1
|
Dwivedi A, Mazumder A, Pullmannová P, Paraskevopoulou A, Opálka L, Kováčik A, Macháček M, Jančálková P, Svačinová P, Peterlik H, Maixner J, Vávrová K. Lipid Monolayer on Cell Surface Protein Templates Functional Extracellular Lipid Assembly. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307793. [PMID: 38243890 DOI: 10.1002/smll.202307793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/18/2023] [Indexed: 01/22/2024]
Abstract
When the ancestors of men moved from aquatic habitats to the drylands, their evolutionary strategy to restrict water loss is to seal the skin surface with lipids. It is unknown how these rigid ceramide-dominated lipids with densely packed chains squeeze through narrow extracellular spaces and how they assemble into their complex multilamellar architecture. Here it is shown that the human corneocyte lipid envelope, a monolayer of ultralong covalently bound lipids on the cell surface protein, templates the functional barrier assembly by partly fluidizing and rearranging the free extracellular lipids in its vicinity during the sculpting of a functional skin lipid barrier. The lipid envelope also maintains the fluidity of the extracellular lipids during mechanical stress. This local lipid fluidization does not compromise the permeability barrier. The results provide new testable hypotheses about epidermal homeostasis and the pathophysiology underlying diseases with impaired lipid binding to corneocytes, such as congenital ichthyosis. In a broader sense, this lipoprotein-mediated fluidization of rigid (sphingo)lipid patches may also be relevant to lipid rafts and cellular signaling events and inspire new functional materials.
Collapse
Affiliation(s)
- Anupma Dwivedi
- Skin Barrier Research Group, Faculty of Pharmacy, Charles University, Heyrovského 1203, Hradec Králové, 50005, Czech Republic
| | - Anisha Mazumder
- Skin Barrier Research Group, Faculty of Pharmacy, Charles University, Heyrovského 1203, Hradec Králové, 50005, Czech Republic
| | - Petra Pullmannová
- Skin Barrier Research Group, Faculty of Pharmacy, Charles University, Heyrovského 1203, Hradec Králové, 50005, Czech Republic
| | - Anna Paraskevopoulou
- Skin Barrier Research Group, Faculty of Pharmacy, Charles University, Heyrovského 1203, Hradec Králové, 50005, Czech Republic
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Charles University, Heyrovského 1203, Hradec Králové, 50005, Czech Republic
| | - Lukáš Opálka
- Skin Barrier Research Group, Faculty of Pharmacy, Charles University, Heyrovského 1203, Hradec Králové, 50005, Czech Republic
| | - Andrej Kováčik
- Skin Barrier Research Group, Faculty of Pharmacy, Charles University, Heyrovského 1203, Hradec Králové, 50005, Czech Republic
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Charles University, Heyrovského 1203, Hradec Králové, 50005, Czech Republic
| | - Miloslav Macháček
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Heyrovského 1203, Hradec Králové, 50005, Czech Republic
| | - Pavla Jančálková
- Skin Barrier Research Group, Faculty of Pharmacy, Charles University, Heyrovského 1203, Hradec Králové, 50005, Czech Republic
| | - Petra Svačinová
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Charles University, Heyrovského 1203, Hradec Králové, 50005, Czech Republic
| | - Herwig Peterlik
- Faculty of Physics, University of Vienna, Boltzmanngasse 5, Vienna, 1090, Austria
| | - Jaroslav Maixner
- Faculty of Chemical Technology, University of Chemistry and Technology Prague, Technická 5, Prague, 16628, Czech Republic
| | - Kateřina Vávrová
- Skin Barrier Research Group, Faculty of Pharmacy, Charles University, Heyrovského 1203, Hradec Králové, 50005, Czech Republic
| |
Collapse
|
2
|
Krasnobaev VD, Batishchev OV. The Role of Lipid Domains and Physical Properties of Membranes in the Development of Age-Related Neurodegenerative Diseases. BIOCHEMISTRY (MOSCOW), SUPPLEMENT SERIES A: MEMBRANE AND CELL BIOLOGY 2022. [DOI: 10.1134/s199074782209001x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
3
|
Saitov A, Kalutsky MA, Galimzyanov TR, Glasnov T, Horner A, Akimov SA, Pohl P. Determinants of Lipid Domain Size. Int J Mol Sci 2022; 23:ijms23073502. [PMID: 35408861 PMCID: PMC8998648 DOI: 10.3390/ijms23073502] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/21/2022] [Accepted: 03/21/2022] [Indexed: 12/20/2022] Open
