1
|
Geng Y, Cao Y, Zhao Q, Li Y, Tian S. Potential hazards associated with interactions between diesel exhaust particulate matter and pulmonary surfactant. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:151031. [PMID: 34666082 DOI: 10.1016/j.scitotenv.2021.151031] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/10/2021] [Accepted: 10/13/2021] [Indexed: 06/13/2023]
Abstract
Long term exposure to diesel exhaust particulate matter (DEPM) can induce numerous adverse health effects to the respiratory system. Understanding the interaction between DEPM and pulmonary surfactant (PS) can be an essential step toward preliminary evaluation of the impact of DEPM on pulmonary health. Herein, DEPM was explored for its interaction with 1,2-dipalmitoyl-sn-glycerol-3-phosphocholine (DPPC), the major component of PS. The results indicated that the surface pressure-area (π-A) isotherms of DPPC monolayers shifted toward lower molecular areas and the compression modulus (CS-1) reduced in the presence of DEPM. Atomic force microscopy image showed that DEPM can disrupt the ultrastructure of DPPC monolayers along with the direction of lateral compression. In addition, DPPC can in turn condition the surface properties of DEPM, permitting its agglomeration in aqueous media, which was attributed to the adsorption of DEPM to DPPC. Furthermore, the particle-bound polycyclic aromatic hydrocarbons (PAHs) could be desorbed from DEPM by the solubilization of DPPC and it was positively correlated with the hydrophobicity of PAHs. These findings revealed the toxicity of DEPM-associated PAHs and the role of DPPC in facilitating the removal of the inhaled particles, which can provide a new insight into the potential hazards of airborne particles on lung health.
Collapse
Affiliation(s)
- Yingxue Geng
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China; Faculty of Civil and Hydraulic Engineering, Xichang University, Xichang, Sichuan 615013, China
| | - Yan Cao
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Qun Zhao
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China.
| | - Yingjie Li
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Senlin Tian
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China.
| |
Collapse
|
2
|
Hoesl MAU, Kleimaier D, Hu R, Malzacher M, Nies C, Gottwald E, Schad LR. 23 Na Triple-quantum signal of in vitro human liver cells, liposomes, and nanoparticles: Cell viability assessment vs. separation of intra- and extracellular signal. J Magn Reson Imaging 2019; 50:435-444. [PMID: 30681221 DOI: 10.1002/jmri.26666] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 01/10/2019] [Accepted: 01/10/2019] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Triple-quantum (TQ) filtered sequences have become more popular in sodium MR due to the increased usage of scanners with field strengths exceeding 3T. Disagreement as to whether TQ signal can provide separation of intra- and extracellular compartments persists. PURPOSE To provide insight into TQ signal behavior on a cellular level. STUDY TYPE Prospective. PHANTOM/SPECIMEN Cell-phantoms in the form of liposomes, encapsulated 0 mM, 145 mM, 154 mM Na+ in a double-lipid membrane similar to cells. Poly(lactic-co-glycolic acid) nanoparticles encapsulated 154 mM Na+ within a single-layer membrane structure. Two microcavity chips with each 6 × 106 human HEP G2 liver cells were measured in an MR-compatible bioreactor. FIELD STRENGTH/SEQUENCE Spectroscopic TQ sequence with time proportional phase-increments at 9.4T. ASSESSMENT The TQ signal of viable, dead cells, and cell-phantoms was assessed by a fit in the time domain and by the amplitude in the frequency domain. STATISTICAL TESTS The noise variance (σ) was evaluated to express the deviation of the measured TQ signal amplitude from noise. RESULTS TQ signal >20σ was found for liposomes encapsulating sodium ions. Liposomal encapsulation of 0 mM Na+ and 154 mM Na+ encapsulation in the nanoparticles resulted in <2σ TQ signal. Cells under normal perfusion resulted in >9σ TQ signal. Compared with TQ signal under normal perfusion, a 56% lower TQ signal of was observed (25σ) during perfusion stop. TQ signal returned to 92% of the initial signal after reperfusion. DATA CONCLUSION Our measurements indicate that TQ signal in liposomes was observed due to the trapping of ions within the double-lipid membrane rather than from the intraliposomal space. Transfer to the cell results suggests that TQ signal was observed from motion restriction equivalent to trapping. LEVEL OF EVIDENCE 1 Technical Efficacy: Stage 3 J. Magn. Reson. Imaging 2019;50:435-444.
