1
|
Gupta S, Yang X, Ceder G. What dictates soft clay-like lithium superionic conductor formation from rigid salts mixture. Nat Commun 2023; 14:6884. [PMID: 37898616 PMCID: PMC10613223 DOI: 10.1038/s41467-023-42538-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 10/11/2023] [Indexed: 10/30/2023] Open
Abstract
Soft clay-like Li-superionic conductors, integral to realizing all-solid-state batteries, have been recently synthesized by mixing rigid-salts. Here, through computational and experimental analysis, we clarify how a soft clay-like material can be created from a mixture of rigid-salts. Using molecular dynamics simulations with a deep learning-based interatomic potential energy model, we uncover the microscopic features responsible for soft clay-formation from ionic solid mixtures. We find that salt mixtures capable of forming molecular solid units on anion exchange, along with the slow kinetics of such reactions, are key to soft-clay formation. Molecular solid units serve as sites for shear transformation zones, and their inherent softness enables plasticity at low stress. Extended X-ray absorption fine structure spectroscopy confirms the formation of molecular solid units. A general strategy for creating soft clay-like materials from ionic solid mixtures is formulated.
Collapse
Affiliation(s)
- Sunny Gupta
- Department of Materials Science & Engineering, University of California Berkeley, Berkeley, CA, 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Xiaochen Yang
- Department of Materials Science & Engineering, University of California Berkeley, Berkeley, CA, 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Gerbrand Ceder
- Department of Materials Science & Engineering, University of California Berkeley, Berkeley, CA, 94720, USA.
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| |
Collapse
|
2
|
Song J, Holten-Andersen N, McKinley GH. Non-Maxwellian viscoelastic stress relaxations in soft matter. SOFT MATTER 2023; 19:7885-7906. [PMID: 37846782 DOI: 10.1039/d3sm00736g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
Viscoelastic stress relaxation is a basic characteristic of soft matter systems such as colloids, gels, and biological networks. Although the Maxwell model of linear viscoelasticity provides a classical description of stress relaxation, it is often not sufficient for capturing the complex relaxation dynamics of soft matter. In this Tutorial, we introduce and discuss the physics of non-Maxwellian linear stress relaxation as observed in soft materials, the ascribed origins of this effect in different systems, and appropriate models that can be used to capture this relaxation behavior. We provide a basic toolkit that can assist the understanding and modeling of the mechanical relaxation of soft materials for diverse applications.
Collapse
Affiliation(s)
- Jake Song
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
- Department of Mechanical Engineering, Stanford University, Stanford, CA 94305, USA.
| | - Niels Holten-Andersen
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Bioengineering, Lehigh University, Bethlehem, PA 18015, USA
- Department of Materials Science and Engineering, Lehigh University, Bethlehem, PA 18015, USA
| | - Gareth H McKinley
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
3
|
Wang H, Dmowski W, Tong Y, Wang Z, Yokoyama Y, Ketkaew J, Schroers J, Egami T. Nonaffine Strains Control Ductility of Metallic Glasses. PHYSICAL REVIEW LETTERS 2022; 128:155501. [PMID: 35499876 DOI: 10.1103/physrevlett.128.155501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 02/08/2022] [Accepted: 03/20/2022] [Indexed: 06/14/2023]
Abstract
The origin of limited plasticity in metallic glasses is elusive, with no apparent link to their atomic structure. We propose that the response of the glassy structure to applied stress, not the original structure itself, provides a gauge to predict the degree of plasticity. We carried out high-energy x-ray diffraction on various bulk metallic glasses (BMGs) under uniaxial compression within the elastic limit and evaluated the anisotropic pair distribution function. We show that the extent of local deviation from the affine (uniform) deformation in the elastic regime is strongly correlated with the plastic behavior of BMGs beyond yield, across chemical compositions and sample history. The results suggest that the propensity for collective local atomic rearrangements under stress promotes plasticity.
Collapse
Affiliation(s)
- Hui Wang
- Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996, USA
| | - Wojciech Dmowski
- Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996, USA
| | - Yang Tong
- Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996, USA
| | - Zengquan Wang
- Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996, USA
| | - Yoshihiko Yokoyama
- Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| | - Jittisa Ketkaew
- Department of Mechanical Engineering and Materials Science, Yale University, New Haven, Connecticut 06511, USA
| | - Jan Schroers
- Department of Mechanical Engineering and Materials Science, Yale University, New Haven, Connecticut 06511, USA
| | - Takeshi Egami
- Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996, USA
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
- Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996, USA
| |
Collapse
|
4
|
Abstract
Metallic glasses are known for their mechanical properties but lack plasticity. This could be prevented by combining them with other materials or by inducing a second phase to form a composite. These composites have enhanced thermo-physical properties. The review paper aims to outline a summary of the current research done on metallic glass and its composites. A background in the history, properties, and their applications is discussed. Recent developments in biocompatible metallic glass composites, fiber-reinforced metallic glass, ex situ and in situ, are discussed.
Collapse
|
5
|
Giannini JA, Richard D, Manning ML, Lerner E. Bond-space operator disentangles quasilocalized and phononic modes in structural glasses. Phys Rev E 2021; 104:044905. [PMID: 34781437 DOI: 10.1103/physreve.104.044905] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 09/20/2021] [Indexed: 11/07/2022]
Abstract
The origin of several emergent mechanical and dynamical properties of structural glasses is often attributed to populations of localized structural instabilities, coined quasilocalized modes (QLMs). Under a restricted set of circumstances, glassy QLMs can be revealed by analyzing computer glasses' vibrational spectra in the harmonic approximation. However, this analysis has limitations due to system-size effects and hybridization processes with low-energy phononic excitations (plane waves) that are omnipresent in elastic solids. Here we overcome these limitations by exploring the spectrum of a linear operator defined on the space of particle interactions (bonds) in a disordered material. We find that this bond-force-response operator offers a different interpretation of QLMs in glasses and cleanly recovers some of their important statistical and structural features. The analysis presented here reveals the dependence of the number density (per frequency) and spatial extent of QLMs on material preparation protocol (annealing). Finally, we discuss future research directions and possible extensions of this work.
Collapse
Affiliation(s)
- Julia A Giannini
- Department of Physics, Syracuse University, Syracuse, New York 13244, USA.,BioInspired Institute, Syracuse University, Syracuse, New York 13244, USA
| | - David Richard
- Department of Physics, Syracuse University, Syracuse, New York 13244, USA.,Institute for Theoretical Physics, University of Amsterdam, Science Park 904, Amsterdam, Netherlands
| | - M Lisa Manning
- Department of Physics, Syracuse University, Syracuse, New York 13244, USA.,BioInspired Institute, Syracuse University, Syracuse, New York 13244, USA
| | - Edan Lerner
- Institute for Theoretical Physics, University of Amsterdam, Science Park 904, Amsterdam, Netherlands
| |
Collapse
|
6
|
Abstract
Materials with random microstructure are characterized by additional thermodynamic parameters, entropy and temperature of microstructure. It has been argued that there is one more law of thermodynamics: entropy of microstructure decays in isolated systems. In this paper, we check this assertion experimentally for the process of grain growth. We show that entropy of grain structure decays indeed as expected. We study also the equation of state for microstructure entropy. In general, microstructure entropy should be a function of microstructure energy and the average grain size. We observed that the equation of state degenerates, and there is a universal dependence of microstructure entropy on microstructure energy, at least at the stage of self similar grain growth.
Collapse
|
7
|
Boffi NM, Rycroft CH. Coordinate transformation methodology for simulating quasistatic elastoplastic solids. Phys Rev E 2020; 101:053304. [PMID: 32575210 DOI: 10.1103/physreve.101.053304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 02/03/2020] [Indexed: 11/07/2022]
Abstract
Molecular dynamics simulations frequently employ periodic boundary conditions where the positions of the periodic images are manipulated in order to apply deformation to the material sample. For example, Lees-Edwards conditions use moving periodic images to apply simple shear. Here, we examine the problem of precisely comparing this type of simulation to continuum solid mechanics. We employ a hypoelastoplastic mechanical model, and develop a projection method to enforce quasistatic equilibrium. We introduce a simulation framework that uses a fixed Cartesian computational grid on a reference domain, and which imposes deformation via a time-dependent coordinate transformation to the physical domain. As a test case for our method, we consider the evolution of shear bands in a bulk metallic glass using the shear transformation zone theory of amorphous plasticity. We examine the growth of shear bands in simple shear and pure shear conditions as a function of the initial preparation of the bulk metallic glass.
