1
|
Ji Z, Suo D, Jin J, Liu X, Wang Y, Funahashi S, Li W, Yan T. Numerical investigation of acoustic cavitation characteristics of a single gas-vapor bubble in soft tissue under dual-frequency ultrasound. ULTRASONICS SONOCHEMISTRY 2024; 111:107061. [PMID: 39316938 PMCID: PMC11462371 DOI: 10.1016/j.ultsonch.2024.107061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/20/2024] [Accepted: 09/06/2024] [Indexed: 09/26/2024]
Abstract
The viscoelastic tissue under dual-frequency ultrasound excitation affects the acoustic cavitation of a single gas-vapor bubble. To investigate the effect of the cavitation dynamics, the Gilmore-Akulichev-Zener (GAZ) model is coupled with the Peng-Robinson equation of state (PR EOS). Results indicate that the GAZ-PR EOS model can accurately estimate the bubble dynamics by comparing with the Gilmore PR EOS and GAZ-Van der Waals (VDW) EOS model. Furthermore, the acoustic cavitation effect in different viscoelastic tissues is investigated, including the radial stress at the bubble wall, the temperature, pressure, and the number of water molecules inside the bubble. Results show that the creep recovery and the relaxation of the stress caused by viscoelasticity can affect the acoustic cavitation of the bubble, which could inhibit the bubble's expansion and reduce the internal temperature and pressure within the bubble. Moreover, the effect of dual-frequency ultrasound on the cavitation of single gas-vapor bubbles is studied. Results suggest that dual-frequency ultrasound could increase the internal temperature of bubbles, the internal pressure of bubbles, and the radial stress at the bubble wall. More importantly, there is a specific optimal combination of frequencies for particular viscoelasticity by exploring the impact of different dual-frequency ultrasound combinations and tissue viscoelasticity on the acoustic cavitation of a single gas-vapor bubble. In conclusion, this study helps to provide theoretical guidance for dual-frequency ultrasound to improve acoustic chemical and mechanical effects, and further optimize its application in acoustic sonochemistry and ultrasound therapy.
Collapse
Affiliation(s)
- Zhenxiang Ji
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China
| | - Dingjie Suo
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Jie Jin
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Xinze Liu
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Ye Wang
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Shintaro Funahashi
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China
| | - Wei Li
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Tianyi Yan
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China.
| |
Collapse
|
2
|
Qin D, Lei S, Chen B, Li Z, Wang W, Ji X. Numerical investigation on acoustic cavitation characteristics of an air-vapor bubble: Effect of equation of state for interior gases. ULTRASONICS SONOCHEMISTRY 2023; 97:106456. [PMID: 37271030 DOI: 10.1016/j.ultsonch.2023.106456] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/13/2023] [Accepted: 05/24/2023] [Indexed: 06/06/2023]
Abstract
The cavitation dynamics of an air-vapor mixture bubble with ultrasonic excitation can be greatly affected by the equation of state (EOS) for the interior gases. To simulate the cavitation dynamics, the Gilmore-Akulichev equation was coupled with the Peng-Robinson (PR) EOS or the Van der Waals (vdW) EOS. In this study, the thermodynamic properties of air and water vapor predicted by the PR and vdW EOS were first compared, and the results showed that the PR EOS gives a more accurate estimation of the gases within the bubble due to the less deviation from the experimental values. Moreover, the acoustic cavitation characteristics predicted by the Gilmore-PR model were compared to the Gilmore-vdW model, including the bubble collapse strength, the temperature, pressure and number of water molecules within the bubble. The results indicated that a stronger bubble collapse was predicted by the Gilmore-PR model rather than the Gilmore-vdW model, with higher temperature and pressure, as well as more water molecules within the collapsing bubble. More importantly, it was found that the differences between both models increase at higher ultrasound amplitudes or lower ultrasound frequencies while decreasing as the initial bubble radius and the liquid parameters (e.g., surface tension, viscosity and temperature of the surrounding liquid) increase. This study might offer important insights into the effects of the EOS for interior gases on the cavitation bubble dynamics and the resultant acoustic cavitation-associated effects, contributing to further optimization of its applications in sonochemistry and biomedicine.
