1
|
Manning ML. Rigidity in mechanical biological networks. Curr Biol 2024; 34:R1024-R1030. [PMID: 39437721 DOI: 10.1016/j.cub.2024.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Multicellular organisms generate complex morphologies required for their function. Organisms control these morphologies by tuning active forces and by altering the emergent 'material properties' of a tissue, i.e. the rheology of the tissue. In many cases, organisms take advantage of dramatic changes in the rheology that occur when the material undergoes a rigidity transition from a fluid-like or floppy state to a solid-like or rigid state. This transition in turn depends on internal parameters at the scale of cells and molecules. This review highlights recent theoretical work identifying the mechanisms that drive such transitions, so that biologists can look for these mechanisms in in vivo or in vitro systems. We discuss two main types of transition: a first-order rigidity transition that depends on the connectivity of small-scale structures, such as the number of contacts between cells or the number of branch points in a biopolymer network; and a second-order rigidity transition that depends on the geometry of small-scale structures, such as the shape of cells or the distance between crosslinks in a polymer network. We provide examples of each type of transition in model organisms and discuss methods for distinguishing between the mechanisms in future experiments.
Collapse
Affiliation(s)
- M Lisa Manning
- Department of Physics and BioInspired Institute, Syracuse University, Syracuse, NY 13244, USA.
| |
Collapse
|
2
|
Lin S, Patrawalla NY, Zhai Y, Dong P, Kishore V, Gu L. Computational and Experimental Characterization of Aligned Collagen across Varied Crosslinking Degrees. MICROMACHINES 2024; 15:851. [PMID: 39064362 PMCID: PMC11278924 DOI: 10.3390/mi15070851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/24/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024]
Abstract
Collagen-based scaffolds have been widely used in tissue engineering. The alignment of collagen fibers and the degree of crosslinking in engineering tissue scaffolds significantly affect cell activity and scaffold stability. Changes in microarchitecture and crosslinking degree also impact the mechanical properties of collagen scaffolds. A clear understanding of the effects of collagen alignment and crosslinking degrees can help properly control these critical parameters for fabricating collagen scaffolds with desired mechanical properties. In this study, combined uniaxial mechanical testing and finite element method (FEM) were used to quantify the effects of fiber alignment and crosslinking degree on the mechanical properties of collagen threads. We have fabricated electrochemically aligned collagen (ELAC) and compared it with randomly distributed collagen at varying crosslinking degrees, which depend on genipin concentrations of 0.1% or 2% for crosslinking durations of 1, 4, and 24 h. Our results indicate that aligned collagen fibers and higher crosslinking degree contribute to a larger Young's modulus. Specifically, aligned fiber structure, compared to random collagen, significantly increases Young's modulus by 112.7% at a 25% crosslinking degree (0.1% (4 h), i.e., 0.1% genipin concentration with a crosslinking duration of 4 h). Moreover, the ELAC Young's modulus increased by 90.3% as the crosslinking degree doubled by changing the genipin concentration from 0.1% to 2% with the same 4 h crosslinking duration. Furthermore, verified computational models can predict mechanical properties based on specific crosslinking degrees and fiber alignments, which facilitate the controlled fabrication of collagen threads. This combined experimental and computational approach provides a systematic understanding of the interplay among fiber alignment, crosslinking parameters, and mechanical performance of collagen scaffolds. This work will enable the precise fabrication of collagen threads for desired tissue engineering performance, potentially advancing tissue engineering applications.
Collapse
Affiliation(s)
- Shengmao Lin
- School of Civil Engineering and Architecture, Xiamen University of Technology, Xiamen 361024, China
| | - Nashaita Y. Patrawalla
- Department of Biomedical Engineering and Science, Florida Institute of Technology, Melbourne, FL 32901, USA (P.D.); (V.K.)
| | - Yingnan Zhai
- Department of Biomedical Engineering and Science, Florida Institute of Technology, Melbourne, FL 32901, USA (P.D.); (V.K.)
| | - Pengfei Dong
- Department of Biomedical Engineering and Science, Florida Institute of Technology, Melbourne, FL 32901, USA (P.D.); (V.K.)
| | - Vipuil Kishore
- Department of Biomedical Engineering and Science, Florida Institute of Technology, Melbourne, FL 32901, USA (P.D.); (V.K.)
- Department of Chemistry and Chemical Engineering, Florida Institute of Technology, Melbourne, FL 32901, USA
| | - Linxia Gu
- Department of Biomedical Engineering and Science, Florida Institute of Technology, Melbourne, FL 32901, USA (P.D.); (V.K.)
| |
Collapse
|
3
|
Yang T, Xue T, Mao J, Chen Y, Tian H, Bartolome A, Xia H, Yao X, Kumar CV, Cheng J, Lin Y. Tailoring Synthetic Polypeptide Design for Directed Fibril Superstructure Formation and Enhanced Hydrogel Properties. J Am Chem Soc 2024; 146:5823-5833. [PMID: 38174701 DOI: 10.1021/jacs.3c10762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
The biological significance of self-assembled protein filament networks and their unique mechanical properties have sparked interest in the development of synthetic filament networks that mimic these attributes. Building on the recent advancement of autoaccelerated ring-opening polymerization of amino acid N-carboxyanhydrides (NCAs), this study strategically explores a series of random copolymers comprising multiple amino acids, aiming to elucidate the core principles governing gelation pathways of these purpose-designed copolypeptides. Utilizing glutamate (Glu) as the primary component of copolypeptides, two targeted pathways were pursued: first, achieving a fast fibrillation rate with lower interaction potential using serine (Ser) as a comonomer, facilitating the creation of homogeneous fibril networks; and second, creating more rigid networks of fibril clusters by incorporating alanine (Ala) and valine (Val) as comonomers. The selection of amino acids played a pivotal role in steering both the morphology of fibril superstructures and their assembly kinetics, subsequently determining their potential to form sample-spanning networks. Importantly, the viscoelastic properties of the resulting supramolecular hydrogels can be tailored according to the specific copolypeptide composition through modulations in filament densities and lengths. The findings enhance our understanding of directed self-assembly in high molecular weight synthetic copolypeptides, offering valuable insights for the development of synthetic fibrous networks and biomimetic supramolecular materials with custom-designed properties.
Collapse
Affiliation(s)
- Tianjian Yang
- Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Tianrui Xue
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Jianan Mao
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Yingying Chen
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Huidi Tian
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Arlene Bartolome
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Hongwei Xia
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Xudong Yao
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Challa V Kumar
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Jianjun Cheng
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Yao Lin
- Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269, United States
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| |
Collapse
|
4
|
Amjad SN, Picu RC. Emergence of an apparent yield phenomenon in the mechanics of stochastic networks with inter-fiber cohesion. SOFT MATTER 2023; 19:9215-9223. [PMID: 37997363 DOI: 10.1039/d3sm01315d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
In this work we investigate the contribution of inter-fiber cohesion to defining the mechanical behavior of stochastic crosslinked fiber networks. Fibers are athermal and store energy primarily in their bending and axial deformation modes. Cohesion between fibers is defined by an interaction potential. These structures are in equilibrium with the inter-fiber cohesive forces before external load is applied and their mechanical behavior is probed in uniaxial tension. Two types of configurations are considered: a state with high initial free volume in which contacts between fibers are scarce, and a state with low free volume and large number of fiber contacts. While in the absence of cohesion the response is hyperelastic, we observe that a yield point-like phenomenon develops as the strength of cohesion increases in both network types considered; we refer to this as an 'unlocking phenomenon'. The small strain stiffness increases as cohesion becomes more pronounced. The stiffness and unlocking stress are expressed in terms of network parameters and cohesion strength through a product of two functions, one dependent on network parameters only, and the other is a function of the cohesion strength. While the small strain response is controlled by cohesion, the large strain behavior is shown to be largely controlled by the network. Therefore, varying the strength of cohesion has no effect on strain stiffening. These observations provide a physical basis for the unlocking observed in both athermal and thermal network materials and are expected to facilitate the design of soft materials with novel properties.
Collapse
Affiliation(s)
- S N Amjad
- Department of Mechanical, Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA.
| | - R C Picu
- Department of Mechanical, Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA.
| |
Collapse
|
5
|
Mohammadkhah M, Klinge S. Review paper: The importance of consideration of collagen cross-links in computational models of collagen-based tissues. J Mech Behav Biomed Mater 2023; 148:106203. [PMID: 37879165 DOI: 10.1016/j.jmbbm.2023.106203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/25/2023] [Accepted: 10/17/2023] [Indexed: 10/27/2023]
Abstract
Collagen as the main protein in Extra Cellular Matrix (ECM) is the main load-bearing component of fibrous tissues. Nanostructure and architecture of collagen fibrils play an important role in mechanical behavior of these tissues. Extensive experimental and theoretical studies have so far been performed to capture these properties, but none of the current models realistically represent the complexity of network mechanics because still less is known about the collagen's inner structure and its effect on the mechanical properties of tissues. The goal of this review article is to emphasize the significance of cross-links in computational modeling of different collagen-based tissues, and to reveal the need for continuum models to consider cross-links properties to better reflect the mechanical behavior observed in experiments. In addition, this study outlines the limitations of current investigations and provides potential suggestions for the future work.