Collapse
Affiliation(s)
- Nicholas M Boffi
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Chris H Rycroft
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA.,Computational Research Division, Lawrence Berkeley Laboratory, Berkeley, California 94720, USA
| |
Collapse
|
8
|
Langer JS. Brittle-ductile transitions in a metallic glass. Phys Rev E 2020; 101:063004. [PMID: 32688555 DOI: 10.1103/physreve.101.063004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 06/02/2020] [Indexed: 06/11/2023]
Abstract
Recent computational and laboratory experiments have shown that brittle-ductile transitions in the notch toughnesses of metallic glasses such as Vitreloy 1 are strongly sensitive to the initial effective disorder (or "fictive") temperature. Glasses with lower effective temperatures are weak and brittle; those with higher effective temperatures are strong and ductile. The analysis of this phenomenon presented here examines the onset of fracture at the tip of a notch as predicted by the shear-transformation-zone theory of spatially varying plastic deformation. The central ingredient of this analysis is an approximation for the dynamics of the plastic zone formed by stress concentration at the notch tip. This zone first shields the tip but then, with increasing stress, expands suddenly, producing a discontinuous transition between brittle and ductile failure in satisfactory agreement with the numerical and experimental observations.
Collapse
Affiliation(s)
- J S Langer
- Kavli Institute for Theoretical Physics, Kohn Hall, University of California, Santa Barbara, California 93106, USA
| |
Collapse
|
9
|
Bhowmik BP, Chaudhuri P, Karmakar S. Effect of Pinning on the Yielding Transition of Amorphous Solids. PHYSICAL REVIEW LETTERS 2019; 123:185501. [PMID: 31763889 DOI: 10.1103/physrevlett.123.185501] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Indexed: 06/10/2023]
Abstract
Using numerical simulations, we have studied the yielding response, in the athermal quasistatic limit, of a model amorphous material having inclusions in the form of randomly pinned particles. We show that, with increasing pinning concentration, the plastic activity becomes more spatially localized, resulting in smaller stress drops, and a corresponding increase in the magnitude of strain where yielding occurs. We demonstrate that, unlike the spatially heterogeneous and avalanche led yielding in the case of the unpinned glass, for the case of large pinning concentration, yielding takes place via a spatially homogeneous proliferation of localized events.
Collapse
Affiliation(s)
- Bhanu Prasad Bhowmik
- Tata Institute of Fundamental Research, 36/P, Gopanpally Village, Serilingampally Mandal, Ranga Reddy District, Hyderabad, 500107, Telangana, India
| | - Pinaki Chaudhuri
- Institute of Mathematical Sciences, IV Cross Road, CIT Campus, Taramani, Chennai, 600113, Tamil Nadu, India
| | - Smarajit Karmakar
- Tata Institute of Fundamental Research, 36/P, Gopanpally Village, Serilingampally Mandal, Ranga Reddy District, Hyderabad, 500107, Telangana, India
| |
Collapse
|
10
|
Potential energy landscape activations governing plastic flows in glass rheology. Proc Natl Acad Sci U S A 2019; 116:18790-18797. [PMID: 31484781 DOI: 10.1073/pnas.1907317116] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
While glasses are ubiquitous in natural and manufactured materials, the atomic-level mechanisms governing their deformation and how these mechanisms relate to rheological behavior are still open questions for fundamental understanding. Using atomistic simulations spanning nearly 10 orders of magnitude in the applied strain rate we probe the atomic rearrangements associated with 3 characteristic regimes of homogeneous and heterogeneous shear flow. In the low and high strain-rate limits, simulation results together with theoretical models reveal distinct scaling behavior in flow stress variation with strain rate, signifying a nonlinear coupling between thermally activated diffusion and stress-driven motion. Moreover, we find the emergence of flow heterogeneity is closely correlated with extreme values of local strain bursts that are not readily accommodated by immediate surroundings, acting as origins of shear localization. The atomistic mechanisms underlying the flow regimes are interpreted by analyzing a distance matrix of nonaffine particle displacements, yielding evidence of various barrier-hopping processes on a fractal potential energy landscape (PEL) in which shear transformations and liquid-like regions are triggered by the interplay of thermal and stress activations.
Collapse
|
11
|
Ivancic RJS, Riggleman RA. Identifying structural signatures of shear banding in model polymer nanopillars. SOFT MATTER 2019; 15:4548-4561. [PMID: 31119228 DOI: 10.1039/c8sm02423e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Amorphous solids are critical in the design and production of nanoscale devices, but under strong confinement these materials exhibit changes in their mechanical properties which are not well understood. Phenomenological models explain these properties by postulating an underlying defect structure in these materials but do not detail the microscopic properties of these defects. Using machine learning methods, we identify mesoscale defects that lead to shear banding in model polymer nanopillars well below the glass transition temperature as a function of pillar diameter. Our results show that the primary structural features responsible for shear banding on this scale are fluctuations in the diameter of the pillar. Surprisingly, these fluctuations are quite small compared to the diameter of the pillar, less than half of a particle diameter in size. At intermediate pillar diameters, we find that these fluctuations tend to concentrate along the minor axis of shear band planes. We also see the importance of mean "softness" as a classifier of shear banding grow as a function of pillar diameter. Softness is a new field that characterizes local structure and is highly correlated with particle-level dynamics such that softer particles are more likely to rearrange. This demonstrates that softness, a quantity that relates particle-level structure to dynamics on short time and length scales, can predict large time and length scale phenomena related to material failure.
Collapse
Affiliation(s)
- Robert J S Ivancic
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | |
Collapse
|
12
|
Shear-Transformation Zone Activation during Loading and Unloading in Nanoindentation of Metallic Glasses. MATERIALS 2019; 12:ma12091477. [PMID: 31067772 PMCID: PMC6540174 DOI: 10.3390/ma12091477] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 05/01/2019] [Accepted: 05/02/2019] [Indexed: 11/18/2022]
Abstract
Using molecular dynamics simulation, we study nanoindentation in large samples of Cu–Zr glass at various temperatures between zero and the glass transition temperature. We find that besides the elastic modulus, the yielding point also strongly (by around 50%) decreases with increasing temperature; this behavior is in qualitative agreement with predictions of the cooperative shear model. Shear-transformation zones (STZs) show up in increasing sizes at low temperatures, leading to shear-band activity. Cluster analysis of the STZs exhibits a power-law behavior in the statistics of STZ sizes. We find strong plastic activity also during the unloading phase; it shows up both in the deactivation of previous plastic zones and the appearance of new zones, leading to the observation of pop-outs. The statistics of STZs occurring during unloading show that they operate in a similar nature as the STZs found during loading. For both cases, loading and unloading, we find the statistics of STZs to be related to directed percolation. Material hardness shows a weak strain-rate dependence, confirming previously reported experimental findings; the number of pop-ins is reduced at slower indentation rate. Analysis of the dependence of our simulation results on the quench rate applied during preparation of the glass shows only a minor effect on the properties of STZs.
Collapse
|
13
|
Wang Z, Wang WH. Flow units as dynamic defects in metallic glassy materials. Natl Sci Rev 2019; 6:304-323. [PMID: 34691871 PMCID: PMC8291400 DOI: 10.1093/nsr/nwy084] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 08/13/2018] [Accepted: 08/22/2018] [Indexed: 12/03/2022] Open
Abstract
In a crystalline material, structural defects such as dislocations or twins are well defined and largely determine the mechanical and other properties of the material. For metallic glass (MG) with unique properties in the absence of a long-range lattice, intensive efforts have focused on the search for similar 'defects'. The primary objective has been the elucidation of the flow mechanism of MGs. However, their atomistic mechanism of mechanical deformation and atomic flow response to stress, temperature, and failure, have proven to be challenging. In this paper, we briefly review the state-of-the-art studies on the dynamic defects in metallic glasses from the perspective of flow units. The characteristics, activation and evolution processes of flow units as well as their correlation with mechanical properties, including plasticity, strength, fracture, and dynamic relaxation, are introduced. We show that flow units that are similar to structural defects such as dislocations are crucial in the optimization and design of metallic glassy materials via the thermal, mechanical and high-pressure tailoring of these units. In this report, the relevant issues and open questions with regard to the flow unit model are also introduced and discussed.