Abstract
Lipid domains less than 200 nm in size may form a scaffold, enabling the concerted function of plasma membrane proteins. The size-regulating mechanism is under debate. We tested the hypotheses that large values of spontaneous monolayer curvature are incompatible with micrometer-sized domains. Here, we used the transition of photoswitchable lipids from their cylindrical conformation to a conical conformation to increase the negative curvature of a bilayer-forming lipid mixture. In contrast to the hypothesis, pre-existing micrometer-sized domains did not dissipate in our planar bilayers, as indicated by fluorescence images and domain mobility measurements. Elasticity theory supports the observation by predicting the zero free energy gain for splitting large domains into smaller ones. It also indicates an alternative size-determining mechanism: The cone-shaped photolipids reduce the line tension associated with lipid deformations at the phase boundary and thus slow down the kinetics of domain fusion. The competing influence of two approaching domains on the deformation of the intervening lipids is responsible for the kinetic fusion trap. Our experiments indicate that the resulting local energy barrier may restrict the domain size in a dynamic system.
Collapse
Affiliation(s)
- Ali Saitov
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstraße 40, 4020 Linz, Austria; (A.S.); (A.H.)
| | - Maksim A. Kalutsky
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/5 Leninskiy Prospekt, 119071 Moscow, Russia; (M.A.K.); (T.R.G.); (S.A.A.)
- Department of Theoretical Physics and Quantum Technologies, National University of Science and Technology “MISiS”, 4 Leninskiy Prospekt, 119049 Moscow, Russia
| | - Timur R. Galimzyanov
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/5 Leninskiy Prospekt, 119071 Moscow, Russia; (M.A.K.); (T.R.G.); (S.A.A.)
| | - Toma Glasnov
- Institute of Chemistry, University of Graz, 8010 Graz, Austria;
| | - Andreas Horner
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstraße 40, 4020 Linz, Austria; (A.S.); (A.H.)
| | - Sergey A. Akimov
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/5 Leninskiy Prospekt, 119071 Moscow, Russia; (M.A.K.); (T.R.G.); (S.A.A.)
| | - Peter Pohl
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstraße 40, 4020 Linz, Austria; (A.S.); (A.H.)
- Correspondence:
| |
Collapse
|
4
|
Kondrashov OV, Kuzmin PI, Akimov SA. Hydrophobic Mismatch Controls the Mode of Membrane-Mediated Interactions of Transmembrane Peptides. MEMBRANES 2022; 12:89. [PMID: 35054615 PMCID: PMC8781805 DOI: 10.3390/membranes12010089] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 12/29/2021] [Accepted: 01/10/2022] [Indexed: 01/01/2023]
Abstract
Various cellular processes require the concerted cooperative action of proteins. The possibility for such synchronization implies the occurrence of specific long-range interactions between the involved protein participants. Bilayer lipid membranes can mediate protein-protein interactions via relatively long-range elastic deformations induced by the incorporated proteins. We considered the interactions between transmembrane peptides mediated by elastic deformations using the framework of the theory of elasticity of lipid membranes. An effective peptide shape was assumed to be cylindrical, hourglass-like, or barrel-like. The interaction potentials were obtained for membranes of different thicknesses and elastic rigidities. Cylindrically shaped peptides manifest almost neutral average interactions-they attract each other at short distances and repel at large ones, independently of membrane thickness or rigidity. The hourglass-like peptides repel each other in thin bilayers and strongly attract each other in thicker bilayers. On the contrary, the barrel-like peptides repel each other in thick bilayers and attract each other in thinner membranes. These results potentially provide possible mechanisms of control for the mode of protein-protein interactions in membrane domains with different bilayer thicknesses.