Collapse
Affiliation(s)
- Melika Mohammadkhah
- Technische Universität Berlin, Institute of Mechanics, Chair of Structural Mechanics and Analysis, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany.
| | - Sandra Klinge
- Technische Universität Berlin, Institute of Mechanics, Chair of Structural Mechanics and Analysis, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| |
Collapse
|
6
|
Parvez N, Merson J, Picu RC. Stiffening mechanisms in stochastic athermal fiber networks. Phys Rev E 2023; 108:044502. [PMID: 37978689 DOI: 10.1103/physreve.108.044502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/06/2023] [Indexed: 11/19/2023]
Abstract
Stochastic athermal networks composed of fibers that deform axially and in bending strain stiffen much faster than thermal networks of axial elements, such as elastomers. Here we investigate the physical origin of stiffening in athermal network materials. To this end, we use models of stochastic networks subjected to uniaxial deformation and identify the emergence of two subnetworks, the stress path subnetwork (SPSN) and the bending support subnetwork (BSSN), which carry most of the axial and bending energies, respectively. The BSSN controls lateral contraction and modulates the organization of the SPSN during deformation. The SPSN is preferentially oriented in the loading direction, while the BSSN's preferential orientation is orthogonal to the SPSN. In nonaffine networks stiffening is exponential, while in close-to-affine networks it is quadratic. The difference is due to a much more modest lateral contraction in the approximately affine case and to a stiffer BSSN. Exponential stiffening emerges from the interplay of the axial and bending deformation modes at the scale of individual or small groups of fibers undergoing large deformations and being subjected to the constraint of rigid cross-links, and it is not necessarily a result of complex interactions involving many connected fibers. An apparent third regime of quadratic stiffening may be evidenced in nonaffinely deforming networks provided the nominal stress is observed. This occurs at large stretches, when the BSSN contribution of stiffening vanishes. However, this regime is not present if the Cauchy stress is used, in which case stiffening is exponential throughout the entire deformation. These results shed light on the physical nature of stiffening in a broad class of materials including connective tissue, the extracellular matrix, nonwovens, felt, and other athermal network materials.
Collapse
Affiliation(s)
- N Parvez
- Department of Mechanical, Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, USA
| | - J Merson
- Department of Mechanical, Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, USA
| | - R C Picu
- Department of Mechanical, Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, USA
| |
Collapse
|
7
|
Terzano M, Wollner MP, Kainz MP, Rolf-Pissarczyk M, Götzen N, Holzapfel GA. Modelling the anisotropic inelastic response of polymeric scaffolds for in situ tissue engineering applications. J R Soc Interface 2023; 20:20230318. [PMID: 37700713 PMCID: PMC10498354 DOI: 10.1098/rsif.2023.0318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 08/18/2023] [Indexed: 09/14/2023] Open
Abstract
In situ tissue engineering offers an innovative solution for replacement valves and grafts in cardiovascular medicine. In this approach, a scaffold, which can be obtained by polymer electrospinning, is implanted into the human body and then infiltrated by cells, eventually replacing the scaffold with native tissue. In silico simulations of the whole process in patient-specific models, including implantation, growth and degradation, are very attractive to study the factors that might influence the end result. In our research, we focused on the mechanical behaviour of the polymeric scaffold and its short-term response. Following a recently proposed constitutive model for the anisotropic inelastic behaviour of fibrous polymeric materials, we present here its numerical implementation in a finite element framework. The numerical model is developed as user material for commercial finite element software. The verification of the implementation is performed for elementary deformations. Furthermore, a parallel-plate test is proposed as a large-scale representative example, and the model is validated by comparison with experiments.
Collapse
Affiliation(s)
- Michele Terzano
- Institute of Biomechanics, Graz University of Technology, Graz, Austria
| | | | - Manuel P. Kainz
- Institute of Biomechanics, Graz University of Technology, Graz, Austria
| | | | - Nils Götzen
- 4RealSim Services BV, IJsselstein, The Netherlands
| | - Gerhard A. Holzapfel
- Institute of Biomechanics, Graz University of Technology, Graz, Austria
- Department of Structural Engineering, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| |
Collapse
|
8
|
Merson J, Parvez N, Picu RC. Probing soft fibrous materials by indentation. Acta Biomater 2023; 163:25-34. [PMID: 35381401 PMCID: PMC9526757 DOI: 10.1016/j.actbio.2022.03.053] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 03/22/2022] [Accepted: 03/29/2022] [Indexed: 11/27/2022]
Abstract
Indentation is often used to measure the stiffness of soft materials whose main structural component is a network of filaments, such as the cellular cytoskeleton, connective tissue, gels, and the extracellular matrix. For elastic materials, the typical procedure requires fitting the experimental force-displacement curve with the Hertz model, which predicts that f=kδ1.5 and k is proportional to the reduced modulus of the indented material, E/(1-ν2). Here we show using explicit models of fiber networks that the Hertz model applies to indentation in network materials provided the indenter radius is larger than approximately 12lc, where lc is the mean segment length of the network. Using smaller indenters leads to a relation between force and indentation displacement of the form f=kδq, where q is observed to increase with decreasing indenter radius. Using the Hertz model to interpret results of indentations in network materials using small indenters leads to an inferred modulus smaller than the real modulus of the material. The origin of this departure from the classical Hertz model is investigated. A compacted, stiff network region develops under the indenter, effectively increasing the indenter size and modifying its shape. This modification is marginal when large indenters are used. However, when the indenter radius is small, the effect of the compacted layer is pronounced as it changes the indenter profile from spherical towards conical. This entails an increase of exponent q above the value of 1.5 corresponding to spherical indenters. STATEMENT OF SIGNIFICANCE: The article presents a study of indentation in network biomaterials and demonstrates a size effect which precludes the use of the Hertz model to infer the elastic constants of the material. The size effect occurs once the indenter radius is smaller than approximately 12 times the mean segment length of the network. This result provides guidelines for the selection of indentation conditions that guarantee the applicability of the Hertz model. At the same time, the finding may be used to infer the mean segment length of the network based on indentations with indenters of various sizes. Hence, the method can be used to evaluate this structural parameter which is not easily accessible in experiments.
Collapse
Affiliation(s)
- J Merson
- Department of Mechanical, Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, United States
| | - N Parvez
- Department of Mechanical, Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, United States
| | - R C Picu
- Department of Mechanical, Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, United States.
| |
Collapse
|
9
|
Chen S, Markovich T, MacKintosh FC. Nonaffine Deformation of Semiflexible Polymer and Fiber Networks. PHYSICAL REVIEW LETTERS 2023; 130:088101. [PMID: 36898114 DOI: 10.1103/physrevlett.130.088101] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
Networks of semiflexible or stiff polymers such as most biopolymers are known to deform inhomogeneously when sheared. The effects of such nonaffine deformation have been shown to be much stronger than for flexible polymers. To date, our understanding of nonaffinity in such systems is limited to simulations or specific 2D models of athermal fibers. Here, we present an effective medium theory for nonaffine deformation of semiflexible polymer and fiber networks, which is general to both 2D and 3D and in both thermal and athermal limits. The predictions of this model are in good agreement with both prior computational and experimental results for linear elasticity. Moreover, the framework we introduce can be extended to address nonlinear elasticity and network dynamics.
Collapse
Affiliation(s)
- Sihan Chen
- Department of Physics and Astronomy, Rice University, Houston, Texas 77005, USA
- Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005, USA
| | - Tomer Markovich
- Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005, USA
- School of Mechanical Engineering, Tel Aviv University, Tel Aviv 69978, Israel
- Center for Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv 69978, Israel
| | - Fred C MacKintosh
- Department of Physics and Astronomy, Rice University, Houston, Texas 77005, USA
- Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005, USA
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, USA
- Department of Chemistry, Rice University, Houston, Texas 77005, USA
| |
Collapse
|
10
|
Tam AKY, Mogilner A, Oelz DB. F-actin bending facilitates net actomyosin contraction By inhibiting expansion with plus-end-located myosin motors. J Math Biol 2022; 85:4. [PMID: 35788426 PMCID: PMC9252981 DOI: 10.1007/s00285-022-01737-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 02/18/2022] [Accepted: 03/04/2022] [Indexed: 11/30/2022]
Abstract
Contraction of actomyosin networks underpins important cellular processes including motility and division. The mechanical origin of actomyosin contraction is not fully-understood. We investigate whether contraction arises on the scale of individual filaments, without needing to invoke network-scale interactions. We derive discrete force-balance and continuum partial differential equations for two symmetric, semi-flexible actin filaments with an attached myosin motor. Assuming the system exists within a homogeneous background material, our method enables computation of the stress tensor, providing a measure of contractility. After deriving the model, we use a combination of asymptotic analysis and numerical solutions to show how F-actin bending facilitates contraction on the scale of two filaments. Rigid filaments exhibit polarity-reversal symmetry as the motor travels from the minus to plus-ends, such that contractile and expansive components cancel. Filament bending induces a geometric asymmetry that brings the filaments closer to parallel as a myosin motor approaches their plus-ends, decreasing the effective spring force opposing motor motion. The reduced spring force enables the motor to move faster close to filament plus-ends, which reduces expansive stress and gives rise to net contraction. Bending-induced geometric asymmetry provides both new understanding of actomyosin contraction mechanics, and a hypothesis that can be tested in experiments.