Collapse
Affiliation(s)
- Zheng Wang
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Wei-Hua Wang
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
14
|
Hoy RS. Thermalization of plastic flow versus stationarity of thermomechanical equilibrium in SGR theory. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2019; 42:2. [PMID: 30617641 DOI: 10.1140/epje/i2019-11763-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 12/03/2018] [Indexed: 06/09/2023]
Abstract
We discuss issues related to thermalization of plastic flow in the context of soft glassy rheology (SGR) theory. An apparent problem with the theory in its current form is that the stationarity of thermomechanical equilibrium obtained by requiring that its flow rule satisfy detailed balance in the absence of applied deformation requires plastic flow to be athermal. This prevents proper application of SGR to small-molecule and polymer glasses where plastic flow is often well thermalized. Clearly, one would like to have a SGR-like theory of thermalized plastic flow that satisfies stationarity. We discuss reasons why such a theory could prove very useful and clarify obstacles that must be overcome in order to develop it.
Collapse
Affiliation(s)
- Robert S Hoy
- Department of Physics, University of South Florida, 33620, Tampa, FL, USA.
| |
Collapse
|
15
|
Wang Z, Iwashita T, Porcar L, Wang Y, Liu Y, Sánchez-Díaz LE, Wu B, Huang GR, Egami T, Chen WR. Local elasticity in nonlinear rheology of interacting colloidal glasses revealed by neutron scattering and rheometry. Phys Chem Chem Phys 2018; 21:38-45. [PMID: 30283930 DOI: 10.1039/c8cp05247f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The flow of colloidal suspensions is ubiquitous in nature and industry. Colloidal suspensions exhibit a wide range of rheological behavior, which should be closely related to the microscopic structure of the systems. With in situ small-angle neutron scattering complemented by rheological measurements, we investigated the deformation behavior of a charge-stabilized colloidal glass at particle level undergoing steady shear. A short-lived, localized elastic response at particle level, termed as the transient elasticity zone (TEZ), was identified from the neutron spectra. The existence of the TEZ, which could be promoted by the electrostatic interparticle potential, is a signature of deformation heterogeneity: the body of fluids under shear behaves like an elastic solid within the spatial range of the TEZ but like fluid outside the TEZ. The size of the TEZ shrinks as the shear rate increases in the shear thinning region, which shows that the shear thinning is accompanied by a diminishing deformation heterogeneity. More interestingly, the TEZ is found to be the structural unit that provides the resistance to the imposed shear, as evidenced by the quantitative agreement between the local elastic stress sustained by the TEZ and the macroscopic stress from rheological measurements at low and moderate shear rates. Our findings provide an understanding on the nonlinear rheology of interacting colloidal glasses from a micro-mechanical view.
Collapse
Affiliation(s)
- Zhe Wang
- Department of Engineering Physics, Tsinghua University, Beijing 100084, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Zheng J, Sun A, Wang Y, Zhang J. Energy Fluctuations in Slowly Sheared Granular Materials. PHYSICAL REVIEW LETTERS 2018; 121:248001. [PMID: 30608758 DOI: 10.1103/physrevlett.121.248001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Indexed: 06/09/2023]
Abstract
Here we show the first experimental measurement of the particle-scale energy fluctuations ΔE in a slowly sheared layer of photoelastic disks. Starting from an isotropically jammed state, applying shear causes the shear-induced stochastic strengthening and weakening of particle-scale energies, whose statistics and dynamics govern the evolution of the macroscopic stress-strain curve. We find that the ΔE behave as a temperaturelike noise field, showing a novel, Boltzmann-type, double-exponential distribution at any given shear strain γ. Following the framework of the soft glassy rheology theory, we extract an effective temperature χ from the statistics of the energy fluctuations to interpret the slow startup shear (shear starts from an isotropically jammed state) of granular materials as an "aging" process: Starting below one, χ gradually approaches one as γ increases, similar to those of spin glasses, thermal glasses, and bulk metallic glasses.
Collapse
Affiliation(s)
- Jie Zheng
- School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Aile Sun
- School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yujie Wang
- School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jie Zhang
- School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
- Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China
| |
Collapse
|
17
|
Ma X, Elbanna A. Strain localization in dry sheared granular materials: A compactivity-based approach. Phys Rev E 2018; 98:022906. [PMID: 30253526 DOI: 10.1103/physreve.98.022906] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Indexed: 11/07/2022]
Abstract
Shear banding is widely observed in natural fault zones as well as in laboratory experiments on granular materials. Understanding the dynamics of strain localization under different loading conditions is essential for quantifying strength evolution of fault gouge and energy partitioning during earthquakes and characterizing rheological transitions and fault zone structure changes. To that end, we develop a physics-based continuum model for strain localization in sheared granular materials. The grain-scale dynamics is described by the shear transformation zone (STZ) theory, a nonequilibrium statistical thermodynamic framework for viscoplastic deformation in amorphous materials. Using a finite strain computational framework, we investigate the initiation and growth of complex shear bands under a variety of loading conditions and identify implications for strength evolution and the ductile to brittle transition. Our numerical results show similar localization patterns to field and laboratory observations and suggest that shear zones show more ductile response at higher confining pressures, lower dilatancy, and loose initial conditions. Lower pressures, higher dilatancy, and dense initial conditions favor a brittle response and larger strength drops. These findings shed light on a range of mechanisms for strength evolution in dry sheared granular materials and provide a critical input to physics-based multiscale models of fault zone instabilities.
Collapse
Affiliation(s)
- Xiao Ma
- Department of Civil and Environmental Engineering, University of Illinois, Urbana-Champaign, Illinois, USA
| | - Ahmed Elbanna
- Department of Civil and Environmental Engineering, University of Illinois, Urbana-Champaign, Illinois, USA
| |
Collapse
|
18
|
Le KC, Tran TM. Thermodynamic dislocation theory: Bauschinger effect. Phys Rev E 2018; 97:043002. [PMID: 29758656 DOI: 10.1103/physreve.97.043002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Indexed: 11/07/2022]
Abstract
The thermodynamic dislocation theory developed for nonuniform plastic deformations is used here to simulate the stress-strain curves for crystals subjected to antiplane shear-controlled load reversal. We show that the presence of the positive back stress during the load reversal reduces the magnitude of shear stress required to pull excess dislocations back to the center of the specimen. There, the excess dislocations of opposite signs meet and annihilate each other leading to the Bauschinger effect.
Collapse
Affiliation(s)
- K C Le
- Lehrstuhl für Mechanik-Materialtheorie, Ruhr-Universität Bochum, D-44780 Bochum, Germany
| | - T M Tran
- Lehrstuhl für Mechanik-Materialtheorie, Ruhr-Universität Bochum, D-44780 Bochum, Germany
| |
Collapse
|
19
|
Oleinik EF, Mazo MA, Strel’nikov IA, Rudnev SN, Salamatina OB. Plasticity Mechanism for Glassy Polymers: Computer Simulation Picture. POLYMER SCIENCE SERIES A 2018. [DOI: 10.1134/s0965545x18010042] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
20
|
Fan M, Zhang K, Schroers J, Shattuck MD, O'Hern CS. Particle rearrangement and softening contributions to the nonlinear mechanical response of glasses. Phys Rev E 2018; 96:032602. [PMID: 29346996 DOI: 10.1103/physreve.96.032602] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Indexed: 11/07/2022]
Abstract
Amorphous materials such as metallic, polymeric, and colloidal glasses exhibit complex preparation-dependent mechanical response to applied shear. In particular, glassy solids yield, with a mechanical response that transitions from elastic to plastic, with increasing shear strain. We perform numerical simulations to investigate the mechanical response of binary Lennard-Jones glasses undergoing athermal, quasistatic pure shear as a function of the cooling rate R used to prepare them. The ensemble-averaged stress versus strain curve 〈σ(γ)〉 resembles the spatial average in the large size limit, which appears smooth and displays a putative elastic regime at small strains, a yielding-related peak in stress at intermediate strain, and a plastic flow regime at large strains. In contrast, for each glass configuration in the ensemble, the stress-strain curve σ(γ) consists of many short nearly linear segments that are punctuated by particle-rearrangement-induced rapid stress drops. To explain the nonlinearity of 〈σ(γ)〉, we quantify the shape of the small stress-strain segments and the frequency and size of the stress drops in each glass configuration. We decompose the stress loss [i.e., the deviation in the slope of 〈σ(γ)〉 from that at 〈σ(0)〉] into the loss from particle rearrangements and the loss from softening [i.e., the reduction of the slopes of the linear segments in σ(γ)], and then compare the two contributions as a function of R and γ. For the current studies, the rearrangement-induced stress loss is larger than the softening-induced stress loss, however, softening stress losses increase with decreasing cooling rate. We also characterize the structure of the potential energy landscape along the strain direction for glasses prepared with different R, and observe a dramatic change of the properties of the landscape near the yielding transition. We then show that the rearrangement-induced energy loss per strain can serve as an order parameter for the yielding transition, which sharpens for slow cooling rates and in large systems.
