant in EDTA buffer but not in Mg buffer, where rapid cycling of subunits may obscure the effect of annealing. We also reinvestigated the nucleotide composition of FtsZ polymers at steady state. We found that the GDP:GTP ratio was 50:50 for concentrations of GTP >100 microM, significantly higher than the 20:80 ratio previously reported at 20 microM GTP.
Collapse
Affiliation(s)
- Yaodong Chen
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27710-3709, USA
| | | |
Collapse
|
50
|
Nonequilibrium self-assembly of a filament coupled to ATP/GTP hydrolysis. Biophys J 2009; 96:2146-59. [PMID: 19289041 DOI: 10.1016/j.bpj.2008.12.3920] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2008] [Revised: 12/04/2008] [Accepted: 12/08/2008] [Indexed: 02/08/2023] Open
Abstract
We study the stochastic dynamics of growth and shrinkage of single actin filaments or microtubules taking into account insertion, removal, and ATP/GTP hydrolysis of subunits. The resulting phase diagram contains three different phases: two phases of unbounded growth: a rapidly growing phase and an intermediate phase, and one bounded growth phase. We analyze all these phases, with an emphasis on the bounded growth phase. We also discuss how hydrolysis affects force-velocity curves. The bounded growth phase shows features of dynamic instability, which we characterize in terms of the time needed for the ATP/GTP cap to disappear as well as the time needed for the filament to reach a length of zero (i.e., to collapse) for the first time. We obtain exact expressions for all these quantities, which we test using Monte Carlo simulations.
Collapse
|