Collapse
Affiliation(s)
- Alexander K Y Tam
- UniSA STEM, The University of South Australia, Mawson Lakes Campus, Mawson Lakes, SA 5095, Australia. .,School of Mathematics and Physics, The University of Queensland, St Lucia Campus, St Lucia, 4072, Queensland, Australia.
| | - Alex Mogilner
- Courant Institute of Mathematical Sciences, New York University, New York, 10012-1185, NY, USA
| | - Dietmar B Oelz
- School of Mathematics and Physics, The University of Queensland, St Lucia Campus, St Lucia, 4072, Queensland, Australia
| |
Collapse
|
11
|
Tauber J, van der Gucht J, Dussi S. Stretchy and disordered: Toward understanding fracture in soft network materials via mesoscopic computer simulations. J Chem Phys 2022; 156:160901. [PMID: 35490006 DOI: 10.1063/5.0081316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Soft network materials exist in numerous forms ranging from polymer networks, such as elastomers, to fiber networks, such as collagen. In addition, in colloidal gels, an underlying network structure can be identified, and several metamaterials and textiles can be considered network materials as well. Many of these materials share a highly disordered microstructure and can undergo large deformations before damage becomes visible at the macroscopic level. Despite their widespread presence, we still lack a clear picture of how the network structure controls the fracture processes of these soft materials. In this Perspective, we will focus on progress and open questions concerning fracture at the mesoscopic scale, in which the network architecture is clearly resolved, but neither the material-specific atomistic features nor the macroscopic sample geometries are considered. We will describe concepts regarding the network elastic response that have been established in recent years and turn out to be pre-requisites to understand the fracture response. We will mostly consider simulation studies, where the influence of specific network features on the material mechanics can be cleanly assessed. Rather than focusing on specific systems, we will discuss future challenges that should be addressed to gain new fundamental insights that would be relevant across several examples of soft network materials.
Collapse
Affiliation(s)
- Justin Tauber
- Physical Chemistry and Soft Matter, Wageningen University, Wageningen, The Netherlands
| | - Jasper van der Gucht
- Physical Chemistry and Soft Matter, Wageningen University, Wageningen, The Netherlands
| | - Simone Dussi
- Physical Chemistry and Soft Matter, Wageningen University, Wageningen, The Netherlands
| |
Collapse
|
12
|
Merson J, Picu RC. Random Fiber Network Loaded by a Point Force. JOURNAL OF APPLIED MECHANICS 2022; 89:044501. [PMID: 35783110 PMCID: PMC9247584 DOI: 10.1115/1.4053329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
This article presents the displacement field produced by a point force acting on an athermal random fiber network (the Green function for the network). The problem is defined within the limits of linear elasticity, and the field is obtained numerically for nonaffine networks characterized by various parameter sets. The classical Green function solution applies at distances from the point force larger than a threshold which is independent of the network parameters in the range studied. At smaller distances, the nonlocal nature of fiber interactions modifies the solution.
Collapse
Affiliation(s)
- J Merson
- Department of Mechanical, Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180
| | - R C Picu
- Department of Mechanical, Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180
| |
Collapse
|
13
|
Yang S, Zhao C, Ren J, Zheng K, Shao Z, Ling S. Acquiring structural and mechanical information of a fibrous network through deep learning. NANOSCALE 2022; 14:5044-5053. [PMID: 35293414 DOI: 10.1039/d2nr00372d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Fibrous networks play an essential role in the structure and properties of a variety of biological and engineered materials, such as cytoskeletons, protein filament-based hydrogels, and entangled or crosslinked polymer chains. Therefore, insight into the structural features of these fibrous networks and their constituent filaments is critical for discovering the structure-property-function relationships of these material systems. In this paper, a fibrous network-deep learning system (FN-DLS) is established to extract fibrous network structure information from atomic force microscopy images. FN-DLS accurately assesses the structural and mechanical characteristics of fibrous networks, such as contour length, number of nodes, persistence length, mesh size and fractal dimension. As an open-source system, FN-DLS is expected to serve a vast community of scientists working on very diverse disciplines and pave the way for new approaches on the study of biological and synthetic polymer and filament networks found in current applied and fundamental sciences.
Collapse
Affiliation(s)
- Shuo Yang
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, China.
| | - Chenxi Zhao
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, China.
| | - Jing Ren
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, China.
| | - Ke Zheng
- Biomass Molecular Engineering Center and Department of Materials Science and Engineering, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Zhengzhong Shao
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Laboratory of Advanced Materials, Fudan University, Shanghai 200433, China
| | - Shengjie Ling
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, China.
| |
Collapse
|
14
|
Amjad SN, Picu RC. Stress relaxation in network materials: the contribution of the network. SOFT MATTER 2022; 18:446-454. [PMID: 34913052 DOI: 10.1039/d1sm01546j] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Stress relaxation in network materials with permanent crosslinks is due to the transport of fluid within the network (poroelasticity), the viscoelasticity of the matrix and the viscoelasticity of the network. While relaxation associated with the matrix was studied extensively, the contribution of the network remains unexplored. In this work we consider two and three-dimensional stochastic fiber networks with viscoelastic fibers and explore the dependence of stress relaxation on network structure. We observe that relaxation has two regimes - an initial exponential regime, followed by a stretched exponential regime - similar to the situation in other disordered materials. The stretch exponent is a function of density, fiber diameter and the network structure, and has a minimum at the transition between the affine and non-affine regimes of network behavior. The relaxation time constant of the first, exponential regime is similar to the relaxation time constant of individual fibers and is independent of network density and fiber diameter. The relaxation time constant of the second, stretched exponential regime is a weak function of network parameters. The stretched exponential emerges from the heterogeneity of relaxation dynamics on scales comparable with the mesh size, with higher heterogeneity leading to smaller stretch exponents. In composite networks of fibers whose relaxation time constant is selected from a distribution with set mean, the stretch exponent decreases with increasing the coefficient of variation of the fiber time constant distribution. As opposed to thermal glass formers and colloids, in these athermal systems the dynamic heterogeneity is introduced by the network structure and does not evolve during relaxation. While in thermal systems the control parameter is the temperature, in this athermal case the control parameter is a non-dimensional structural parameter which describes the degree of non-affinity of the network.
Collapse
Affiliation(s)
- S N Amjad
- Department of Mechanical, Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA.
| | - R C Picu
- Department of Mechanical, Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA.
| |
Collapse
|
15
|
Bergström P, Hanson C, Ström H, Sasic S. Uniaxial compression of fibre networks – the synergetic effect of adhesion and elastoplasticity on non-reversible deformation. POWDER TECHNOL 2022. [DOI: 10.1016/j.powtec.2021.09.061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
16
|
Wang C, Li S, Ademiloye AS, Nithiarasu P. Biomechanics of cells and subcellular components: A comprehensive review of computational models and applications. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2021; 37:e3520. [PMID: 34390323 DOI: 10.1002/cnm.3520] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 08/10/2021] [Indexed: 06/13/2023]
Abstract
Cells are a fundamental structural, functional and biological unit for all living organisms. Up till now, considerable efforts have been made to study the responses of single cells and subcellular components to an external load, and understand the biophysics underlying cell rheology, mechanotransduction and cell functions using experimental and in silico approaches. In the last decade, computational simulation has become increasingly attractive due to its critical role in interpreting experimental data, analysing complex cellular/subcellular structures, facilitating diagnostic designs and therapeutic techniques, and developing biomimetic materials. Despite the significant progress, developing comprehensive and accurate models of living cells remains a grand challenge in the 21st century. To understand current state of the art, this review summarises and classifies the vast array of computational biomechanical models for cells. The article covers the cellular components at multi-spatial levels, that is, protein polymers, subcellular components, whole cells and the systems with scale beyond a cell. In addition to the comprehensive review of the topic, this article also provides new insights into the future prospects of developing integrated, active and high-fidelity cell models that are multiscale, multi-physics and multi-disciplinary in nature. This review will be beneficial for the researchers in modelling the biomechanics of subcellular components, cells and multiple cell systems and understanding the cell functions and biological processes from the perspective of cell mechanics.
Collapse
Affiliation(s)
- Chengyuan Wang
- Zienkiewicz Centre for Computational Engineering, Faculty of Science and Engineering, Swansea University, Bay Campus, Swansea, UK
| | - Si Li
- Zienkiewicz Centre for Computational Engineering, Faculty of Science and Engineering, Swansea University, Bay Campus, Swansea, UK
| | - Adesola S Ademiloye
- Zienkiewicz Centre for Computational Engineering, Faculty of Science and Engineering, Swansea University, Bay Campus, Swansea, UK
| | - Perumal Nithiarasu
- Zienkiewicz Centre for Computational Engineering, Faculty of Science and Engineering, Swansea University, Bay Campus, Swansea, UK
| |
Collapse
|
17
|
Abrego CJG, Dedroog L, Deschaume O, Wellens J, Vananroye A, Lettinga MP, Patterson J, Bartic C. Multiscale Characterization of the Mechanical Properties of Fibrin and Polyethylene Glycol (PEG) Hydrogels for Tissue Engineering Applications. MACROMOL CHEM PHYS 2021. [DOI: 10.1002/macp.202100366] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Christian Jose Garcia Abrego
- Department of Physics and Astronomy Soft Matter and Biophysics Unit KU Leuven, Celestijnenlaan 200D‐ box 2416, 3001 Leuven Belgium
- Department of Materials Engineering KU Leuven, Kasteelpark Arenberg 44 ‐ box 2430, 3001 Leuven Belgium
| | - Lens Dedroog
- Department of Physics and Astronomy Soft Matter and Biophysics Unit KU Leuven, Celestijnenlaan 200D‐ box 2416, 3001 Leuven Belgium
| | - Olivier Deschaume
- Department of Physics and Astronomy Soft Matter and Biophysics Unit KU Leuven, Celestijnenlaan 200D‐ box 2416, 3001 Leuven Belgium
| | - Jolan Wellens
- Department of Physics and Astronomy Soft Matter and Biophysics Unit KU Leuven, Celestijnenlaan 200D‐ box 2416, 3001 Leuven Belgium
| | - Anja Vananroye
- Department of Chemical Engineering Soft Matter, Rheology and Technology Division KU Leuven, Celestijnenlaan 200J‐ box 2424, 3001 Leuven Belgium
| | - Minne Paul Lettinga
- Department of Physics and Astronomy Soft Matter and Biophysics Unit KU Leuven, Celestijnenlaan 200D‐ box 2416, 3001 Leuven Belgium
| | - Jennifer Patterson
- Biomaterials and Regenerative Medicine Group, IMDEA Materials Institute C/Eric Kandel, 2 Getafe Madrid 28906 Spain
| | - Carmen Bartic
- Department of Physics and Astronomy Soft Matter and Biophysics Unit KU Leuven, Celestijnenlaan 200D‐ box 2416, 3001 Leuven Belgium
| |
Collapse
|
18
|
Grill MJ, Kernes J, Slepukhin VM, Wall WA, Levine AJ. Directed force propagation in semiflexible networks. SOFT MATTER 2021; 17:10223-10241. [PMID: 33367438 DOI: 10.1039/d0sm01177k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We consider the propagation of tension along specific filaments of a semiflexible filament network in response to the application of a point force using a combination of numerical simulations and analytic theory. We find the distribution of force within the network is highly heterogeneous, with a small number of fibers supporting a significant fraction of the applied load over distances of multiple mesh sizes surrounding the point of force application. We suggest that these structures may be thought of as tensile force chains, whose structure we explore via simulation. We develop self-consistent calculations of the point-force response function and introduce a transfer matrix approach to explore the decay of tension (into bending) energy and the branching of tensile force chains in the network.