Collapse
Affiliation(s)
- Meng Fan
- Department of Mechanical Engineering and Materials Science, Yale University, New Haven, Connecticut 06520, USA.,Center for Research on Interface Structures and Phenomena, Yale University, New Haven, Connecticut 06520, USA
| | - Kai Zhang
- Department of Chemical Engineering, Columbia University, New York, New York 10027, USA
| | - Jan Schroers
- Department of Mechanical Engineering and Materials Science, Yale University, New Haven, Connecticut 06520, USA.,Center for Research on Interface Structures and Phenomena, Yale University, New Haven, Connecticut 06520, USA
| | - Mark D Shattuck
- Department of Mechanical Engineering and Materials Science, Yale University, New Haven, Connecticut 06520, USA.,Department of Physics and Benjamin Levich Institute, The City College of the City University of New York, New York, New York 10031, USA
| | - Corey S O'Hern
- Department of Mechanical Engineering and Materials Science, Yale University, New Haven, Connecticut 06520, USA.,Center for Research on Interface Structures and Phenomena, Yale University, New Haven, Connecticut 06520, USA.,Department of Physics, Yale University, New Haven, Connecticut 06520, USA.,Department of Applied Physics, Yale University, New Haven, Connecticut 06520, USA
| |
Collapse
|
21
|
Zhang K, Kuo CC, See N, O'Hern C, Dennin M. Stable small bubble clusters in two-dimensional foams. SOFT MATTER 2017; 13:4370-4380. [PMID: 28513729 DOI: 10.1039/c7sm00723j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Key features of the mechanical response of amorphous particulate materials, such as foams, emulsions, and granular media, to applied stress are determined by the frequency and size of particle rearrangements that occur as the system transitions from one mechanically stable state to another. This work describes coordinated experimental and computational studies of bubble rafts, which are quasi-two dimensional systems of bubbles confined to the air-water interface. We focus on small mechanically stable clusters of four, five, six, and seven bubbles with two different sizes with diameter ratio σL/σS ≃ 1.4. Focusing on small bubble clusters, which can be viewed as subsystems of a larger system, allows us to investigate the full ensemble of clusters that form, measure the respective frequencies with which the clusters occur, and determine the form of the bubble-bubble interactions. We emphasize several important results. First, for clusters with N > 5 bubbles, we find using discrete element simulations that short-range attractive interactions between bubbles give rise to a larger ensemble of distinct mechanically stable clusters compared to that generated by long-range attractive interactions. The additional clusters in systems with short-range attractions possess larger gaps between pairs of neighboring bubbles on the periphery of the clusters. The ensemble of bubble clusters observed in experiments is similar to the ensemble of clusters with long-range attractive interactions. We also compare the frequency with which each cluster occurs in simulations and experiments. We find that the cluster frequencies are extremely sensitive to the protocol used to generate them and only weakly correlated to the energy of the clusters.
Collapse
Affiliation(s)
- Kai Zhang
- Department of Chemical Engineering, Columbia University, New York, New York 10027, USA
| | | | | | | | | |
Collapse
|
22
|
Fan M, Wang M, Zhang K, Liu Y, Schroers J, Shattuck MD, O'Hern CS. Effects of cooling rate on particle rearrangement statistics: Rapidly cooled glasses are more ductile and less reversible. Phys Rev E 2017; 95:022611. [PMID: 28297989 DOI: 10.1103/physreve.95.022611] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Indexed: 11/07/2022]
Abstract
Amorphous solids, such as metallic, polymeric, and colloidal glasses, display complex spatiotemporal response to applied deformations. In contrast to crystalline solids, during loading, amorphous solids exhibit a smooth crossover from elastic response to plastic flow. In this study, we investigate the mechanical response of binary Lennard-Jones glasses to athermal, quasistatic pure shear as a function of the cooling rate used to prepare them. We find several key results concerning the connection between strain-induced particle rearrangements and mechanical response. We show that the energy loss per strain dU_{loss}/dγ caused by particle rearrangements for more rapidly cooled glasses is larger than that for slowly cooled glasses. We also find that the cumulative energy loss U_{loss} can be used to predict the ductility of glasses even in the putative linear regime of stress versus strain. U_{loss} increases (and the ratio of shear to bulk moduli decreases) with increasing cooling rate, indicating enhanced ductility. In addition, we characterized the degree of reversibility of particle motion during a single shear cycle. We find that irreversible particle motion occurs even in the linear regime of stress versus strain. However, slowly cooled glasses, which undergo smaller rearrangements, are more reversible during a single shear cycle than rapidly cooled glasses. Thus, we show that more ductile glasses are also less reversible.
Collapse
Affiliation(s)
- Meng Fan
- Department of Mechanical Engineering and Materials Science, Yale University, New Haven, Connecticut 06520, USA.,Center for Research on Interface Structures and Phenomena, Yale University, New Haven, Connecticut 06520, USA
| | - Minglei Wang
- Department of Mechanical Engineering and Materials Science, Yale University, New Haven, Connecticut 06520, USA.,Center for Research on Interface Structures and Phenomena, Yale University, New Haven, Connecticut 06520, USA
| | - Kai Zhang
- Department of Chemical Engineering, Columbia University, New York, New York 10027, USA
| | - Yanhui Liu
- Department of Mechanical Engineering and Materials Science, Yale University, New Haven, Connecticut 06520, USA.,Center for Research on Interface Structures and Phenomena, Yale University, New Haven, Connecticut 06520, USA
| | - Jan Schroers
- Department of Mechanical Engineering and Materials Science, Yale University, New Haven, Connecticut 06520, USA.,Center for Research on Interface Structures and Phenomena, Yale University, New Haven, Connecticut 06520, USA
| | - Mark D Shattuck
- Department of Mechanical Engineering and Materials Science, Yale University, New Haven, Connecticut 06520, USA.,Department of Physics and Benjamin Levich Institute, The City College of the City University of New York, New York, New York 10031, USA
| | - Corey S O'Hern
- Department of Mechanical Engineering and Materials Science, Yale University, New Haven, Connecticut 06520, USA.,Center for Research on Interface Structures and Phenomena, Yale University, New Haven, Connecticut 06520, USA.,Department of Physics, Yale University, New Haven, Connecticut 06520, USA.,Department of Applied Physics, Yale University, New Haven, Connecticut 06520, USA
| |
Collapse
|
23
|
Kothari KR, Elbanna AE. Localization and instability in sheared granular materials: Role of friction and vibration. Phys Rev E 2017; 95:022901. [PMID: 28297960 DOI: 10.1103/physreve.95.022901] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Indexed: 06/06/2023]
Abstract
Shear banding and stick-slip instabilities have been long observed in sheared granular materials. Yet, their microscopic underpinnings, interdependencies, and variability under different loading conditions have not been fully explored. Here we use a nonequilibrium thermodynamics model, the Shear Transformation Zone theory, to investigate the dynamics of strain localization and its connection to stability of sliding in sheared, dry, granular materials. We consider frictional and frictionless grains as well as the presence and absence of acoustic vibrations. Our results suggest that at low and intermediate strain rates, persistent shear bands develop only in the absence of vibrations. Vibrations tend to fluidize the granular network and delocalize slip at these rates. Stick-slip is observed only for frictional grains, and it is confined to the shear band. At high strain rates, stick-slip disappears and the different systems exhibit similar stress-slip response. Changing the vibration intensity, duration or time of application alters the system response and may cause long-lasting rheological changes. We analyze these observations in terms of possible transitions between rate strengthening and rate weakening response facilitated by a competition between shear-induced dilation and vibration-induced compaction. We discuss the implications of our results on dynamic triggering, quiescence, and strength evolution in gouge-filled fault zones.