Collapse
Affiliation(s)
- Dui Qin
- Department of Biomedical Engineering, School of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing, People's Republic of China; Postdoctoral Workstation of Chongqing General Hospital, Chongqing, People's Republic of China.
| | - Shuang Lei
- Department of Biomedical Engineering, School of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing, People's Republic of China
| | - Bo Chen
- Department of Biomedical Engineering, School of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing, People's Republic of China
| | - Zhangyong Li
- Department of Biomedical Engineering, School of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing, People's Republic of China
| | - Wei Wang
- Department of Biomedical Engineering, School of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing, People's Republic of China.
| | - Xiaojuan Ji
- Postdoctoral Workstation of Chongqing General Hospital, Chongqing, People's Republic of China; Department of Ultrasound, Chongqing General Hospital, Chongqing, People's Republic of China.
| |
Collapse
|
3
|
Dehane A, Merouani S, Hamdaoui O. Theoretical investigation of the effect of ambient pressure on bubble sonochemistry: Special focus on hydrogen and reactive radicals production. Chem Phys 2021. [DOI: 10.1016/j.chemphys.2021.111171] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
4
|
Dehane A, Merouani S, Hamdaoui O, Alghyamah A. A comprehensive numerical analysis of heat and mass transfer phenomenons during cavitation sono-process. ULTRASONICS SONOCHEMISTRY 2021; 73:105498. [PMID: 33706197 PMCID: PMC7944103 DOI: 10.1016/j.ultsonch.2021.105498] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 02/05/2021] [Accepted: 02/15/2021] [Indexed: 05/24/2023]
Abstract
The present study treats the effects of mass transport, heat transfer and chemical reactions heat on the bubble dynamics by spanning a range of ambient bubble radii. The thermodynamic behavior of the acoustic bubble was shown for three wave frequencies, 355, 515 and 1000 kHz. The used acoustic amplitude ranges from 1 to 3 atm. It has been demonstrated that the ambient bubble radius, R0, of the maximal response (i.e., maximal bubble temperature and pressure, Tmax and Pmax) is shifted toward lower values if the acoustic amplitude (at fixed frequency) or the ultrasonic frequency (at fixed amplitude) are increased. The range of the ambient bubble radius narrows as the ultrasonic frequency increases. Heat exchange at the bubble interface was found to be the most important mechanism within the bubble internal energy balance for acoustic amplitudes lower than 2.5 and 3 atm for ultrasonic frequencies of 355 and 515 kHz, respectively. For acoustic amplitudes greater or equal to 2.5 and 3 atm, corresponding to 355 and 515 kHz, respectively, mass transport mechanism (i.e., evaporation and condensation of water vapor) becomes dominant compared to the other mechanisms. At 1000 kHz, the mechanism of heat transfer persists to be dominant for all the used acoustic amplitudes (from 1 to 3 atm). Practically, all the above observations were maintained for bubbles at and around the optimum bubble radius, whereas no significant impact of the three energetic mechanisms was observed for bubbles of too lower and too higher values of R0 (limits of the investigated ranges of R0).
Collapse
Affiliation(s)
- Aissa Dehane
- Laboratory of Environmental Engineering, Department of Process Engineering, Faculty of Engineering, Badji Mokhtar - Annaba University, P.O. Box 12, 23000 Annaba, Algeria
| | - Slimane Merouani
- Laboratory of Environmental Process Engineering, Department of Chemical Engineering, Faculty of Process Engineering, University Salah Boubnider-Constantine 3, P.O. Box 72, 25000 Constantine, Algeria.
| | - Oualid Hamdaoui
- Chemical Engineering Department, College of Engineering, King Saud University, P.O. Box 800, 11421 Riyadh, Saudi Arabia.