Collapse
Affiliation(s)
- Maximilian J Grill
- Institute for Computational Mechanics, Technical University of Munich, 85748 Garching, Germany
| | - Jonathan Kernes
- Department of Physics & Astronomy, University of California, Los Angeles, 90095, USA.
| | - Valentin M Slepukhin
- Department of Physics & Astronomy, University of California, Los Angeles, 90095, USA.
| | - Wolfgang A Wall
- Institute for Computational Mechanics, Technical University of Munich, 85748 Garching, Germany
| | - Alex J Levine
- Department of Physics & Astronomy, University of California, Los Angeles, 90095, USA.
- Department of Chemistry & Biochemistry, University of California, Los Angeles, 90095, USA
- Department of Computational Medicine, University of California, Los Angeles, 90095, USA
| |
Collapse
|
19
|
Baumgarten K, Tighe BP. Moduli and modes in the Mikado model. SOFT MATTER 2021; 17:10286-10293. [PMID: 34151919 PMCID: PMC8612360 DOI: 10.1039/d1sm00551k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 06/15/2021] [Indexed: 06/13/2023]
Abstract
We determine how low frequency vibrational modes control the elastic shear modulus of Mikado networks, a minimal mechanical model for semi-flexible fiber networks. From prior work it is known that when the fiber bending modulus is sufficiently small, (i) the shear modulus of 2D Mikado networks scales as a power law in the fiber line density, G ∼ ρα+1, and (ii) the networks also possess an anomalous abundance of soft (low-frequency) vibrational modes with a characteristic frequency ωκ ∼ ρβ/2. While it has been suggested that α and β are identical, the preponderance of evidence indicates that α is larger than theoretical predictions for β. We resolve this inconsistency by measuring the vibrational density of states in Mikado networks for the first time. Supported by these results, we then demonstrate analytically that α = β + 1. In so doing, we uncover new insights into the coupling between soft modes and shear, as well as the origin of the crossover from bending- to stretching-dominated response.
Collapse
Affiliation(s)
- Karsten Baumgarten
- Delft University of Technology, Process & Energy Laboratory, Leeghwaterstraat 39, 2628 CB Delft, The Netherlands.
| | - Brian P Tighe
- Delft University of Technology, Process & Energy Laboratory, Leeghwaterstraat 39, 2628 CB Delft, The Netherlands.
| |
Collapse
|
20
|
Mao X, Shokef Y. Introduction to force transmission by nonlinear biomaterials. SOFT MATTER 2021; 17:10172-10176. [PMID: 34755159 DOI: 10.1039/d1sm90194j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Xiaoming Mao and Yair Shokef introduce the Soft Matter themed collection on force transmission by nonlinear biomaterials.
Collapse
Affiliation(s)
- Xiaoming Mao
- Department of Physics, University of Michigan, Ann Arbor, Michigan, 48109, USA.
| | - Yair Shokef
- School of Mechanical Engineering, Sackler Center for Computational Molecular and Materials Science, and Center for Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv, 69978, Israel.
| |
Collapse
|
21
|
Hasan F, Al Mahmud KAH, Khan MI, Kang W, Adnan A. Effect of random fiber networks on bubble growth in gelatin hydrogels. SOFT MATTER 2021; 17:9293-9314. [PMID: 34647568 DOI: 10.1039/d1sm00587a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In hydrodynamics, the event of dynamic bubble growth in a pure liquid under tensile pressure is known as cavitation. The same event can also be observed in soft materials (e.g., elastomers and hydrogels). However, for soft materials, bubble/cavity growth is either defined as cavitation if the bubble growth is elastic and reversible or as fracture if the cavity growth is by material failure and irreversible. In any way, bubble growth can cause damage to soft materials (e.g., tissue) by inducing high strain and strain-rate deformation. Additionally, a high-strength pressure wave is generated upon the collapse of the bubble. Therefore, it is crucial to identify the critical condition of spontaneous bubble growth in soft materials. Experimental and theoretical observations have agreed that the onset of bubble growth in soft materials requires higher tensile pressure than pure water. The extra tensile pressure is required since the cavitating bubble needs to overcome the elastic and surface energy in soft materials. In this manuscript, we developed two models to study and quantify the extra tensile pressure for different gelatin concentrations. Both the models are then compared with the existing cavitation onset criteria of rubber-like materials. Validation is done with the experimental results of threshold tensile pressure for different gelatin concentrations. Both models can moderately predict the extra tensile pressure within the intermediate range of gelatin concentrations (3-7% [w/v]). For low concentration (∼1%), the network's non-affinity plays a significant role and must be incorporated. On the other hand, for higher concentrations (∼10%), the entropic deformation dominates, and the strain energy formulation is not adequate.
Collapse
Affiliation(s)
- Fuad Hasan
- Department of Mechanical and Aerospace Engineering, The University of Texas at Arlington, USA.
- Woolf Hall, Room 315C, Arlington, TX 76019, USA
| | - K A H Al Mahmud
- Department of Mechanical and Aerospace Engineering, The University of Texas at Arlington, USA.
- Woolf Hall, Room 315C, Arlington, TX 76019, USA
| | - Md Ishak Khan
- Department of Mechanical and Aerospace Engineering, The University of Texas at Arlington, USA.
- Woolf Hall, Room 315C, Arlington, TX 76019, USA
| | - Wonmo Kang
- School for Engineering of Matter, Transport and Energy, Arizona State University, USA
| | - Ashfaq Adnan
- Department of Mechanical and Aerospace Engineering, The University of Texas at Arlington, USA.
- Woolf Hall, Room 315C, Arlington, TX 76019, USA
| |
Collapse
|
22
|
Arzash S, Shivers JL, MacKintosh FC. Shear-induced phase transition and critical exponents in three-dimensional fiber networks. Phys Rev E 2021; 104:L022402. [PMID: 34525571 DOI: 10.1103/physreve.104.l022402] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 07/29/2021] [Indexed: 11/07/2022]
Abstract
When subject to applied strain, fiber networks exhibit nonlinear elastic stiffening. Recent theory and experiments have shown that this phenomenon is controlled by an underlying mechanical phase transition that is critical in nature. Growing simulation evidence points to non-mean-field behavior for this transition and a hyperscaling relation has been proposed to relate the corresponding critical exponents. Here, we report simulations on two distinct network structures in three dimensions. By performing a finite-size scaling analysis, we test hyperscaling and identify various critical exponents. From the apparent validity of hyperscaling, as well as the non-mean-field exponents we observe, our results suggest that the upper critical dimension for the strain-controlled phase transition is above three, in contrast to the jamming transition that represents another athermal, mechanical phase transition.
Collapse
Affiliation(s)
- Sadjad Arzash
- Department of Chemical & Biomolecular Engineering, Rice University, Houston, Texas 77005, USA.,Center for Theoretical Biological Physics, Rice University, Houston, Texas 77030, USA
| | - Jordan L Shivers
- Department of Chemical & Biomolecular Engineering, Rice University, Houston, Texas 77005, USA.,Center for Theoretical Biological Physics, Rice University, Houston, Texas 77030, USA
| | - Fred C MacKintosh
- Department of Chemical & Biomolecular Engineering, Rice University, Houston, Texas 77005, USA.,Center for Theoretical Biological Physics, Rice University, Houston, Texas 77030, USA.,Departments of Chemistry and Physics & Astronomy, Rice University, Houston, Texas 77005, USA
| |
Collapse
|
23
|
Protein friction and filament bending facilitate contraction of disordered actomyosin networks. Biophys J 2021; 120:4029-4040. [PMID: 34390686 DOI: 10.1016/j.bpj.2021.08.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 06/21/2021] [Accepted: 08/06/2021] [Indexed: 12/23/2022] Open
Abstract
We use mathematical modeling and computation to investigate how protein friction facilitates contraction of disordered actomyosin networks. We simulate two-dimensional networks using an agent-based model, consisting of a system of force-balance equations for myosin motor proteins and semiflexible actin filaments. A major advantage of our approach is that it enables direct calculation of the network stress tensor, which provides a quantitative measure of contractility. Exploiting this, we use repeated simulations of disordered networks to confirm that both protein friction and actin filament bending are required for contraction. We then use simulations of elementary two-filament systems to show that filament bending flexibility can facilitate contraction on the microscopic scale. Finally, we show that actin filament turnover is necessary to sustain contraction and prevent filament aggregation. Simulations with and without turnover also exhibit contractile pulses. However, these pulses are aperiodic, suggesting that periodic pulsation can only arise because of additional regulatory mechanisms or more complex mechanical behavior.