Collapse
Affiliation(s)
- Konik R Kothari
- Mechanical Engineering Department, University of Illinois, Urbana-Champaign, Illinois 61801, USA
| | - Ahmed E Elbanna
- Civil and Environmental Engineering Department, University of Illinois, Urbana-Champaign, Illinois 61801, USA
| |
Collapse
|
24
|
Rottler J. Relaxation times in deformed polymer glasses: A comparison between molecular simulations and two theories. J Chem Phys 2016. [DOI: 10.1063/1.4960208] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Jörg Rottler
- Departments of Physics and Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, British Columbia V6T 1Z1, Canada
| |
Collapse
|
25
|
Zou W, Larson RG. A hybrid Brownian dynamics/constitutive model for yielding, aging, and rejuvenation in deforming polymeric glasses. SOFT MATTER 2016; 12:6757-6770. [PMID: 27453365 DOI: 10.1039/c6sm00851h] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We present a hybrid model for polymeric glasses under deformation that combines a minimal model of segmental dynamics with a beads-and-springs model of a polymer, solved by Brownian dynamics (BD) simulations, whose relaxation is coupled to the segmental dynamics through the drag coefficient of the beads. This coarse-grained model allows simulations that are much faster than molecular dynamics and successfully capture the entire range of mechanical response including yielding, plastic flow, strain-hardening, and incomplete strain recovery. The beads-and-springs model improves upon the dumbbell model for glassy polymers proposed by Fielding et al. (Phys. Rev. Lett., 2012, 108, 048301) by capturing the small elastic recoil seen experimentally without the use of ad hoc adjustments of parameters required in the model of Fielding et al. With appropriate choice of parameters, predictions of creep, recovery, and segmental relaxation are found to be in good agreement with poly(methylmethacrylate) (PMMA) data of Lee et al. (Science, 2009, 323, 231-234). Our model shows dramatic differences in behavior of the segmental relaxation time between extensional creep and steady extension, and between extension and shear. The non-monotonic response of the segmental relaxation time to extensional creep and the small elastic recovery after removal of stress are shown to arise from sub-chains that are trapped between folds, and that become highly oriented and stretched at strains of order unity, connecting the behavior of glassy polymers under creep to that of dilute polymer solutions under fast extensional flows. We are also able to predict the effects of polymer pre-orientation in the parallel or orthogonal direction on the subsequent response to extensional deformation.
Collapse
Affiliation(s)
- Weizhong Zou
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Ronald G Larson
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
26
|
Bouchaud JP, Gualdi S, Tarzia M, Zamponi F. Spontaneous instabilities and stick-slip motion in a generalized Hébraud-Lequeux model. SOFT MATTER 2016; 12:1230-1237. [PMID: 26592236 DOI: 10.1039/c5sm02216a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We revisit the Hébraud-Lequeux (HL) model for the rheology of jammed materials and argue that a possibly important time scale is missing from HL's initial specification. We show that our generalization of the HL model undergoes interesting oscillating instabilities for a wide range of parameters, which lead to intermittent, stick-slip flows under constant shear rate. The instability we find is akin to the synchronization transition of coupled elements that arises in many different contexts (neurons, fireflies, financial bankruptcies, etc.). We hope that our scenario could shed light on the commonly observed intermittent, serrated flows of glassy materials under shear.
Collapse
Affiliation(s)
- Jean-Philippe Bouchaud
- CFM, 23 rue de l'Université, 75007, Paris, France and Ecole Polytechnique, 91120 Palaiseau, France
| | - Stanislao Gualdi
- Laboratoire de Mathématiques Appliquées aux Systèmes, CentraleSupélec, 92290 Châtenay-Malabry, France.
| | - Marco Tarzia
- Université Pierre et Marie Curie - Paris 6, Laboratoire de Physique Théorique de la Matière Condensée, 4, Place Jussieu, Tour 12, 75252 Paris Cedex 05, France
| | - Francesco Zamponi
- Laboratoire de Physique Théorique, École Normale Supérieure, UMR 8549 CNRS, 24 Rue Lhomond, 75231 Paris Cedex 05, France
| |
Collapse
|
27
|
Benzi R, Sbragaglia M, Bernaschi M, Succi S, Toschi F. Cooperativity flows and shear-bandings: a statistical field theory approach. SOFT MATTER 2016; 12:514-530. [PMID: 26486875 DOI: 10.1039/c5sm01862e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Cooperativity effects have been proposed to explain the non-local rheology in the dynamics of soft jammed systems. Based on the analysis of the free-energy model proposed by L. Bocquet, A. Colin and A. Ajdari, Phys. Rev. Lett., 2009, 103, 036001, we show that cooperativity effects resulting from the non-local nature of the fluidity (inverse viscosity) are intimately related to the emergence of shear-banding configurations. This connection materializes through the onset of inhomogeneous compact solutions (compactons), wherein the fluidity is confined to finite-support subregions of the flow and strictly zero elsewhere. The compacton coexistence with regions of zero fluidity ("non-flowing vacuum") is shown to be stabilized by the presence of mechanical noise, which ultimately shapes up the equilibrium distribution of the fluidity field, the latter acting as an order parameter for the flow-noflow transitions occurring in the material.
Collapse
Affiliation(s)
- R Benzi
- Department of Physics and INFN, University of "Tor Vergata", Via della Ricerca Scientifica 1, 00133 Rome, Italy.
| | - M Sbragaglia
- Department of Physics and INFN, University of "Tor Vergata", Via della Ricerca Scientifica 1, 00133 Rome, Italy.
| | - M Bernaschi
- Istituto per le Applicazioni del Calcolo CNR, Via dei Taurini 19, 00185 Rome, Italy
| | - S Succi
- Istituto per le Applicazioni del Calcolo CNR, Via dei Taurini 19, 00185 Rome, Italy
| | - F Toschi
- Istituto per le Applicazioni del Calcolo CNR, Via dei Taurini 19, 00185 Rome, Italy and Department of Physics and Department of Mathematics and Computer Science and J. M. Burgerscentrum, Eindhoven University of Technology, 5600 MB, Eindhoven, Netherlands
| |
Collapse
|
28
|
Geometry and mechanics of two-dimensional defects in amorphous materials. Proc Natl Acad Sci U S A 2015; 112:10873-8. [PMID: 26261331 DOI: 10.1073/pnas.1506531112] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We study the geometry of defects in amorphous materials and their elastic interactions. Defects are defined and characterized by deviations of the material's intrinsic metric from a Euclidian metric. This characterization makes possible the identification of localized defects in amorphous materials, the formulation of a corresponding elastic problem, and its solution in various cases of physical interest. We present a multipole expansion that covers a large family of localized 2D defects. The dipole term, which represents a dislocation, is studied analytically and experimentally. Quadrupoles and higher multipoles correspond to fundamental strain-carrying entities. The interactions between those entities, as well as their interaction with external stress fields, are fundamental to the inelastic behavior of solids. We develop analytical tools to study those interactions. The model, methods, and results presented in this work are all relevant to the study of systems that involve a distribution of localized sources of strain. Examples are plasticity in amorphous materials and mechanical interactions between cells on a flexible substrate.
Collapse
|
29
|
Wang Z, Zhang J. Fluctuations of particle motion in granular avalanches - from the microscopic to the macroscopic scales. SOFT MATTER 2015; 11:5408-5416. [PMID: 25929290 DOI: 10.1039/c5sm00643k] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
In this study, we have investigated the fluctuations of particle motion, i.e. the non-affine motion, during the avalanche process, discovering a rich dynamic from the microscopic to the macroscopic scales. We find that there is a strong correlation between the magnitude of the velocity fluctuation and the velocity magnitude in the spatial and temporal domains. The possible connection between this finding and the theory of the shear transformation zones is discussed based on the direct measurement of the T1 events. In addition, the velocity magnitude of the system and the stress fluctuations of the system are strongly temporally correlated. Our finding will pose challenges to the development of more rigorous theories to describe avalanche dynamics based on the microscopic approach. Moreover, our finding presents a plausible mechanism of particle entrainment in a simple system.
Collapse
Affiliation(s)
- Ziwei Wang
- Zhiyuan College, Shanghai Jiao Tong University, Shanghai 200240, China
| | | |
Collapse
|
30
|
Langer JS. Shear-transformation-zone theory of yielding in athermal amorphous materials. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 92:012318. [PMID: 26274172 DOI: 10.1103/physreve.92.012318] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Indexed: 06/04/2023]
Abstract
Yielding transitions in athermal amorphous materials undergoing steady-state shear flow resemble critical phenomena. Historically, they have been described by the Herschel-Bulkley rheological formula, which implies singular behaviors at yield points. In this paper, I examine this class of phenomena using an elementary version of the thermodynamic shear-transformation-zone (STZ) theory, focusing on the role of the effective disorder temperature, and paying special attention to scaling and dimensional arguments. I find a wide variety of Herschel-Bulkley-like rheologies but, for fundamental reasons not specific to the STZ theory, conclude that the yielding transition is not truly critical. In particular, for realistic many-body models with short-range interactions, there is a correlation length that grows rapidly but ultimately saturates near the yield point.