| | - Abdulaziz Alghyamah
- Chemical Engineering Department, College of Engineering, King Saud University, P.O. Box 800, 11421 Riyadh, Saudi Arabia
| |
Collapse
|
5
|
Dehane A, Merouani S, Hamdaoui O, Alghyamah A. Insight into the impact of excluding mass transport, heat exchange and chemical reactions heat on the sonochemical bubble yield: Bubble size-dependency. ULTRASONICS SONOCHEMISTRY 2021; 73:105511. [PMID: 33812247 PMCID: PMC8044704 DOI: 10.1016/j.ultsonch.2021.105511] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/14/2021] [Accepted: 03/03/2021] [Indexed: 05/24/2023]
Abstract
Numerical simulations have been performed on a range of ambient bubble radii, in order to reveal the effect of mass transport, heat exchange and chemical reactions heat on the chemical bubble yield of single acoustic bubble. The results of each of these energy mechanisms were compared to the normal model in which all these processes (mass transport, thermal conduction, and reactions heat) are taken into account. This theoretical work was carried out for various frequencies (f: 200, 355, 515 and 1000 kHz) and different acoustic amplitudes (PA: 1.5, 2 and 3 atm). The effect of thermal conduction was found to be of a great importance within the bubble internal energy balance, where the higher rates of production (for all acoustic amplitudes and wave frequencies) are observed for this model (without heat exchange). Similarly, the ignorance of the chemical reactions heat (model without reactions heat) shows the weight of this process into the bubble internal energy, where the yield of the main species (OH, H, O and H2) for this model was accelerated notably compared to the complete model for the acoustic amplitudes greater than 1.5 atm (for f = 500 kHz). However, the lowest production rates were registered for the model without mass transport compared to the normal model, for the acoustic amplitudes greater than 1.5 atm (f = 500 kHz). This is observed even when the temperature inside bubble for this model is greater than those retrieved for the other models. On the other hand, it has been shown that, at the acoustic amplitude of 1.5 atm, the maximal production rates of the main species (OH, H, O and H2) for all the adopted models appear at the same optimum ambient-bubble size (R0 ~ 3, 2.5 and 2 µm for, respectively, 355, 500 and 1000 kHz). For PA = 2 and 3 atm (f = 500 kHz), the range of the maximal yield of OH radicals is observed at the range of R0 where the production of OH, O and H2 is the lowest, which corresponds to the bubble temperature at around 5500 K. The maximal production rate of H, O and H2 is shifted toward the range of ambient bubble radii corresponding to the bubble temperatures greater than 5500 K. The ambient bubble radius of the maximal response (maximal production rate) is shifted toward the smaller bubble sizes when the acoustic amplitude (wave frequency is fixed) or the ultrasound frequency (acoustic power is fixed) is increased. In addition, it is observed that the increase of wave frequency or the acoustic amplitude decrease cause the range of active bubbles to be narrowed (scenario observation for the four investigated models).
Collapse
Affiliation(s)
- Aissa Dehane
- Laboratory of Environmental Engineering, Department of Process Engineering, Faculty of Engineering, Badji Mokhtar - Annaba University, P.O. Box 12, 23000 Annaba, Algeria
| | - Slimane Merouani
- Laboratory of Environmental Process Engineering, Department of Chemical Engineering, Faculty of Process Engineering, University Salah Boubnider-Constantine 3, P.O. Box 72, 25000 Constantine, Algeria.
| | - Oualid Hamdaoui
- Chemical Engineering Department, College of Engineering, King Saud University, P.O. Box 800, 11421 Riyadh, Saudi Arabia
| | - Abdulaziz Alghyamah
- Chemical Engineering Department, College of Engineering, King Saud University, P.O. Box 800, 11421 Riyadh, Saudi Arabia
| |
Collapse
|
6
|
Pahk KJ, de Andrade MO, Gélat P, Kim H, Saffari N. Mechanical damage induced by the appearance of rectified bubble growth in a viscoelastic medium during boiling histotripsy exposure. ULTRASONICS SONOCHEMISTRY 2019; 53:164-177. [PMID: 30686603 DOI: 10.1016/j.ultsonch.2019.01.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 12/23/2018] [Accepted: 01/02/2019] [Indexed: 05/13/2023]
Abstract
In boiling histotripsy, the presence of a boiling vapour bubble and understanding of its dynamic behaviour are crucially important for the initiation of the tissue fractionation process and for the control of the size of a lesion produced. Whilst many in vivo studies have shown the feasibility of using boiling histotripsy in mechanical fractionation of solid tumours, not much is known about the evolution of a boiling vapour bubble in soft tissue induced by boiling histotripsy. The main objective of this present study is therefore to investigate the formation and dynamic behaviour of a boiling vapour bubble which occurs under boiling histotripsy insonation. Numerical and experimental studies on the bubble dynamics induced in optically transparent tissue-mimicking gel phantoms exposed to the field of a 2.0 MHz High Intensity Focused Ultrasound (HIFU) transducer were performed with a high speed camera. The Gilmore-Zener bubble model coupled with the Khokhlov-Zabolotskaya-Kuznetsov and the Bio-heat Transfer equations was used to simulate bubble dynamics driven by boiling histotripsy waveforms (nonlinear-shocked wave excitation) in a viscoelastic medium as functions of surrounding temperature and of tissue elasticity variations. In vivo animal experiments were also conducted to examine cellular structures around a freshly created lesion in the liver resulting from boiling histotripsy. To the best of our knowledge, this is the first study reporting the numerical and experimental evidence of the appearance of rectified bubble growth in a viscoelastic medium. Accounting for tissue phantom elasticity adds a mechanical constraint on vapour bubble growth, which improves the agreement between the simulation and the experimental results. In addition the numerical calculations showed that the asymmetry in a shockwave and water vapour transport can result in rectified bubble growth which could be responsible for HIFU-induced tissue decellularisation. Strain on liver tissue induced by this radial motion can damage liver tissue while preserving blood vessels.