Collapse
|
24
|
Deogekar S, Picu RC. Strength of stochastic fibrous materials under multiaxial loading. SOFT MATTER 2021; 17:704-714. [PMID: 33216098 PMCID: PMC7856081 DOI: 10.1039/d0sm01713b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Many biological and engineering materials are made from fibers organized in the form of a stochastic crosslinked network, and the mechanics of the network controls the behavior of the material. In this work we investigate the strength of stochastic networks without pre-existing damage which fail due to crosslink rupture. Athermal networks ranging from approximately affine to strongly non-affine are subjected to multiaxial loading and the strength is evaluated using numerical models. It is observed that once the stress is normalized by the strength measured in uniaxial tension, the failure surface becomes approximately independent of network parameters. This extends the relation between strength and network parameters previously established in (S. Deogekar, M. R. Islam, R. C. Picu, Parameters controlling the strength of stochastic fibrous materials, Int. J. Solids Struct., 2019, 168, 194-202) to the multiaxial case. The failure surface depends on both first two invariants of the stress. Strongly non-affine networks behave somewhat different from the affine networks under loadings close to the hydrostatic and pure shear loading modes, while the difference disappears in the first quadrant of the principal stress space. The results are compared with experimental data from the literature.
Collapse
Affiliation(s)
- S Deogekar
- Department of Mechanical, Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA.
| | - R C Picu
- Department of Mechanical, Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA.
| |
Collapse
|
25
|
Nano-CT scans in the optimisation of purposeful experimental procedures: A study on metallic fibre networks. Med Eng Phys 2020; 86:109-121. [PMID: 33261724 DOI: 10.1016/j.medengphy.2020.10.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 09/01/2020] [Accepted: 10/24/2020] [Indexed: 11/22/2022]
Abstract
Motive Metallic fibre networks and their mechanical behaviour are only insufficiently understood. In this particular field of research, the use of nano-CT scans offers advanced opportunities for the optimised planning of experimental work and component design. Several novel applications will benefit from this research; in particular, tissue engineering applications where a controlled and reproducible mechanical stimulus on cells is required can make use of these components. MethodFor the present study, the geometry of metallic fibre network samples is measured and digitalised through the use of nano-CT scan protocols and adequate radiological post-processing steps. Fibre medial axes are transferred into finite element assemblies and are exposed to magnetic actuation models. Network displacement of input geometries is quantified by averaging of node displacement fields. Key resultsComplex 3D deformation fields with regions of tension, shear, and compression are obtained. Results from a previous study about matrix material deformation can be confirmed in this study for greater sample geometries. The strain magnitude is not uniform across the samples; several influencing parameters and deformation patterns are identified. A simple analytical model can be presented which quantifies the material deformation. ConclusionsNano-CT scans provide an efficient radiological tool in the planning of relevant experimental procedures. The present study confirms the general usability of fibre networks for the contactless creation of 3D strain fields in tissue engineering. Mechanical effects in tissue growth stimulation known from experimental work are obtained numerically for the investigated assemblies. Further work about the mechanical effects in tissue cultures appears highly worthwhile.
Collapse
|
26
|
Houghton MR, Walkley MA, Head DA. Anisotropic mechanical response of layered disordered fibrous materials. Phys Rev E 2020; 102:062502. [PMID: 33466009 DOI: 10.1103/physreve.102.062502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 11/24/2020] [Indexed: 06/12/2023]
Abstract
Mechanically bonded fabrics account for a significant portion of nonwoven products, and serve many niche areas of nonwoven manufacturing. Such fabrics are characterized by layers of disordered fibrous webs, but we lack an understanding of how such microstructures determine bulk material response. Here we numerically determine the linear shear response of needle-punched fabrics modeled as cross-linked sheets of two-dimensional (2D) Mikado networks. We systematically vary the intra-sheet fiber density, inter-sheet separation distance, and direction of shear, and quantify the macroscopic shear modulus alongside the degree of affinity and energy partition. For shear parallel to the sheets, the response is dominated by intrasheet fibers and follows known trends for 2D Mikado networks. By contrast, shears perpendicular to the sheets induce a softer response dominated by either intrasheet or intersheet fibers depending on a quadratic relation between sheet separation and fiber density. These basic trends are reproduced and elucidated by a simple scaling argument that we provide. We discuss the implications of our findings in the context of real nonwoven fabrics.
Collapse
Affiliation(s)
- M R Houghton
- School of Computing, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - M A Walkley
- School of Computing, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - D A Head
- School of Computing, University of Leeds, Leeds LS2 9JT, United Kingdom
| |
Collapse
|
27
|
Merson J, Picu R. Size Effects in Random Fiber Networks Controlled by the Use of Generalized Boundary Conditions. INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES 2020; 206:314-321. [PMID: 33281220 PMCID: PMC7709956 DOI: 10.1016/j.ijsolstr.2020.09.033] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Materials with a stochastic fiber network as the main structural constituent are broadly encountered in engineering and in biology. These materials are characterized by multiscale heterogeneity and hence their properties evaluated numerically or experimentally are generally dependent on the size of the sample considered. In this work we evaluate the size effect on the linear and non-linear mechanical response of three-dimensional stochastic fiber networks and determine its dependence on material parameters and on the degree of affinity of network deformation. The size effect is more pronounced in non-affine than in affine networks and decreases slowly when the model size increases. In order to eliminate this effect, models lager than can be effectively solved with current computers have to be considered. To address this issue, we propose a method that allows using relatively small models, while accurately predicting the small and large strain behaviors of the network. The method is based on the generalized boundary conditions introduced in (Glüge 2013, Computational Materials Science 79, 408-416), which are being adapted here to the requirements imposed by fibrous materials.
Collapse
Affiliation(s)
- J. Merson
- Department of Mechanical, Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute, 110 Eighth St, Troy, NY 12108
| | - R.C. Picu
- Department of Mechanical, Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute, 110 Eighth St, Troy, NY 12108
| |
Collapse
|
28
|
DeBenedictis EP, Zhang Y, Keten S. Structure and Mechanics of Bundled Semiflexible Polymer Networks. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00191] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Elizabeth P. DeBenedictis
- Department of Mechanical Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Yao Zhang
- Department of Mechanical Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Sinan Keten
- Department of Mechanical Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
29
|
Mirzaali MJ, Pahlavani H, Yarali E, Zadpoor AA. Non-affinity in multi-material mechanical metamaterials. Sci Rep 2020; 10:11488. [PMID: 32661428 PMCID: PMC7359350 DOI: 10.1038/s41598-020-67984-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 06/08/2020] [Indexed: 02/08/2023] Open
Abstract
Non-affine deformations enable mechanical metamaterials to achieve their unusual properties while imposing implications for their structural integrity. The presence of multiple phases with different mechanical properties results in additional non-affinity of the deformations, a phenomenon that has never been studied before in the area of extremal mechanical metamaterials. Here, we studied the degree of non-affinity, [Formula: see text], resulting from the random substitution of a fraction of the struts,[Formula: see text], that make up a lattice structure and are printed using a soft material (elastic modulus = [Formula: see text]) by those printed using a hard material ([Formula: see text]). Depending on the unit cell angle (i.e., [Formula: see text] = 60°, 90°, or 120°), the lattice structures exhibited negative, near-zero, or positive values of the Poisson's ratio, respectively. We found that the auxetic structures exhibit the highest levels of non-affinity, followed by the structures with positive and near-zero values of the Poisson's ratio. We also observed an increase in [Formula: see text] with [Formula: see text] and [Formula: see text] until [Formula: see text] =104 and [Formula: see text]= 75%-90% after which [Formula: see text] saturated. The dependency of [Formula: see text] upon [Formula: see text] was therefore found to be highly asymmetric. The positive and negative values of the Poisson's ratio were strongly correlated with [Formula: see text]. Interestingly, achieving extremely high or extremely low values of the Poisson's ratio required highly affine deformations. In conclusion, our results clearly show the importance of considering non-affinity when trying to achieve a specific set of mechanical properties and underscore the structural integrity implications in multi-material mechanical metamaterials.
Collapse
Affiliation(s)
- M J Mirzaali
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628 CD, Delft, The Netherlands.
| | - H Pahlavani
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628 CD, Delft, The Netherlands
| | - E Yarali
- School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - A A Zadpoor
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628 CD, Delft, The Netherlands
| |
Collapse
|
30
|
Mahmud KA, Hasan F, Khan MI, Adnan A. On the Molecular Level Cavitation in Soft Gelatin Hydrogel. Sci Rep 2020; 10:9635. [PMID: 32541847 PMCID: PMC7295970 DOI: 10.1038/s41598-020-66591-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 05/04/2020] [Indexed: 02/07/2023] Open
Abstract
We have studied the molecular level cavitation mechanisms and bubble growth kinetics in soft gelatin hydrogel and water. The apparent difference in cavitation threshold pressure between that generates in pure water and that in gelatin hydrogel is considered. Gelatin, which is derived from collagen, is frequently used as a brain simulant material. In liquid, cavitation bubble is created when surrounding pressure drops below the saturation vapor pressure. In principle, a cavitation bubble should continue to grow as long as tensile pressure continues to increase in the system. In our study, using molecular dynamics simulation, we have investigated the pressure requirement for a nanoscale cavitation to grow in water and gel. First, we have modeled a gel like structure with a preexisting bubble of 5 nm radius. A control model containing a 5 nm bubble in pure water is also created. Then, we have applied hydrostatic tensile pressure at two different expansion rates in the gel and water models. The results show that a gel-like structure requires higher pressure for the cavitation to grow, and both gel and water models exhibit strain rate effect on the cavitation threshold pressure. We have also found that the cavitation collapse time is dominated by the viscosity of the medium.