Collapse
Affiliation(s)
- J S Langer
- Department of Physics, University of California, Santa Barbara, California 93106-9530, USA
| |
Collapse
|
31
|
Teodorescu VS, Ghica C, Maraloiu AV, Vlaicu M, Kuncser A, Ciurea ML, Stavarache I, Lepadatu AM, Scarisoreanu ND, Andrei A, Ion V, Dinescu M. Nanostructuring of GeTiO amorphous films by pulsed laser irradiation. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2015; 6:893-900. [PMID: 25977860 PMCID: PMC4419586 DOI: 10.3762/bjnano.6.92] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 02/24/2015] [Indexed: 05/31/2023]
Abstract
Laser pulse processing of surfaces and thin films is a useful tool for amorphous thin films crystallization, surface nanostructuring, phase transformation and modification of physical properties of thin films. Here we show the effects of nanostructuring produced at the surface and under the surface of amorphous GeTiO films through laser pulses using fluences of 10-30 mJ/cm(2). The GeTiO films were obtained by RF magnetron sputtering with 50:50 initial atomic ratio of Ge:TiO2. Laser irradiation was performed by using the fourth harmonic (266 nm) of a Nd:YAG laser. The laser-induced nanostructuring results in two effects, the first one is the appearance of a wave-like topography at the film surface, with a periodicity of 200 nm and the second one is the structure modification of a layer under the film surface, at a depth that is related to the absorption length of the laser radiation. The periodicity of the wave-like relief is smaller than the laser wavelength. In the modified layer, the Ge atoms are segregated in spherical amorphous nanoparticles as a result of the fast diffusion of Ge atoms in the amorphous GeTiO matrix. The temperature estimation of the film surface during the laser pulses shows a maximum of about 500 °C, which is much lower than the melting temperature of the GeTiO matrix. GeO gas is formed at laser fluences higher than 20 mJ/cm(2) and produces nanovoids in the laser-modified layer at the film surface. A glass transition at low temperatures could happen in the amorphous GeTiO film, which explains the formation of the wave-like topography. The very high Ge diffusivity during the laser pulse action, which is characteristic for liquids, cannot be reached in a viscous matrix. Our experiments show that the diffusivity of atomic and molecular species such as Ge and GeO is very much enhanced in the presence of the laser pulse field. Consequently, the fast diffusion drives the formation of amorphous Ge nanoparticles through the segregation of Ge atoms in the GeTiO matrix. The nanostructuring effects induced by the laser irradiation can be used in functionalizing the surface of the films.
Collapse
Affiliation(s)
| | - Cornel Ghica
- National Institute of Materials Physics, 105 bis Atomistilor Street, 077125 Bucharest-Magurele, Romania
| | - Adrian Valentin Maraloiu
- National Institute of Materials Physics, 105 bis Atomistilor Street, 077125 Bucharest-Magurele, Romania
| | - Mihai Vlaicu
- National Institute of Materials Physics, 105 bis Atomistilor Street, 077125 Bucharest-Magurele, Romania
| | - Andrei Kuncser
- National Institute of Materials Physics, 105 bis Atomistilor Street, 077125 Bucharest-Magurele, Romania
| | - Magdalena Lidia Ciurea
- National Institute of Materials Physics, 105 bis Atomistilor Street, 077125 Bucharest-Magurele, Romania
- Academy of Romanian Scientists, Bucuresti 050094, Romania
| | - Ionel Stavarache
- National Institute of Materials Physics, 105 bis Atomistilor Street, 077125 Bucharest-Magurele, Romania
| | - Ana M Lepadatu
- National Institute of Materials Physics, 105 bis Atomistilor Street, 077125 Bucharest-Magurele, Romania
| | - Nicu Doinel Scarisoreanu
- National Institute of Plasma Lasers and Radiation, 409 Atomistilor Street, 077125 Bucharest-Magurele, Romania
| | - Andreea Andrei
- National Institute of Plasma Lasers and Radiation, 409 Atomistilor Street, 077125 Bucharest-Magurele, Romania
| | - Valentin Ion
- National Institute of Plasma Lasers and Radiation, 409 Atomistilor Street, 077125 Bucharest-Magurele, Romania
| | - Maria Dinescu
- National Institute of Plasma Lasers and Radiation, 409 Atomistilor Street, 077125 Bucharest-Magurele, Romania
| |
Collapse
|
32
|
Daub EG, Klaumünzer D, Löffler JF. Effective temperature dynamics of shear bands in metallic glasses. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 90:062405. [PMID: 25615110 DOI: 10.1103/physreve.90.062405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Indexed: 06/04/2023]
Abstract
We study the plastic deformation of bulk metallic glasses with shear transformation zone (STZ) theory, a physical model for plasticity in amorphous systems, and compare it with experimental data. In STZ theory, plastic deformation occurs when localized regions rearrange due to applied stress and the density of these regions is determined by a dynamically evolving effective disorder temperature. We compare the predictions of STZ theory to experiments that explore the low-temperature deformation of Zr-based bulk metallic glasses via shear bands at various thermal temperatures and strain rates. By following the evolution of effective temperature with time, strain rate, and temperature through a series of approximate and numerical solutions to the STZ equations, we successfully model a suite of experimentally observed phenomena, including shear-band aging as apparent from slide-hold-slide tests, a temperature-dependent steady-state flow stress, and a strain-rate- and temperature-dependent transition from stick-slip (serrated flow) to steady-sliding (nonserrated flow). We find that STZ theory quantitatively matches the observed experimental data and provides a framework for relating the experimentally measured energy scales to different types of atomic rearrangements.
Collapse
Affiliation(s)
- Eric G Daub
- Geophysics Group and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA and Laboratory of Metal Physics and Technology, Department of Materials, ETH Zurich, 8093 Zurich, Switzerland and Center for Earthquake Research and Information, University of Memphis, Memphis, Tennessee 38152, USA
| | - David Klaumünzer
- Laboratory of Metal Physics and Technology, Department of Materials, ETH Zurich, 8093 Zurich, Switzerland
| | - Jörg F Löffler
- Laboratory of Metal Physics and Technology, Department of Materials, ETH Zurich, 8093 Zurich, Switzerland
| |
Collapse
|
33
|
|
34
|
Chikkadi V, Miedema DM, Dang MT, Nienhuis B, Schall P. Shear banding of colloidal glasses: observation of a dynamic first-order transition. PHYSICAL REVIEW LETTERS 2014; 113:208301. [PMID: 25432056 DOI: 10.1103/physrevlett.113.208301] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Indexed: 06/04/2023]
Abstract
We demonstrate that application of an increasing shear field on a glass leads to an intriguing dynamic first-order transition in analogy with equilibrium transitions. By following the particle dynamics as a function of the driving field in a colloidal glass, we identify a critical shear rate upon which the diffusion time scale of the glass exhibits a sudden discontinuity. Using a new dynamic order parameter, we show that this discontinuity is analogous to a first-order transition, in which the applied stress acts as the conjugate field on the system's dynamic evolution. These results offer new perspectives to comprehend the generic shear-banding instability of a wide range of amorphous materials.
Collapse
Affiliation(s)
- V Chikkadi
- van der Waals-Zeeman Institute, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, Netherlands
| | - D M Miedema
- van der Waals-Zeeman Institute, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, Netherlands
| | - M T Dang
- van der Waals-Zeeman Institute, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, Netherlands
| | - B Nienhuis
- van der Waals-Zeeman Institute, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, Netherlands
| | - P Schall
- van der Waals-Zeeman Institute, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, Netherlands
| |
Collapse
|
35
|
Wang SQ, Cheng S, Lin P, Li X. A phenomenological molecular model for yielding and brittle-ductile transition of polymer glasses. J Chem Phys 2014; 141:094905. [DOI: 10.1063/1.4893765] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Shi-Qing Wang
- Morton Institute of Polymer Science and Engineering, University of Akron, Akron, Ohio 44325, USA
| | - Shiwang Cheng
- Morton Institute of Polymer Science and Engineering, University of Akron, Akron, Ohio 44325, USA
| | - Panpan Lin
- Morton Institute of Polymer Science and Engineering, University of Akron, Akron, Ohio 44325, USA
| | - Xiaoxiao Li
- Morton Institute of Polymer Science and Engineering, University of Akron, Akron, Ohio 44325, USA
| |
Collapse
|
36
|
Lieou CKC, Elbanna AE, Langer JS, Carlson JM. Shear flow of angular grains: acoustic effects and nonmonotonic rate dependence of volume. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 90:032204. [PMID: 25314434 DOI: 10.1103/physreve.90.032204] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Indexed: 06/04/2023]
Abstract
Naturally occurring granular materials often consist of angular particles whose shape and frictional characteristics may have important implications on macroscopic flow rheology. In this paper, we provide a theoretical account for the peculiar phenomenon of autoacoustic compaction-nonmonotonic variation of shear band volume with shear rate in angular particles-recently observed in experiments. Our approach is based on the notion that the volume of a granular material is determined by an effective-disorder temperature known as the compactivity. Noise sources in a driven granular material couple its various degrees of freedom and the environment, causing the flow of entropy between them. The grain-scale dynamics is described by the shear-transformation-zone theory of granular flow, which accounts for irreversible plastic deformation in terms of localized flow defects whose density is governed by the state of configurational disorder. To model the effects of grain shape and frictional characteristics, we propose an Ising-like internal variable to account for nearest-neighbor grain interlocking and geometric frustration and interpret the effect of friction as an acoustic noise strength. We show quantitative agreement between experimental measurements and theoretical predictions and propose additional experiments that provide stringent tests on the new theoretical elements.