Collapse
Affiliation(s)
- Oleg V. Kondrashov
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/4 Leninskiy Prospekt, 119071 Moscow, Russia;
| | | | - Sergey A. Akimov
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/4 Leninskiy Prospekt, 119071 Moscow, Russia;
| |
Collapse
|
5
|
Kondrashov OV, Pinigin KV, Akimov SA. Characteristic lengths of transmembrane peptides controlling their tilt and lateral distribution between membrane domains. Phys Rev E 2021; 104:044411. [PMID: 34781459 DOI: 10.1103/physreve.104.044411] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 10/04/2021] [Indexed: 11/07/2022]
Abstract
Lipids and proteins of plasma membranes of eukaryotic cells are supposed to form protein-lipid domains, characterized by a different molecular order, bilayer thickness, and elastic parameters. Several mechanisms of preferable distribution of transmembrane proteins to the ordered or disordered membrane domains have been revealed. The mismatch between the length of the protein transmembrane domain and hydrophobic thickness of the lipid bilayer is considered to be an important driving force of protein lateral sorting. Utilizing the continuum theory of elasticity, we analyzed optimal configurations and preferable membrane domains for single-pass transmembrane peptides of various hydrophobic lengths and effective molecular shapes. We obtained that short transmembrane peptides stand perpendicularly to the membrane plane. The exceedance of a certain characteristic length leads to the tilt of the peptide. This length depends on the bilayer thickness. Thus, in the membrane with coexisting ordered (thicker) and disordered (thinner) phases tilting of the peptide in each phase is governed by its individual characteristic length. The lateral distribution of the peptides between ordered and disordered membrane domains is shown to be described by two additional characteristic lengths. The exceedance of the smaller one drives the peptide towards a more ordered and thicker membrane, while the exceedance of the larger characteristic length switches the preferable membrane domain from ordered and thicker to disordered and thinner. Thus, membrane proteins with long enough transmembrane domains are predicted to accumulate in the thinner disordered membrane as compared to the thicker ordered bilayer. For hourglass-like and barrel-like shaped transmembrane peptides the specific regime of sorting was obtained: the peptides distributed almost equally between the phases in a wide range of peptide lengths. This finding allowed explaining the experimental data on lateral distribution of transmembrane peptide tLAT.
Collapse
Affiliation(s)
- Oleg V Kondrashov
- A. N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/4 Leninskiy prospekt, Moscow 119071, Russia
| | - Konstantin V Pinigin
- A. N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/4 Leninskiy prospekt, Moscow 119071, Russia
| | - Sergey A Akimov
- A. N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/4 Leninskiy prospekt, Moscow 119071, Russia
| |
Collapse
|
6
|
Lujan P, Campelo F. Should I stay or should I go? Golgi membrane spatial organization for protein sorting and retention. Arch Biochem Biophys 2021; 707:108921. [PMID: 34038703 DOI: 10.1016/j.abb.2021.108921] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 04/12/2021] [Accepted: 05/03/2021] [Indexed: 12/23/2022]
Abstract
The Golgi complex is the membrane-bound organelle that lies at the center of the secretory pathway. Its main functions are to maintain cellular lipid homeostasis, to orchestrate protein processing and maturation, and to mediate protein sorting and export. These functions are not independent of one another, and they all require that the membranes of the Golgi complex have a well-defined biochemical composition. Importantly, a finely-regulated spatiotemporal organization of the Golgi membrane components is essential for the correct performance of the organelle. In here, we review our current mechanistic and molecular understanding of how Golgi membranes are spatially organized in the lateral and axial directions to fulfill their functions. In particular, we highlight the current evidence and proposed models of intra-Golgi transport, as well as the known mechanisms for the retention of Golgi residents and for the sorting and export of transmembrane cargo proteins. Despite the controversies, conflicting evidence, clashes between models, and technical limitations, the field has moved forward and we have gained extensive knowledge in this fascinating topic. However, there are still many important questions that remain to be completely answered. We hope that this review will help boost future investigations on these issues.