Collapse
Affiliation(s)
- Kah Al Mahmud
- Mechanical and Aerospace Engineering, University of Texas at Arlington, Arlington, Texas, USA
| | - Fuad Hasan
- Mechanical and Aerospace Engineering, University of Texas at Arlington, Arlington, Texas, USA
| | - Md Ishak Khan
- Mechanical and Aerospace Engineering, University of Texas at Arlington, Arlington, Texas, USA
| | - Ashfaq Adnan
- Mechanical and Aerospace Engineering, University of Texas at Arlington, Arlington, Texas, USA.
| |
Collapse
|
31
|
Kwon S, Kim KS. Qualitative analysis of contribution of intracellular skeletal changes to cellular elasticity. Cell Mol Life Sci 2020; 77:1345-1355. [PMID: 31605149 PMCID: PMC11105102 DOI: 10.1007/s00018-019-03328-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 09/25/2019] [Accepted: 09/30/2019] [Indexed: 01/07/2023]
Abstract
Cells are dynamic structures that continually generate and sustain mechanical forces within their environments. Cells respond to mechanical forces by changing their shape, moving, and differentiating. These reactions are caused by intracellular skeletal changes, which induce changes in cellular mechanical properties such as stiffness, elasticity, viscoelasticity, and adhesiveness. Interdisciplinary research combining molecular biology with physics and mechanical engineering has been conducted to characterize cellular mechanical properties and understand the fundamental mechanisms of mechanotransduction. In this review, we focus on the role of cytoskeletal proteins in cellular mechanics. The specific role of each cytoskeletal protein, including actin, intermediate filaments, and microtubules, on cellular elasticity is summarized along with the effects of interactions between the fibers.
Collapse
Affiliation(s)
- Sangwoo Kwon
- Department of Biomedical Engineering, College of Medicine, Kyung Hee University, 1 Hoegi-dong, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - Kyung Sook Kim
- Department of Biomedical Engineering, College of Medicine, Kyung Hee University, 1 Hoegi-dong, Dongdaemun-gu, Seoul, 02447, Republic of Korea.
| |
Collapse
|
32
|
Ferruzzi J, Zhang Y, Roblyer D, Zaman MH. Multi-scale Mechanics of Collagen Networks: Biomechanical Basis of Matrix Remodeling in Cancer. MULTI-SCALE EXTRACELLULAR MATRIX MECHANICS AND MECHANOBIOLOGY 2020. [DOI: 10.1007/978-3-030-20182-1_11] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
33
|
Salman OU, Vitale G, Truskinovsky L. Continuum theory of bending-to-stretching transition. Phys Rev E 2019; 100:051001. [PMID: 31869905 DOI: 10.1103/physreve.100.051001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Indexed: 11/07/2022]
Abstract
Transition from bending-dominated to stretching-dominated elastic response in semiflexible fibrous networks plays an important role in the mechanical behavior of cells and tissues. It is induced by changes in network connectivity and relies on the construction of new cross-links. We propose a simple continuum model of this transition with macroscopic strain playing the role of order parameter. An unusual feature of this Landau-type theory is that it is based on a single-well potential. The theory predicts that bending-to-stretching transition should proceed through propagation of the fronts separating domains with affine and nonaffine elastic response.
Collapse
Affiliation(s)
- O U Salman
- CNRS, LSPM UPR3407, Université Paris 13, Sorbonne Paris Cité, 93430 Villetaneuse, France
| | - G Vitale
- Laboratoire de Mécanique des Solides, CNRS-UMR 7649, Ecole Polytechnique, Route de Saclay, F-91128 Palaiseau Cedex, France
| | - L Truskinovsky
- PMMH, CNRS-UMR 7636 PSL-ESPCI, 10 Rue Vauquelin, 75005 Paris, France
| |
Collapse
|
34
|
Deogekar S, Islam M, Picu R. Parameters controlling the strength of stochastic fibrous materials. INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES 2019; 168:194-202. [PMID: 31395989 PMCID: PMC6687067 DOI: 10.1016/j.ijsolstr.2019.03.033] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Many materials of everyday use are fibrous and their strength is important in most applications. In this work we study the dependence of the strength of random fiber networks on structural parameters such as the network density, cross-link density, fiber tortuosity, and the strength of the inter-fiber cross-links. Athermal networks of cellular and fibrous type are considered. We conclude that the network strength scales linearly with the cross-link number density and with the cross-link strength for a broad range of network parameters, and for both types of networks considered. Network strength is independent of fiber material properties and of fiber tortuosity. This information can be used to design fiber networks for specified strength and, generally, to understand the mechanical behavior of fibrous materials.
Collapse
Affiliation(s)
| | | | - R.C. Picu
- Corresponding author, , Tel: 1 518 276 2195
| |
Collapse
|
35
|
Deogekar S, Yan Z, Picu RC. Random Fiber Networks With Superior Properties Through Network Topology Control. JOURNAL OF APPLIED MECHANICS 2019; 86:81010-NaN. [PMID: 31666750 PMCID: PMC6694714 DOI: 10.1115/1.4043828] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 05/02/2019] [Accepted: 05/03/2019] [Indexed: 05/22/2023]
Abstract
In this work, we study the effect of network architecture on the nonlinear elastic behavior and strength of athermal random fiber networks of cellular type. We introduce a topology modification of Poisson-Voronoi (PV) networks with convex cells, leading to networks with stochastic nonconvex cells. Geometric measures are developed to characterize this new class of nonconvex Voronoi (NCV) networks. These are softer than the reference PV networks at the same nominal network parameters such as density, cross-link density, fiber diameter, and connectivity number. Their response is linear elastic over a broad range of strains, unlike PV networks that exhibit a gradual increase of the tangent stiffness starting from small strains. NCV networks exhibit much smaller Poisson contraction than any network of same nominal parameters. Interestingly, the strength of NCV networks increases continuously with an increasing degree of nonconvexity of the cells. These exceptional properties render this class of networks of interest in a variety of applications, such as tissue scaffolds, nonwovens, and protective clothing.
Collapse
Affiliation(s)
- S Deogekar
- Department of Mechanical, Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180 e-mail:
| | - Z Yan
- Department of Mechanical, Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180 e-mail:
| | - R C Picu
- Department of Mechanical, Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180 e-mail:
| |
Collapse
|
36
|
Islam MR, Picu RC. Random fiber networks with inclusions: The mechanism of reinforcement. Phys Rev E 2019; 99:063001. [PMID: 31330690 DOI: 10.1103/physreve.99.063001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Indexed: 12/16/2022]
Abstract
The mechanical behavior of athermal random fiber networks embedding particulate inclusions is studied in this work. Composites in which the filler size is comparable with the mean segment length of the network are considered. Inclusions are randomly distributed in the network at various volume fractions, and cases in which fibers are rigidly bonded to fillers and in which no such bonding is imposed are studied separately. In the presence of inclusions, the small strain modulus increases, while the ability of the network to strain stiffen decreases relative to the unfilled network case. The reinforcement induced by fillers is most pronounced in sparse networks of floppier filaments that deform in the bending-dominated mode in the unfilled state. As the unfilled network density or the bending stiffness of fibers increases, the effect of filling diminishes rapidly. Fillers lead to a transition from the soft, bending-dominated, to the stiffer, stretching-dominated, deformation mode of the network, a transition which is primarily responsible for the observed overall reinforcement. The confinement, i.e., the restriction on network kinematics imposed by fillers, causes this transition. These results provide a justification for the observed difference in reinforcement obtained in sparsely versus densely cross-linked networks at a given filling fraction and provide guidance for the further development of network-based materials.
Collapse
Affiliation(s)
- M R Islam
- Department of Mechanical, Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, USA
| | - R C Picu
- Department of Mechanical, Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, USA
| |
Collapse
|
37
|
Metsiou DN, Siatis KE, Giannopoulou E, Papachristou DJ, Kalofonos HP, Koutras A, Athanassiou G. The Impact of Anti-tumor Agents on ER-Positive MCF-7 and HER2-Positive SKBR-3 Breast Cancer Cells Biomechanics. Ann Biomed Eng 2019; 47:1711-1724. [DOI: 10.1007/s10439-019-02284-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 05/02/2019] [Indexed: 01/07/2023]
|
38
|
Abstract
Structural hierarchy, in which materials possess distinct features on multiple length scales, is ubiquitous in nature. Diverse biological materials, such as bone, cellulose, and muscle, have as many as 10 hierarchical levels. Structural hierarchy confers many mechanical advantages, including improved toughness and economy of material. However, it also presents a problem: Each hierarchical level adds a new source of assembly errors and substantially increases the information required for proper assembly. This seems to conflict with the prevalence of naturally occurring hierarchical structures, suggesting that a common mechanical source of hierarchical robustness may exist. However, our ability to identify such a unifying phenomenon is limited by the lack of a general mechanical framework for structures exhibiting organization on disparate length scales. Here, we use simulations to substantiate a generalized model for the tensile stiffness of hierarchical filamentous networks with a nested, dilute triangular lattice structure. Following seminal work by Maxwell and others on criteria for stiff frames, we extend the concept of connectivity in network mechanics and find a similar dependence of material stiffness upon each hierarchical level. Using this model, we find that stiffness becomes less sensitive to errors in assembly with additional levels of hierarchy; although surprising, we show that this result is analytically predictable from first principles and thus potentially model independent. More broadly, this work helps account for the success of hierarchical, filamentous materials in biology and materials design and offers a heuristic for ensuring that desired material properties are achieved within the required tolerance.