Collapse
Affiliation(s)
- Charles K C Lieou
- Department of Physics, University of California, Santa Barbara, California 93106, USA
| | - Ahmed E Elbanna
- Department of Civil and Environmental Engineering, University of Illinois, Urbana-Champaign, Illinois 61801, USA
| | - J S Langer
- Department of Physics, University of California, Santa Barbara, California 93106, USA
| | - J M Carlson
- Department of Physics, University of California, Santa Barbara, California 93106, USA
| |
Collapse
|
37
|
Lu Z, Jiao W, Wang WH, Bai HY. Flow unit perspective on room temperature homogeneous plastic deformation in metallic glasses. PHYSICAL REVIEW LETTERS 2014; 113:045501. [PMID: 25105632 DOI: 10.1103/physrevlett.113.045501] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Indexed: 06/03/2023]
Abstract
A mandrel winding method, which can realize remarkable homogeneous plastic deformation at room temperature for various metallic glasses, is applied to characterize plastic flow units and study their relationship with macroscopic deformations and relaxations. The method can provide information on the activation energy, activation time, size, intrinsic relaxation time, distribution, and density of flow units. We find the plasticity of a metallic glass can be controlled through modulating the features of flow units. The results have benefits for better understanding the structural origins of deformations and relaxations, and for designing metallic glasses with improved performances.
Collapse
Affiliation(s)
- Z Lu
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - W Jiao
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - W H Wang
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - H Y Bai
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
38
|
Nicolas A, Martens K, Bocquet L, Barrat JL. Universal and non-universal features in coarse-grained models of flow in disordered solids. SOFT MATTER 2014; 10:4648-4661. [PMID: 24839104 DOI: 10.1039/c4sm00395k] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
We study the two-dimensional (2D) shear flow of amorphous solids within variants of an elastoplastic model, paying particular attention to spatial correlations and time fluctuations of, e.g., local stresses. The model is based on the local alternation between an elastic regime and plastic events during which the local stress is redistributed. The importance of a fully tensorial description of the stress and of the inclusion of (coarse-grained) convection in the model is investigated; scalar and tensorial models yield similar results, while convection enhances fluctuations and breaks the spurious symmetry between the flow and velocity gradient directions, for instance when shear localisation is observed. Besides, correlation lengths measured with diverse protocols are discussed. One class of such correlation lengths simply scale with the spacing between homogeneously distributed, simultaneous plastic events. This leads to a scaling of the correlation length with the shear rate as γ̇(-1/2) in 2D in the athermal regime, regardless of the details of the model. The radius of the cooperative disk, defined as the near-field region in which plastic events induce a stress redistribution that is not amenable to a mean-field treatment, notably follows this scaling. On the other hand, the cooperative volume measured from the four-point stress susceptibility and its dependence on the system size and the shear rate are model-dependent.
Collapse
|
39
|
Denisov D, Dang MT, Struth B, Wegdam G, Schall P. Resolving structural modifications of colloidal glasses by combining x-ray scattering and rheology. Sci Rep 2014; 3:1631. [PMID: 23568314 PMCID: PMC3620665 DOI: 10.1038/srep01631] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 03/26/2013] [Indexed: 11/09/2022] Open
Abstract
Glasses have liquid-like structure, but exhibit solid-like properties. A central question concerns the relation between the structure and mechanical properties of glasses, but structural changes remain difficult to resolve. We use a novel combination of rheology and x-ray scattering to resolve structural changes in colloidal glasses and link them directly to their mechanical behavior. By combining stress and structure factor measurements, we resolve shear induced changes in the nearest neighbor configuration as a function of applied stress, allowing us to elucidate the structural origin of the genuine shear banding transition of glasses.
Collapse
Affiliation(s)
- D Denisov
- Van der Waals-Zeeman Institute, University of Amsterdam, Amsterdam, The Netherlands.
| | | | | | | | | |
Collapse
|
40
|
Perchikov N, Bouchbinder E. Variable-amplitude oscillatory shear response of amorphous materials. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 89:062307. [PMID: 25019776 DOI: 10.1103/physreve.89.062307] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2014] [Indexed: 06/03/2023]
Abstract
Variable-amplitude oscillatory shear tests are emerging as powerful tools to investigate and quantify the nonlinear rheology of amorphous solids, complex fluids, and biological materials. Quite a few recent experimental and atomistic simulation studies demonstrated that at low shear amplitudes, an amorphous solid settles into an amplitude- and initial-conditions-dependent dissipative limit cycle, in which back-and-forth localized particle rearrangements periodically bring the system to the same state. At sufficiently large shear amplitudes, the amorphous system loses memory of the initial conditions, exhibits chaotic particle motions accompanied by diffusive behavior, and settles into a stochastic steady state. The two regimes are separated by a transition amplitude, possibly characterized by some critical-like features. Here we argue that these observations support some of the physical assumptions embodied in the nonequilibrium thermodynamic, internal-variables based, shear-transformation-zone model of amorphous viscoplasticity; most notably that "flow defects" in amorphous solids are characterized by internal states between which they can make transitions, and that structural evolution is driven by dissipation associated with plastic deformation. We present a rather extensive theoretical analysis of the thermodynamic shear-transformation-zone model for a variable-amplitude oscillatory shear protocol, highlighting its success in accounting for various experimental and simulational observations, as well as its limitations. Our results offer a continuum-level theoretical framework for interpreting the variable-amplitude oscillatory shear response of amorphous solids and may promote additional developments.
Collapse
Affiliation(s)
- Nathan Perchikov
- Department of Chemical Physics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Eran Bouchbinder
- Department of Chemical Physics, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
41
|
Guo N, Zhao J. Local fluctuations and spatial correlations in granular flows under constant-volume quasistatic shear. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 89:042208. [PMID: 24827242 DOI: 10.1103/physreve.89.042208] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Indexed: 06/03/2023]
Abstract
We investigate the local fluctuations in dense granular media subjected to athermal, quasistatic shearing, based on three-dimensional discrete element method simulations. By shearing granular assemblies of different polydispersities under constant-volume constraint, we quantify the characteristics of local structures (in terms of local volume and local anisotropy) and local deformation (using local shear strain and nonaffine displacement). The distribution of the local volume in a granular medium is found unchanged during the entire shearing process, which indicates a constant temperaturelike compactivity for the material. The compactivity is not, however, equilibrated among different particle groups in a polydisperse assembly. The local structures of a disordered granular assembly are inherently anisotropic. The fluctuations in local anisotropy can be well captured by a gamma or mixed-gamma distribution function, which is also unchanged during the shear. The local anisotropic orientation evolves towards the coaxial direction of the stress anisotropy with shear. The deformation characteristics of a jammed granular medium have their origins in the structural amorphousness. The local shear strain field depicts clear shear transformation zones which act as plasticity carriers. The spatial correlation of the local shear strains exhibits a fourfold pattern which is stronger in the stress deviatoric planes than in the stress isotropic plane. The fluctuations of nonaffine displacement suggest an isotropic granular temperature and an isotropic spatial correlation independent of the stress state. Both the local strain and the nonaffine displacement exhibit a power-law decayed distribution with a long-range correlation. We further modify the shear-transformation-zone theory to predict the pressure-dependent constitutive behavior of a sheared granular material and compare its prediction with our simulation data.
Collapse
Affiliation(s)
- Ning Guo
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong
| | - Jidong Zhao
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong
| |
Collapse
|
42
|
Luo AM, Öttinger HC. Nonequilibrium thermodynamics of the shear-transformation-zone model. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 89:022137. [PMID: 25353452 DOI: 10.1103/physreve.89.022137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Indexed: 06/04/2023]
Abstract
The shear-transformation-zone (STZ) model has been applied numerous times to describe the plastic deformation of different types of amorphous systems. We formulate this model within the general equation for nonequilibrium reversible-irreversible coupling (GENERIC) framework, thereby clarifying the thermodynamic structure of the constitutive equations and guaranteeing thermodynamic consistency. We propose natural, physically motivated forms for the building blocks of the GENERIC, which combine to produce a closed set of time evolution equations for the state variables, valid for any choice of free energy. We demonstrate an application of the new GENERIC-based model by choosing a simple form of the free energy. In addition, we present some numerical results and contrast those with the original STZ equations.