Collapse
Affiliation(s)
- Michaela A U Hoesl
- Computer Assisted Clinical Medicine, Heidelberg University, Mannheim, Germany
| | - Dennis Kleimaier
- Computer Assisted Clinical Medicine, Heidelberg University, Mannheim, Germany
| | - Ruomin Hu
- Computer Assisted Clinical Medicine, Heidelberg University, Mannheim, Germany
| | - Matthias Malzacher
- Computer Assisted Clinical Medicine, Heidelberg University, Mannheim, Germany
| | - Cordula Nies
- Institute of Functional Interfaces, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Eric Gottwald
- Institute of Functional Interfaces, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Lothar R Schad
- Computer Assisted Clinical Medicine, Heidelberg University, Mannheim, Germany
| |
Collapse
|
3
|
Ruiz-Rincón S, González-Orive A, de la Fuente JM, Cea P. Reversible Monolayer-Bilayer Transition in Supported Phospholipid LB Films under the Presence of Water: Morphological and Nanomechanical Behavior. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:7538-7547. [PMID: 28691823 DOI: 10.1021/acs.langmuir.7b01268] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Mixed monolayer Langmuir-Blodgett (LB) films of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and cholesterol (Chol) in the 1:1 ratio have been prepared onto solid mica substrates. Upon immersion in water or in an aqueous HEPES solution (pH 7.4) the monolayer LB films were spontaneously converted into well-organized bilayers leaving free mica areas. The process has been demonstrated to be reversible upon removal of the aqueous solution, resulting in remarkably free of defects monolayers that are homogeneously distributed onto the mica. In addition, the nanomechanical properties exhibited by the as-formed bilayers have been determined by means of AFM breakthrough force studies. The bilayers formed by immersion of the monolayer in an aqueous media exhibit nanomechanical properties and stability under compression analogous to those of DPPC:Chol supported bilayers obtained by other methods previously described in the literature. Consequently, the hydration of a monolayer LB film has been revealed as an easy method to produce well-ordered bilayers that mimic the cell membrane and that could be used as model cell membranes.
Collapse
Affiliation(s)
| | | | - Jesús M de la Fuente
- Instituto de Ciencia de Materiales de Aragón (ICMA), Universidad de Zaragoza-CSIC , 50009 Zaragoza, Spain
- Networking Biomedical Research Center of Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), Zaragoza, Spain
| | - Pilar Cea
- Departamento de Química Física, Facultad de Ciencias, Universidad de Zaragoza , 50009, Zaragoza, Spain
| |
Collapse
|
4
|
Abstract
CONTEXT The molecular bases of pore formation in the lipid bilayer remain unclear, as do the exact characteristics of their sizes and distributions. To understand this process, numerous studies have been performed on model lipid membranes including cell-sized giant unilamellar vesicles (GUV). The effect of an electric field on DPPC GUV depends on the lipid membrane state: in the liquid crystalline phase the created pores have a cylinder-like shape, whereas in the gel phase a crack has been observed. OBJECTIVE The aim of the study was to investigate the geometry of pores created in a lipid bilayer in gel and liquid crystalline phases in reference to literature experimental data. METHODS A mathematical model of the pore in a DPPC lipid bilayer developed based on the law of conservation of mass and the assumption of constant volume of lipid molecules, independent of their conformation, allows for analysis of pore shape and accompanying molecular rearrangements. RESULTS The membrane area occupied by the pore of a cylinder-like shape is greater than the membrane area occupied by lipid molecules creating the pore structure (before pore appearance). Creation of such pores requires more space, which can be achieved by conformational changes of lipid chains toward a more compact state. This process is impossible for a membrane in the most compact, gel phase. DISCUSSION AND CONCLUSIONS We show that the geometry of the pores formed in the lipid bilayer in the gel phase must be different from the cylinder shape formed in the lipid bilayer in a liquid crystalline state, confirming experimental studies. Furthermore, we characterize the occurrence of the 'buffer' zone surrounding pores in the liquid crystalline phase as a mechanism of separation of neighbouring pores.