Collapse
|
39
|
Gong B, Wei X, Qian J, Lin Y. Modeling and Simulations of the Dynamic Behaviors of Actin-Based Cytoskeletal Networks. ACS Biomater Sci Eng 2019; 5:3720-3734. [DOI: 10.1021/acsbiomaterials.8b01228] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Bo Gong
- Department of Engineering Mechanics, Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Xi Wei
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, China
| | - Jin Qian
- Department of Engineering Mechanics, Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Yuan Lin
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
40
|
Burkel B, Proestaki M, Tyznik S, Notbohm J. Heterogeneity and nonaffinity of cell-induced matrix displacements. Phys Rev E 2018; 98:052410. [PMID: 30619988 PMCID: PMC6319873 DOI: 10.1103/physreve.98.052410] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Cell contractile forces deform and reorganize the surrounding matrix, but the relationship between the forces and the resulting displacements is complicated by the fact that the fibrous structure brings about a complex set of mechanical properties. Many studies have quantified nonlinear and time-dependent properties at macroscopic scales, but it is unclear whether macroscopic properties apply to the scale of a cell, where the matrix is composed of a heterogeneous network of fibers. To address this question, we mimicked the contraction of a cell embedded within a fibrous collagen matrix and quantified the resulting displacements. The data revealed displacements that were heterogeneous and nonaffine. The heterogeneity was reproducible during cyclic loading, and it decreased with decreasing fiber length. Both the experiments and a fiber network model showed that the heterogeneous displacements decayed over distance at a rate no faster than the average displacement field, indicating no transition to homogeneous continuum behavior. Experiments with cells fully embedded in collagen matrices revealed the presence of heterogeneous displacements as well, exposing the dramatic heterogeneity in matrix reorganization that is induced by cells at different positions within the same fibrous matrix.
Collapse
Affiliation(s)
- Brian Burkel
- Department of Engineering Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Maria Proestaki
- Department of Engineering Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Stephen Tyznik
- Department of Engineering Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Jacob Notbohm
- Department of Engineering Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
- University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
| |
Collapse
|
41
|
Freedman SL, Hocky GM, Banerjee S, Dinner AR. Nonequilibrium phase diagrams for actomyosin networks. SOFT MATTER 2018; 14:7740-7747. [PMID: 30204203 PMCID: PMC6192427 DOI: 10.1039/c8sm00741a] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Living cells dynamically modulate the local morphologies of their actin networks to perform biological functions, including force transduction, intracellular transport, and cell division. A major challenge is to understand how diverse structures of the actin cytoskeleton are assembled from a limited set of molecular building blocks. Here we study the spontaneous self-assembly of a minimal model of cytoskeletal materials, consisting of semiflexible actin filaments, crosslinkers, and molecular motors. Using coarse-grained simulations, we demonstrate that by changing concentrations and kinetics of crosslinkers and motors, as well as filament lengths, we can generate three distinct structural phases of actomyosin assemblies: bundled, polarity-sorted, and contracted. We introduce new metrics to distinguish these structural phases and demonstrate their functional roles. We find that the binding kinetics of motors and crosslinkers can be tuned to optimize contractile force generation, motor transport, and mechanical response. By quantitatively characterizing the relationships between the modes of cytoskeletal self-assembly, the resulting structures, and their functional consequences, our work suggests new principles for the design of active materials.
Collapse
Affiliation(s)
- Simon L. Freedman
- Department of Physics, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA
| | - Glen M. Hocky
- James Franck Institute & Department of Chemistry, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA, Chicago, IL, USA;
| | - Shiladitya Banerjee
- Department of Physics and Astronomy, University College London, Gower Street, London, WC1E-6BT
| | - Aaron R. Dinner
- James Franck Institute & Department of Chemistry, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA, Chicago, IL, USA;
| |
Collapse
|
42
|
Amuasi HE, Fischer A, Zippelius A, Heussinger C. Linear rheology of reversibly cross-linked biopolymer networks. J Chem Phys 2018; 149:084902. [PMID: 30193493 DOI: 10.1063/1.5030169] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We suggest a simple model for reversible cross-links, binding, and unbinding to/from a network of semiflexible polymers. The resulting frequency dependent response of the network to an applied shear is calculated via Brownian dynamics simulations. It is shown to be rather complex with the time scale of the linkers competing with the excitations of the network. If the lifetime of the linkers is the longest time scale, as is indeed the case in most biological networks, then a distinct low frequency peak of the loss modulus develops. The storage modulus shows a corresponding decay from its plateau value, which for irreversible cross-linkers extends all the way to the static limit. This additional relaxation mechanism can be controlled by the relative weight of reversible and irreversible linkers.
Collapse
Affiliation(s)
- Henry E Amuasi
- Institute of Theoretical Physics, Georg-August University of Göttingen, 37073 Göttingen, Germany
| | - Andreas Fischer
- Institute of Theoretical Physics, Georg-August University of Göttingen, 37073 Göttingen, Germany
| | - Annette Zippelius
- Institute of Theoretical Physics, Georg-August University of Göttingen, 37073 Göttingen, Germany
| | - Claus Heussinger
- Institute of Theoretical Physics, Georg-August University of Göttingen, 37073 Göttingen, Germany
| |
Collapse
|
43
|
Heroy S, Taylor D, Shi FB, Forest MG, Mucha PJ. RIGID GRAPH COMPRESSION: MOTIF-BASED RIGIDITY ANALYSIS FOR DISORDERED FIBER NETWORKS. MULTISCALE MODELING & SIMULATION : A SIAM INTERDISCIPLINARY JOURNAL 2018; 16:1283-1304. [PMID: 30450018 PMCID: PMC6234004 DOI: 10.1137/17m1157271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Using particle-scale models to accurately describe property enhancements and phase transitions in macroscopic behavior is a major engineering challenge in composite materials science. To address some of these challenges, we use the graph theoretic property of rigidity to model mechanical reinforcement in composites with stiff rod-like particles. We develop an efficient algorithmic approach called rigid graph compression (RGC) to describe the transition from floppy to rigid in disordered fiber networks ("rod-hinge systems"), which form the reinforcing phase in many composite systems. To establish RGC on a firm theoretical foundation, we adapt rigidity matroid theory to identify primitive topological network motifs that serve as rules for composing interacting rigid particles into larger rigid components. This approach is computationally efficient and stable, because RGC requires only topological information about rod interactions (encoded by a sparse unweighted network) rather than geometrical details such as rod locations or pairwise distances (as required in rigidity matroid theory). We conduct numerical experiments on simulated two-dimensional rod-hinge systems to demonstrate that RGC closely approximates the rigidity percolation threshold for such systems, through comparison with the pebble game algorithm (which is exact in two dimensions). Importantly, whereas the pebble game is derived from Laman's condition and is only valid in two dimensions, the RGC approach naturally extends to higher dimensions.
Collapse
Affiliation(s)
- Samuel Heroy
- Carolina Center for Interdisciplinary Applied Mathematics, Department of Mathematics, University of North Carolina, Chapel Hill, NC 27599
| | - Dane Taylor
- Carolina Center for Interdisciplinary Applied Mathematics, Department of Mathematics, University of North Carolina, Chapel Hill, NC 27599
| | - F Bill Shi
- The Odum Institute for Research in Social Science, University of North Carolina, Chapel Hill, NC 27599
| | - M Gregory Forest
- Carolina Center for Interdisciplinary Applied Mathematics, Department of Mathematics, University of North Carolina, Chapel Hill, NC 27599
| | - Peter J Mucha
- Carolina Center for Interdisciplinary Applied Mathematics, Department of Mathematics, University of North Carolina, Chapel Hill, NC 27599
| |
Collapse
|
44
|
Hatami-Marbini H. Effect of crosslink torsional stiffness on elastic behavior of semiflexible polymer networks. Phys Rev E 2018; 97:022504. [PMID: 29548117 DOI: 10.1103/physreve.97.022504] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Indexed: 11/07/2022]
Abstract
Networks of semiflexible filaments are building blocks of different biological and structural materials such as cytoskeleton and extracellular matrix. The mechanical response of these systems when subjected to an applied strain at zero temperature is often investigated numerically using networks composed of filaments, which are either rigidly welded or pinned together at their crosslinks. In the latter, filaments during deformation are free to rotate about their crosslinks while the relative angles between filaments remain constant in the former. The behavior of crosslinks in actual semiflexible networks is different than these idealized models and there exists only partial constraint on torques at crosslinks. The present work develops a numerical model in which two intersecting filaments are connected to each other by torsional springs with arbitrary stiffness. We show that fiber networks composed of rigid and freely rotating crosslinks are the limiting case of the present model. Furthermore, we characterize the effects of stiffness of crosslinks on effective Young's modulus of semiflexible networks as a function of filament flexibility and crosslink density. The effective Young's modulus is determined as a function of the mechanical properties of crosslinks and is found to vanish for networks composed of very weak torsional springs. Independent of the stiffness of crosslinks, it is found that the effective Young's modulus is a function of fiber flexibility and crosslink density. In low density networks, filaments primarily bend and the effective Young's modulus is much lower than the affine estimate. With increasing filament bending stiffness and/or crosslink density, the mechanical behavior of the networks becomes more affine and the stretching of filaments depicts itself as the dominant mode of deformation. The torsional stiffness of the crosslinks significantly affects the effective Young's modulus of the semiflexible random fiber networks.