Collapse
Affiliation(s)
- Alan M Luo
- ETH Zürich, Department of Materials, Polymer Physics, CH-8093, Zürich, Switzerland
| | | |
Collapse
|
43
|
Lieou CKC, Elbanna AE, Carlson JM. Grain fragmentation in sheared granular flow: weakening effects, energy dissipation, and strain localization. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 89:022203. [PMID: 25353463 DOI: 10.1103/physreve.89.022203] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Indexed: 06/04/2023]
Abstract
We describe the shear flow of a disordered granular material in the presence of grain fracture using the shear-transformation-zone theory of amorphous plasticity adapted to systems with a hard-core interparticle interaction. To this end, we develop the equations of motion for this system within a statistical-thermodynamic framework analogous to that used in the analysis of molecular glasses. For hard-core systems, the amount of internal, configurational disorder is characterized by the compactivity X = ∂V / ∂S(C), where V and S(C) are, respectively, the volume and configurational entropy. Grain breakage is described by a constitutive equation for the temporal evolution of a characteristic grain size a, based on fracture mechanics. We show that grain breakage is a weakening mechanism, significantly lowering the flow stress at large strain rates, if the material is rate strengthening in character. We show in addition that if the granular material is sufficiently aged, spatial inhomogeneity in configurational disorder results in strain localization. We also show that grain splitting contributes significantly to comminution at small shear strains, while grain abrasion becomes dominant at large shear displacements.
Collapse
Affiliation(s)
- Charles K C Lieou
- Department of Physics, University of California, Santa Barbara, California 93106, USA
| | - Ahmed E Elbanna
- Department of Civil and Environmental Engineering, University of Illinois, Urbana-Champaign, Illinois 61801, USA
| | - Jean M Carlson
- Department of Physics, University of California, Santa Barbara, California 93106, USA
| |
Collapse
|
44
|
Elasto-plasticity in wrinkled polymerized lipid membranes. Sci Rep 2014; 4:3699. [PMID: 24424373 PMCID: PMC3892442 DOI: 10.1038/srep03699] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 12/16/2013] [Indexed: 11/08/2022] Open
Abstract
Biomembranes shown to behave like elastic sheets, can also suffer plastic deformations. Neutron scattering experiments on partially polymerised wrinkled membranes revealed that when a critical degree of polymerisation is crossed, the wrinkled membranes do not resume their spherical shapes. Instead they remain wrinkled and rigid while their non-polymerised counterparts resume their spherical floppy shapes. The yield stress of these membranes, measured for the first time via the fractal dimension, is intimately related to the degree of polymerisation probably through a 2D disorder that quenches the lateral diffusion of the lipid molecules. This work might shed light on the physical reason behind the irreversible deformation of echinocytes, acanthocytes and malaria infected red blood cells.
Collapse
|
45
|
Rahmani Y, Koopman R, Denisov D, Schall P. Visualizing the strain evolution during the indentation of colloidal glasses. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 89:012304. [PMID: 24580224 DOI: 10.1103/physreve.89.012304] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Indexed: 06/03/2023]
Abstract
We use an analog of nanoindentation on a colloidal glass to elucidate the incipient plastic deformation of glasses. By tracking the motion of the individual particles in three dimensions, we visualize the strain field and glass structure during the emerging deformation. At the onset of flow, we observe a power-law distribution of strain indicating strongly correlated deformation, and reflecting a critical state of the glass. At later stages, the strain acquires a Gaussian distribution, indicating that plastic events become uncorrelated. Investigation of the glass structure using both static and dynamic measures shows a weak correlation between the structure and the emerging strain distribution. These results indicate that the onset of plasticity is governed by strong power-law correlations of strain, weakly biased by the heterogeneous glass structure.
Collapse
Affiliation(s)
- Y Rahmani
- Van der Waals-Zeeman Institute, University of Amsterdam, Science Park 904, Amsterdam, The Netherlands
| | - R Koopman
- Van der Waals-Zeeman Institute, University of Amsterdam, Science Park 904, Amsterdam, The Netherlands
| | - D Denisov
- Van der Waals-Zeeman Institute, University of Amsterdam, Science Park 904, Amsterdam, The Netherlands
| | - P Schall
- Van der Waals-Zeeman Institute, University of Amsterdam, Science Park 904, Amsterdam, The Netherlands
| |
Collapse
|
46
|
Frahsa F, Bhattacharjee AK, Horbach J, Fuchs M, Voigtmann T. On the Bauschinger effect in supercooled melts under shear: Results from mode coupling theory and molecular dynamics simulations. J Chem Phys 2013; 138:12A513. [DOI: 10.1063/1.4770336] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
47
|
|
48
|
Rycroft CH, Bouchbinder E. Fracture toughness of metallic glasses: annealing-induced embrittlement. PHYSICAL REVIEW LETTERS 2012; 109:194301. [PMID: 23215386 DOI: 10.1103/physrevlett.109.194301] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Indexed: 06/01/2023]
Abstract
Quantitative understanding of the fracture toughness of metallic glasses, including the associated ductile-to-brittle (embrittlement) transitions, is not yet available. Here, we use a simple model of plastic deformation in glasses, coupled to an advanced Eulerian level set formulation for solving complex free-boundary problems, to calculate the fracture toughness of metallic glasses as a function of the degree of structural relaxation corresponding to different annealing times near the glass temperature. Our main result indicates the existence of an elastoplastic crack tip instability for sufficiently relaxed glasses, resulting in a marked drop in the toughness, which we interpret as annealing-induced embrittlement transition similar to experimental observations.
Collapse
Affiliation(s)
- Chris H Rycroft
- Department of Mathematics, University of California, Berkeley, California 94720, USA
| | | |
Collapse
|
49
|
Langer JS, Egami T. Glass dynamics at high strain rates. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2012; 86:011502. [PMID: 23005420 DOI: 10.1103/physreve.86.011502] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Indexed: 06/01/2023]
Abstract
We present a shear-transformation-zone (STZ) theoretical analysis of molecular-dynamics simulations of a rapidly sheared metallic glass. These simulations are especially revealing because, although they are limited to high strain rates, they span temperatures ranging from well below to well above the glass transition. With one important discrepancy, the simplified STZ theory used here reproduces the simulation data, including the way in which those data can be made to collapse approximately onto simple curves by a scaling transformation. The STZ analysis implies that the system's behavior at high strain rates is controlled primarily by effective-temperature thermodynamics, as opposed to system-specific details of the molecular interactions. The discrepancy between theory and simulations occurs at the lower strain rates for temperatures near the glass transition. We argue that this discrepancy can be resolved by the same multispecies generalization of STZ theory that has been proposed recently for understanding frequency-dependent viscoelastic responses, Stokes-Einstein violations, and stretched-exponential relaxation in equilibrated glassy materials.
Collapse
Affiliation(s)
- J S Langer
- Department of Physics, University of California, Santa Barbara, California 93106-9530, USA
| | | |
Collapse
|
50
|
Lieou CKC, Langer JS. Nonequilibrium thermodynamics in sheared hard-sphere materials. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2012; 85:061308. [PMID: 23005087 DOI: 10.1103/physreve.85.061308] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Indexed: 06/01/2023]
Abstract
We combine the shear-transformation-zone (STZ) theory of amorphous plasticity with Edwards' statistical theory of granular materials to describe shear flow in a disordered system of thermalized hard spheres. The equations of motion for this system are developed within a statistical thermodynamic framework analogous to that which has been used in the analysis of molecular glasses. For hard spheres, the system volume V replaces the internal energy U as a function of entropy S in conventional statistical mechanics. In place of the effective temperature, the compactivity X=∂V/∂S characterizes the internal state of disorder. We derive the STZ equations of motion for a granular material accordingly, and predict the strain rate as a function of the ratio of the shear stress to the pressure for different values of a dimensionless, temperature-like variable near a jamming transition. We use a simplified version of our theory to interpret numerical simulations by Haxton, Schmiedeberg, and Liu, and in this way are able to obtain useful insights about internal rate factors and relations between jamming and glass transitions.
Collapse
Affiliation(s)
- Charles K C Lieou
- Department of Physics, University of California, Santa Barbara, California 93106, USA
| | | |
Collapse
|