Collapse
Affiliation(s)
- Ki Joo Pahk
- Center for Bionics, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea.
| | | | - Pierre Gélat
- Department of Mechanical Engineering, University College Londo, London WC1E 7JE, UK.
| | - Hyungmin Kim
- Center for Bionics, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea.
| | - Nader Saffari
- Department of Mechanical Engineering, University College Londo, London WC1E 7JE, UK.
| |
Collapse
|
7
|
Pahk KJ, Gélat P, Kim H, Saffari N. Bubble dynamics in boiling histotripsy. ULTRASOUND IN MEDICINE & BIOLOGY 2018; 44:2673-2696. [PMID: 30228043 DOI: 10.1016/j.ultrasmedbio.2018.07.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 07/13/2018] [Accepted: 07/24/2018] [Indexed: 05/24/2023]
Abstract
Boiling histotripsy is a non-invasive, cavitation-based ultrasonic technique which uses a number of millisecond pulses to mechanically fractionate tissue. Though a number of studies have demonstrated the efficacy of boiling histotripsy for fractionation of solid tumours, treatment monitoring by cavitation measurement is not well studied because of the limited understanding of the dynamics of bubbles induced by boiling histotripsy. The main objectives of this work are to (a) extract qualitative and quantitative features of bubbles excited by shockwaves and (b) distinguish between the different types of cavitation activity for either a thermally or a mechanically induced lesion in the liver. A numerical bubble model based on the Gilmore equation accounting for heat and mass transfer (gas and water vapour) was developed to investigate the dynamics of a single bubble in tissue exposed to different High Intensity Focused Ultrasound fields as a function of temperature variation in the fluid. Furthermore, ex vivo liver experiments were performed with a passive cavitation detection system to obtain acoustic emissions. The numerical simulations showed that the asymmetry in a shockwave and water vapour transport are the key parameters which lead the bubble to undergo rectified growth at a boiling temperature of 100°C. The onset of rectified radial bubble motion manifested itself as (a) an increase in the radiated pressure and (b) the sudden appearance of higher order multiple harmonics in the corresponding spectrogram. Examining the frequency spectra produced by the thermal ablation and the boiling histotripsy exposures, it was observed that higher order multiple harmonics as well as higher levels of broadband emissions occurred during the boiling histotripsy insonation. These unique features in the emitted acoustic signals were consistent with the experimental measurements. These features can, therefore, be used to monitor (a) the different types of acoustic cavitation activity for either a thermal ablation or a mechanical fractionation process and (b) the onset of the formation of a boiling bubble at the focus in the course of HIFU exposure.
Collapse
Affiliation(s)
- Ki Joo Pahk
- Center for Bionics, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Pierre Gélat
- Department of Mechanical Engineering, University College London, London, WC1E 7JE, UK
| | - Hyungmin Kim
- Center for Bionics, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Nader Saffari
- Department of Mechanical Engineering, University College London, London, WC1E 7JE, UK.
| |
Collapse
|
8
|
Mettin R, Cairós C, Troia A. Sonochemistry and bubble dynamics. ULTRASONICS SONOCHEMISTRY 2015; 25:24-30. [PMID: 25194210 DOI: 10.1016/j.ultsonch.2014.08.015] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 08/13/2014] [Indexed: 06/03/2023]
Abstract
The details of bubble behaviour in chemically active cavitation are still not sufficiently well understood. Here we report on experimental high-speed observations of acoustically driven single-bubble and few-bubble systems with the aim of clarification of the connection of their dynamics with chemical activity. Our experiment realises the sonochemical isomerization reaction of maleic acid to fumaric acid, mediated by bromine radicals, in a bubble trap set-up. The main result is that the reaction product can only be observed in a parameter regime where a small bubble cluster occurs, while a single trapped bubble stays passive. Evaluations of individual bubble dynamics for both cases are given in form of radius-time data and numerical fits to a bubble model. A conclusion is that a sufficiently strong collapse has to be accompanied by non-spherical bubble dynamics for the reaction to occur, and that the reason appears to be an efficient mixing of liquid and gas phase. This finding corroborates previous observations and literature reports on high liquid phase sonochemical activity under distinct parameter conditions than strong sonoluminescence emissions.