Collapse
Affiliation(s)
- H Hatami-Marbini
- Department of Mechanical & Industrial Engineering, University of Illinois at Chicago, Chicago, Illinois 60607, USA
| |
Collapse
|
45
|
Mulla Y, Oliveri G, Overvelde JTB, Koenderink GH. Crack Initiation in Viscoelastic Materials. PHYSICAL REVIEW LETTERS 2018; 120:268002. [PMID: 30004756 DOI: 10.1103/physrevlett.120.268002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Indexed: 06/08/2023]
Abstract
In viscoelastic materials, individually short-lived bonds collectively result in a mechanical resistance which is long lived but finite as, ultimately, cracks appear. Here, we provide a microscopic mechanism by which a critical crack length emerges from the nonlinear local bond dynamics. Because of this emerging length scale, macroscopic viscoelastic materials fracture in a fundamentally different manner from microscopically small systems considered in previous models. We provide and numerically verify analytical equations for the dependence of the critical crack length on the bond kinetics and applied stress.
Collapse
Affiliation(s)
- Yuval Mulla
- Living Matter Department, AMOLF, Science Park 104, 1098 XG Amsterdam, Netherlands
| | - Giorgio Oliveri
- Designer Matter Department, AMOLF, Science Park 104, 1098 XG Amsterdam, Netherlands
| | | | - Gijsje H Koenderink
- Living Matter Department, AMOLF, Science Park 104, 1098 XG Amsterdam, Netherlands
| |
Collapse
|
46
|
Spontaneous buckling of contractile poroelastic actomyosin sheets. Nat Commun 2018; 9:2461. [PMID: 29941969 PMCID: PMC6018151 DOI: 10.1038/s41467-018-04829-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 05/16/2018] [Indexed: 12/11/2022] Open
Abstract
Shape transitions in developing organisms can be driven by active stresses, notably, active contractility generated by myosin motors. The mechanisms generating tissue folding are typically studied in epithelia. There, the interaction between cells is also coupled to an elastic substrate, presenting a major difficulty for studying contraction induced folding. Here we study the contraction and buckling of active, initially homogeneous, thin elastic actomyosin networks isolated from bounding surfaces. The network behaves as a poroelastic material, where a flow of fluid is generated during contraction. Contraction starts at the system boundaries, proceeds into the bulk, and eventually leads to spontaneous buckling of the sheet at the periphery. The buckling instability resulted from system self-organization and from the spontaneous emergence of density gradients driven by the active contractility. The buckling wavelength increases linearly with sheet thickness. Our system offers a well-controlled way to study mechanically induced, spontaneous shape transitions in active matter. Active matter composed of filaments and molecular motors can contract. Here, the authors report the spontaneous out-of-plane buckling of reconstituted contracting poroelastic actomyosin sheets in the absence of external cues.
Collapse
|
47
|
Tehrani M, Ghalamzan Z, Sarvestani A. Polydispersity controls the strength of semi-flexible polymer networks. Phys Biol 2018; 15:066002. [PMID: 29771241 DOI: 10.1088/1478-3975/aac5a8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The classical theory of polymer elasticity is built upon the assumption of network monodispersity-the premise that polymer networks are comprised of sub-chains of equal length. The crosslinking of biopolymers, however, is a random process and the resultant networks are likely to be polydisperse. The effect of structural polydispersity on the mechanical behavior of biopolymer networks is not well understood. The purpose of this contribution is to show how network polydispersity controls mechanical behavior and the ultimate properties of crosslinked semi-flexible filaments at finite deformations. The proposed micromechanical continuum model is based on the force-elongation relation of individual chains of different lengths. It is shown that the mechanical strength of the network is controlled by the finite-extensibility of filaments and the degradation of shorter filaments at relatively small stretches. The progressive failure of filaments continues and eventually determines the ultimate strength of the network. The predicted stress-stretch behaviors are in reasonable agreement with the experimental data for connective tissues.
Collapse
Affiliation(s)
- Mohammad Tehrani
- Department of Mechanical Engineering, Ohio University, Athens, OH 45701, United States of America
| | | | | |
Collapse
|
48
|
Kang YG, Jang H, Yang TD, Notbohm J, Choi Y, Park Y, Kim BM. Quantification of focal adhesion dynamics of cell movement based on cell-induced collagen matrix deformation using second-harmonic generation microscopy. JOURNAL OF BIOMEDICAL OPTICS 2018; 23:1-8. [PMID: 29886577 DOI: 10.1117/1.jbo.23.6.065001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 05/14/2018] [Indexed: 06/08/2023]
Abstract
Mechanical interactions of living cells with the surrounding environment via focal adhesion (FA) in three dimensions (3-D) play a key role in dynamic biological events, such as tissue regeneration, wound healing, and cancer invasion. Recently, several methods for observing 3-D cell-extracellular matrix (ECM) interactions have been reported, lacking solid and quantitative analysis on the dynamics of the physical interaction between the cell and the ECM. We measured the submicron displacements of ECM deformation in 3-D due to protrusion-retraction dynamics during cell migration, using second-harmonic generation without labeling the matrix structures. We then quantitatively analyzed the mechanical deformation between the ECM and the cells based on spatiotemporal volumetric correlations. The greatest deformations within the collagen matrix were found to occur at sites of colocalization of the FA site-related proteins vinculin and actin, which confirms that FA sites play a critical role in living cells within the ECM as a point for adhesion, traction, and migration. We believe that this modality can be used in studies of cell-ECM interaction during angiogenesis, wound healing, and metastasis.
Collapse
Affiliation(s)
- Yong Guk Kang
- Korea University, Department of Bio-convergence Engineering, Seoul, Republic of Korea
| | - Hwanseok Jang
- Korea University Medical Center, Department of Biomedical Science, College of Medicine, Seoul, Republic of Korea
| | - Taeseok Daniel Yang
- Korea University, Department of Bio-convergence Engineering, Seoul, Republic of Korea
| | - Jacob Notbohm
- University of Wisconsin-Madison, Department of Engineering Physics, Madison, Wisconsin, United States
| | - Youngwoon Choi
- Korea University, Department of Bio-convergence Engineering, Seoul, Republic of Korea
| | - Yongdoo Park
- Korea University Medical Center, Department of Biomedical Science, College of Medicine, Seoul, Republic of Korea
| | - Beop-Min Kim
- Korea University, Department of Bio-convergence Engineering, Seoul, Republic of Korea
| |
Collapse
|
49
|
Hatami-Marbini H. Simulation of the mechanical behavior of random fiber networks with different microstructure. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2018; 41:65. [PMID: 29796730 DOI: 10.1140/epje/i2018-11673-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 04/27/2018] [Indexed: 06/08/2023]
Abstract
Filamentous protein networks are broadly encountered in biological systems such as cytoskeleton and extracellular matrix. Many numerical studies have been conducted to better understand the fundamental mechanisms behind the striking mechanical properties of these networks. In most of these previous numerical models, the Mikado algorithm has been used to represent the network microstructure. Here, a different algorithm is used to create random fiber networks in order to investigate possible roles of architecture on the elastic behavior of filamentous networks. In particular, random fibrous structures are generated from the growth of individual fibers from random nucleation points. We use computer simulations to determine the mechanical behavior of these networks in terms of their model parameters. The findings are presented and discussed along with the response of Mikado fiber networks. We demonstrate that these alternative networks and Mikado networks show a qualitatively similar response. Nevertheless, the overall elasticity of Mikado networks is stiffer compared to that of the networks created using the alternative algorithm. We describe the effective elasticity of both network types as a function of their line density and of the material properties of the filaments. We also characterize the ratio of bending and axial energy and discuss the behavior of these networks in terms of their fiber density distribution and coordination number.
Collapse
Affiliation(s)
- H Hatami-Marbini
- Department of Mechanical & Industrial Engineering, University of Illinois at Chicago, 60607, Chicago, IL, USA.
| |
Collapse
|
50
|
Nöding H, Schön M, Reinermann C, Dörrer N, Kürschner A, Geil B, Mey I, Heussinger C, Janshoff A, Steinem C. Rheology of Membrane-Attached Minimal Actin Cortices. J Phys Chem B 2018; 122:4537-4545. [DOI: 10.1021/acs.jpcb.7b11491] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Helen Nöding
- Institut für Physikalische Chemie, Georg August Universität Göttingen, Tammannstr. 6, 37077 Göttingen, Germany
| | - Markus Schön
- Institut für Organische und Biomolekulare Chemie, Georg August Universität Göttingen, Tammannstr. 2, 37077 Göttingen, Germany
| | - Corinna Reinermann
- Institut für Organische und Biomolekulare Chemie, Georg August Universität Göttingen, Tammannstr. 2, 37077 Göttingen, Germany
| | - Nils Dörrer
- Institut für Physikalische Chemie, Georg August Universität Göttingen, Tammannstr. 6, 37077 Göttingen, Germany
| | - Aileen Kürschner
- Institut für Organische und Biomolekulare Chemie, Georg August Universität Göttingen, Tammannstr. 2, 37077 Göttingen, Germany
| | - Burkhard Geil
- Institut für Physikalische Chemie, Georg August Universität Göttingen, Tammannstr. 6, 37077 Göttingen, Germany
| | - Ingo Mey
- Institut für Organische und Biomolekulare Chemie, Georg August Universität Göttingen, Tammannstr. 2, 37077 Göttingen, Germany
| | - Claus Heussinger
- Institut für Theoretische Physik, Georg August Universität Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - Andreas Janshoff
- Institut für Physikalische Chemie, Georg August Universität Göttingen, Tammannstr. 6, 37077 Göttingen, Germany
| | - Claudia Steinem
- Institut für Organische und Biomolekulare Chemie, Georg August Universität Göttingen, Tammannstr. 2, 37077 Göttingen, Germany
- Max-Planck Institute for Dynamics and Self-Organization, Am Faßberg 17, 37077 Göttingen, Germany
| |
Collapse
|