Collapse
Affiliation(s)
- Artur Wrona
- a Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology , Wroclaw University of Science and Technology , Wroclaw , Poland
| | - Krystian Kubica
- a Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology , Wroclaw University of Science and Technology , Wroclaw , Poland
| |
Collapse
|
5
|
Kagawa R, Hirano Y, Taiji M, Yasuoka K, Yasui M. Dynamic interactions of cations, water and lipids and influence on membrane fluidity. J Memb Sci 2013. [DOI: 10.1016/j.memsci.2013.02.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
6
|
Ferber UM, Kaggwa G, Jarvis SP. Direct imaging of salt effects on lipid bilayer ordering at sub-molecular resolution. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2010; 40:329-38. [PMID: 21153636 DOI: 10.1007/s00249-010-0650-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Revised: 10/21/2010] [Accepted: 11/23/2010] [Indexed: 11/29/2022]
Abstract
The interactions of salts with lipid bilayers are known to alter the properties of membranes and therefore influence their structure and dynamics. Sodium and calcium cations penetrate deeply into the headgroup region and bind to the lipids, whereas potassium ions only loosely associate with lipid molecules and mostly remain outside of the headgroup region. We investigated a dipalmitoylphosphatidylcholine (DPPC) bilayer in the gel phase in the presence of all three cations with a concentration of Ca²+ ions an order of magnitude smaller than the Na+ and K+ ions. Our findings indicate that the area per unit cell does not significantly change in these three salt solutions. However the lipid molecules do re-order non-isotropically under the influence of the three different cations. We attribute this reordering to a change in the highly directional intermolecular interactions caused by a variation in the dipole-dipole bonding arising from a tilt of the headgroup out of the membrane plane. Measurements in different NaCl concentrations also show a non-isotropic re-ordering of the lipid molecules.
Collapse
Affiliation(s)
- Urs M Ferber
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | | | | |
Collapse
|
7
|
Henriques ST, Castanho MARB, Pattenden LK, Aguilar MI. Fast membrane association is a crucial factor in the peptide pep-1 translocation mechanism: a kinetic study followed by surface plasmon resonance. Biopolymers 2010; 94:314-22. [PMID: 20049920 DOI: 10.1002/bip.21367] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The use of peptide carriers, termed "cell-penetrating peptides (CPPs)" has attracted much attention due to their potential for cellular delivery of hydrophilic molecules with pharmacological interest, overcoming the membrane barrier. These peptides are able to deliver attached cargos in a nontoxic manner, with the uptake mechanisms being either endosomally or physically driven. Pep-1 is a CPP of particular interest, not only due to outstanding delivery rates but also because its mechanism of membrane translocation is exclusively physically driven which appears to be dependent on a very high affinity for the phospholipid bilayer in the cell membrane. In this study, pep-1-lipid interactions were further explored by characterization of the pep-1-lipid association/dissociation by surface plasmon resonance. Although a high affinity of pep-1 for lipid bilayers was observed in all conditions tested, negatively charged phospholipids resulted in a larger peptide/lipid ratio. We also show that pep-1-membrane interaction is a fast process described by a multistep model initiated by peptide adsorption, primarily governed by electrostatic attractions, and followed by peptide insertion in the hydrophobic membrane core. In the context of a cell-based process, the translocation of pep-1 is a physical mechanism promoted by peptide primary amphipathicity and asymmetric properties of the membrane. This explains the high efficiency rates of pep-1 when compared with other CPPs.
Collapse
Affiliation(s)
- Sónia Troeira Henriques
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal.
| | | | | | | |
Collapse
|
8
|
Franquelim HG, Veiga AS, Weissmüller G, Santos NC, Castanho MA. Unravelling the molecular basis of the selectivity of the HIV-1 fusion inhibitor sifuvirtide towards phosphatidylcholine-rich rigid membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1798:1234-43. [DOI: 10.1016/j.bbamem.2010.02.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2009] [Revised: 01/19/2010] [Accepted: 02/08/2010] [Indexed: 11/29/2022]
|
9
|
Filippov A, Orädd G, Lindblom G. Effect of NaCl and CaCl2 on the lateral diffusion of zwitterionic and anionic lipids in bilayers. Chem Phys Lipids 2009; 159:81-7. [DOI: 10.1016/j.chemphyslip.2009.03.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2008] [Revised: 02/05/2009] [Accepted: 03/26/2009] [Indexed: 11/28/2022]
|
10
|
Dyrka W, Augousti AT, Kotulska M. Ion flux through membrane channels--an enhanced algorithm for the Poisson-Nernst-Planck model. J Comput Chem 2008; 29:1876-88. [PMID: 18381632 DOI: 10.1002/jcc.20947] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
A novel algorithmic scheme for numerical solution of the 3D Poisson-Nernst-Planck model is proposed. The algorithmic improvements are universal and independent of the detailed physical model. They include three major steps: an adjustable gradient-based step value, an adjustable relaxation coefficient, and an optimized segmentation of the modeled space. The enhanced algorithm significantly accelerates the speed of computation and reduces the computational demands. The theoretical model was tested on a regular artificial channel and validated on a real protein channel-alpha-hemolysin, proving its efficiency.