Collapse
Affiliation(s)
- Robert Mettin
- Christian Doppler Laboratory for Cavitation and Micro-Erosion, Drittes Physikalisches Institut, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - Carlos Cairós
- Christian Doppler Laboratory for Cavitation and Micro-Erosion, Drittes Physikalisches Institut, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - Adriano Troia
- Italian National Institute of Metrology INRIM, Strada delle Cacce 91, 10135 Turin, Italy
| |
Collapse
|
9
|
Holzfuss J. Chemical oscillations of air-seeded bubbles in water driven by ultrasound. Phys Rev E 2008; 78:025303. [PMID: 18850888 DOI: 10.1103/physreve.78.025303] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2007] [Indexed: 11/07/2022]
Abstract
Chemical oscillations are shown to be responsible for very low frequency modulations of a bubble oscillating nonlinearly in a high intensity ultrasound field. In the parameter space of incomplete dissociation near the onset of sonoluminescence a small bubble is shown to grow on a long time scale by the intake of dissolved air. Bubble collapses get hotter and more dense, noninert gases are dissociated and removed, and a small growing argon bubble is left behind continuing the circle.
Collapse
Affiliation(s)
- Joachim Holzfuss
- Institut für Angewandte Physik, TU Darmstadt, Schlossgartenstrasse 7, 64289 Darmstadt, Germany
| |
Collapse
|
10
|
Holzfuss J. Surface-wave instabilities, period doubling, and an approximate universal boundary of bubble stability at the upper threshold of sonoluminescence. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2008; 77:066309. [PMID: 18643373 DOI: 10.1103/physreve.77.066309] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2007] [Revised: 04/18/2008] [Indexed: 05/26/2023]
Abstract
Numerical results are presented for hydrodynamic instabilities surrounding the parameter space of sonoluminescing bubbles. The Rayleigh-Taylor instability is shown to limit bubble oscillations only in a small region near a border at small radii in noisy environments. Also, two different noise-induced instabilities by secondary collapses are identified. The reason for period-doubled, anisotropic emission is found to be the coupling of radial and surface oscillations. Furthermore, an approximate universal border is shown to exist above which the bubble is destroyed by the parametric instability. The results are compared to experimental results from several publications using different experimental setups.
Collapse
Affiliation(s)
- Joachim Holzfuss
- Institut für Angewandte Physik, TU Darmstadt, Schlossgartenstrasse 7, 64289 Darmstadt, Germany
| |
Collapse
|
11
|
Holzfuss J, Levinsen MT. Stability of a sonoluminescing nitrogen bubble in chilled water. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2008; 77:046304. [PMID: 18517729 DOI: 10.1103/physreve.77.046304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2007] [Revised: 02/05/2008] [Indexed: 05/26/2023]
Abstract
Bubbles are levitated in a resonator driven by an ultrasound wave. Their highly nonlinear oscillations feature a strong collapse, where fluidlike densities and temperatures of several thousand degrees Kelvin are reached, resulting in the emission of ultrashort light pulses. Previous experiments and theories explained the observed stable bubble dynamic and emission on long time scales with the requirement of a noble gas. Recent experiments reveal stable sonoluminescent emission of nitrogen bubbles in chilled water without the presence of a noble gas. Numerical calculations show that a diffusive and dissociative equilibrium can be reached when the temperature within a nitrogen bubble is limited due to the presence of water vapor. Calculated stability lines agree with published experimental results. The results show that noble-gas-free stable single bubble sonoluminescence of nitrogen bubbles is possible.
Collapse
Affiliation(s)
- Joachim Holzfuss
- Institut für Angewandte Physik, TU Darmstadt, Schlossgartenstrasse 7, 64289 Darmstadt, Germany
| | | |
Collapse
|
12
|
Dam JS, Levinsen MT. Second mode of recycling together with period doubling links single-bubble and multibubble sonoluminescence. PHYSICAL REVIEW LETTERS 2005; 94:174301. [PMID: 15904298 DOI: 10.1103/physrevlett.94.174301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2004] [Revised: 12/23/2004] [Indexed: 05/02/2023]
Abstract
We report the existence of a second type of recycling mode that occurs for air-seeded bubbles. Observation of period doubling in both the stable, the first type, and the second type of recycling mode, together with simultaneous measurement of the relative phase of light emission compared to the drive, shows that the instability boundaries of period doubling and bubble extinction are mainly determined by the bubble size irregardless of the gas composition. The second type mode seems to represent a link between single-bubble and multibubble sonoluminescence.
Collapse
Affiliation(s)
- Jeppe Seidelin Dam
- Complexity Lab, Niels Bohr Institute, Blegdamsvej 17, DK-2100 Copenhagen Ø, Denmark
| | | |
Collapse
|