Collapse
Affiliation(s)
- Witold Dyrka
- Institute of Biomedical Engineering and Instrumentation, Wroclaw University of Techology, 50-370 Wroclaw, Poland
| | | | | |
Collapse
|
11
|
|
12
|
Kubica K. A pore creation in a triangular network model membrane. Comput Biol Chem 2008; 32:163-6. [PMID: 18356110 DOI: 10.1016/j.compbiolchem.2008.02.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2007] [Accepted: 02/01/2008] [Indexed: 11/17/2022]
Abstract
Membrane electroporation seems to be a useful method for delivery of biological active compounds into the cell. Although it is known that this phenomenon is sensitive to the electric field intensity, duration of the electric pulse and its shape, it is not fully understood. In some theoretical descriptions it is postulated that a hydrophobic pore appears at an early stage of pore creation. Here we show how to construct a hydrophilic pore structure connecting two parallel triangular networks modeling lipid membrane. It would be useful in Monte Carlo simulation studies on electroporation. In our model the pore appearance requires only movement of one lipid molecule. At the same time the chains of the second lipid molecule should occupy two nodes, one in each network to compensate the differences in chain packing densities when electric field is applied. In consequence the hydrated polar head should be placed in a hydrophobic part of the membrane giving rise to the hydrophilic pore. We also discuss the relation between the pore diameter and its shape.
Collapse
Affiliation(s)
- Krystian Kubica
- Department of Biomedical Engineering and Instrumentation, Wrocław University of Technology, 50-370 Wrocław, Poland.
| |
Collapse
|
13
|
Denning EJ, Woolf TB. Chapter 14 Computational Models for Electrified Interfaces. CURRENT TOPICS IN MEMBRANES 2008. [DOI: 10.1016/s1063-5823(08)00014-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
14
|
Siow LF, Rades T, Lim MH. Characterizing the freezing behavior of liposomes as a tool to understand the cryopreservation procedures. Cryobiology 2007; 55:210-21. [PMID: 17905224 DOI: 10.1016/j.cryobiol.2007.08.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2007] [Revised: 05/14/2007] [Accepted: 08/06/2007] [Indexed: 10/22/2022]
Abstract
Freezing behaviors of egg yolk l-alpha-phosphatidylcholine (EPC) and 1,2-dipalmitoyl-rac-glycero-3-phosphocholine (DPPC) large unilamellar vesicles (LUV) were quantitatively characterized in relation to freezing temperatures, cooling rates, holding time, presence of sodium chloride and phospholipid phase transition temperature. Cooling of the EPC LUV showed an abrupt increase in leakage of the encapsulated carboxyfluorescein (CF) between -5 degrees C and -10 degrees C, which corresponded with the temperatures of the extraliposomal ice formation at around -7 degrees C. For the DPPC LUV, CF leakage started at -10 degrees C, close to the temperature of the extraliposomal ice formation; followed by a subsequent rapid increase in leakage between -10 degrees C and -25 degrees C. Scanning electron microscopy showed that both of these LUV were freeze-concentrated and aggregated at sub-freezing temperatures. We suggest that the formation of the extraliposomal ice and the decrease of the unfrozen fraction causes freeze-injury and leakage of the CF. The degree of leakage, however, differs between EPC LUV and DPPC LUV that inherently vary in their phospholipid phase transition temperatures. With increasing holding time, the EPC LUV were observed to have higher leakage when they were held at -15 degrees C compared to at -30 degrees C whilst leakage of the DPPC LUV was higher when holding at -40 degrees C than at -15 degrees C and -50 degrees C. At slow cooling rates, osmotic pressure across the bilayers may cause an additional stress to the EPC LUV. The present work elucidates freeze-injury mechanisms of the phospholipid bilayers through the liposomal model membranes.
Collapse
Affiliation(s)
- Lee Fong Siow
- Department of Food Science, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand
| | | | | |
Collapse
|
15
|
Kotulska M, Kubica K, Koronkiewicz S, Kalinowski S. Modeling the induction of lipid membrane electropermeabilization. Bioelectrochemistry 2007; 70:64-70. [PMID: 16731051 DOI: 10.1016/j.bioelechem.2006.03.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2005] [Indexed: 10/24/2022]
Abstract
Experiments show significant effects of an electric field on lipid membrane, leading to a pore formation when a high intensity field is applied. The phenomenon of electroporation is preceded by the induction and expansion of defects, responsible for the pre-pore excitation. We examine the mechanism of the induction of the field-driven defects by Monte Carlo simulations. The study is based on the improved Pink's model, which includes explicit interactions between the polar heads and energy of interactions between the heads and the field. No anomalous deformation of the molecules is considered. The study, provided for bilayer dipalmitoyl-phosphatidylcholine (DPPC) membrane in the gel (300 K) and fluid (330 K) phases, shows dependence of the membrane conformational and energetical state on the value of the electric field. We observe that the electric field affects the number of molecules in the gel and in the fluid states. In the layer at the negative potential, when the transmembrane voltage is above U(c) approximately 280 mV, lipid heads abruptly reorient and the number of local spots with fluid conformation increases. The other layer slightly tends to tighten its structure, producing additional mechanical stress between layers. Lipids showed complete insensitivity to the electric field within physiological limits, U<70 mV.
Collapse
Affiliation(s)
- Malgorzata Kotulska
- Department of Biomedical Engineering and Instrumentation, Wroclaw University of Technology, 50-370 Wroclaw, Poland.
| | | | | | | |
Collapse
|
16
|
Abstract
Until now a stable long-lived electronanopore could be generated in a lipid membrane only under current-clamp conditions, and stochastic properties of a single nanopore have been studied by the chronopotentiometry. The current-clamp experiment introduces negative feedback, which could be responsible for the electropore fluctuations and observed 1/fB power spectrum. A new electroporation method, chronoamperometry after current clamp (CACC), prevents irreversible rupture of the membrane and eliminates the feedback by clamping the voltage after previous electroporation. The experiments show that the electropore size can also be stabilized under constant potential. The electropore fluctuations do not need feedback to appear. The fluctuations are self-similar with a short memory. CACC provides an effective tool for studying the natural dynamics of an electropore in various environments, which was tested with Na+ and Al3+ ions. Comparison between chronopotentiometry and CACC reveals that the feedback mainly shortens the memory of the stochastic fluctuations. Statistical analysis shows that the conductance fluctuations can be approximately modeled as a fractional Lévy stable motion for a small hydrophilic electropore, which tends to fractional Brownian motion when the electropore increases its size. A hypothesis is presented that this transition reflects a more regular shape of big nanopores.
Collapse
Affiliation(s)
- Malgorzata Kotulska
- Department of Biomedical Engineering and Instrumentation, Wroclaw University of Technology, 50-370 Wroclaw, Poland.
| |
Collapse
|
17
|
Kalinowski S, Koronkiewicz S, Kotulska M, Kubica K. Simulation of electroporated cell by chronopotentiometry. Bioelectrochemistry 2006; 70:83-90. [PMID: 16720110 DOI: 10.1016/j.bioelechem.2006.03.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2005] [Indexed: 11/24/2022]
Abstract
Chronopotentiometry on planar lipid bilayer (BLM) is proposed as a method for modeling the electrical phenomena in electroporated cell. Two techniques are discussed: constant-current and linear-current chronopotentiometry. It is proposed that the constant-current chronopotentiometry may provide basis for modeling the electroporated cell shortly after the removal of the electric field, when activity of cellular pumps counteracts ionic fluxes through the electropore and ionic channels. The linear-current method can be considered for modeling the cell in the later stage after electroporation, when energetical resources of the cell are gradually getting exhausted and the activity of pumps decreases. Based on this idea, it may be postulated that the electropore in the cell has fluctuating dynamics whose stochastic characteristics, similarly as biological channels, shows 1/f noise. The model implies that the fluctuations would disappear leaving the electropore with a constant resistance when efficiency of the pumps becomes very small. The results of chronopotentiometry also may suggest that opening time, conductivity and selectivity of the electropore can be controlled by the cell environment or membrane composition.
Collapse
Affiliation(s)
- Slawomir Kalinowski
- University of Warmia and Mazury, Department of Chemistry, 10-957 Olsztyn, Poland
| | | | | | | |
Collapse
|