Collapse
Affiliation(s)
- Pablo Lujan
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860, Barcelona, Spain.
| | - Felix Campelo
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860, Barcelona, Spain.
| |
Collapse
|
7
|
Miller EJ, Ratajczak AM, Anthony AA, Mottau M, Rivera Gonzalez XI, Honerkamp-Smith AR. Divide and conquer: How phase separation contributes to lateral transport and organization of membrane proteins and lipids. Chem Phys Lipids 2020; 233:104985. [DOI: 10.1016/j.chemphyslip.2020.104985] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 09/18/2020] [Accepted: 09/28/2020] [Indexed: 01/06/2023]
|
8
|
Kinnun JJ, Bolmatov D, Lavrentovich MO, Katsaras J. Lateral heterogeneity and domain formation in cellular membranes. Chem Phys Lipids 2020; 232:104976. [PMID: 32946808 PMCID: PMC7491465 DOI: 10.1016/j.chemphyslip.2020.104976] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 09/11/2020] [Accepted: 09/12/2020] [Indexed: 12/17/2022]
Abstract
As early as the development of the fluid mosaic model for cellular membranes, researchers began observing the telltale signs of lateral heterogeneity. Over the decades this has led to the development of the lipid raft hypothesis and the ensuing controversy that has unfolded, as a result. Here, we review the physical concepts behind domain formation in lipid membranes, both of their structural and dynamic origins. This, then leads into a discussion of coarse-grained, phenomenological approaches that describe the wide range of phases associated with lipid lateral heterogeneity. We use these physical concepts to describe the interaction between raft-lipid species, such as long-chain saturated lipids, sphingomyelin, and cholesterol, and non-raft forming lipids, such as those with short acyl chains or unsaturated fatty acids. While debate has persisted on the biological relevance of lipid domains, recent research, described here, continues to identify biological roles for rafts and new experimental approaches have revealed the existence of lipid domains in living systems. Given the recent progress on both the biological and structural aspects of raft formation, the research area of membrane lateral heterogeneity will not only expand, but will continue to produce exciting results.
Collapse
Affiliation(s)
- Jacob J Kinnun
- Large Scale Structures Group, Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States; Shull-Wollan Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States.
| | - Dima Bolmatov
- Large Scale Structures Group, Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States; Shull-Wollan Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States; Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996, United States.
| | - Maxim O Lavrentovich
- Shull-Wollan Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States; Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996, United States.
| | - John Katsaras
- Shull-Wollan Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States; Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996, United States; Sample Environment Group, Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States.
| |
Collapse
|
9
|
Akimov SA, Kondrashov OV, Zimmerberg J, Batishchev OV. Ectodomain Pulling Combines with Fusion Peptide Inserting to Provide Cooperative Fusion for Influenza Virus and HIV. Int J Mol Sci 2020; 21:ijms21155411. [PMID: 32751407 PMCID: PMC7432320 DOI: 10.3390/ijms21155411] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/24/2020] [Accepted: 07/28/2020] [Indexed: 12/18/2022] Open
Abstract
Enveloped viruses include the most dangerous human and animal pathogens, in particular coronavirus, influenza virus, and human immunodeficiency virus (HIV). For these viruses, receptor binding and entry are accomplished by a single viral envelope protein (termed the fusion protein), the structural changes of which trigger the remodeling and merger of the viral and target cellular membranes. The number of fusion proteins required for fusion activity is still under debate, and several studies report this value to range from 1 to 9 for type I fusion proteins. Here, we consider the earliest stage of viral fusion based on the continuum theory of membrane elasticity. We demonstrate that membrane deformations induced by the oblique insertion of amphipathic fusion peptides mediate the lateral interaction of these peptides and drive them to form into a symmetric fusion rosette. The pulling force produced by the structural rearrangements of the fusion protein ectodomains gives additional torque, which deforms the membrane and additionally stabilizes the symmetric fusion rosette, thus allowing a reduction in the number of fusion peptides needed for fusion. These findings can resolve the large range of published cooperativity indices for HIV, influenza, and other type I fusion proteins.
Collapse
Affiliation(s)
- Sergey A. Akimov
- Laboratory of Bioelectrochemistry, A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/4 Leninskiy Prospekt, 119071 Moscow, Russia; (O.V.K.); (O.V.B.)
- Correspondence: ; Tel.: +7-495-955-4776
| | - Oleg V. Kondrashov
- Laboratory of Bioelectrochemistry, A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/4 Leninskiy Prospekt, 119071 Moscow, Russia; (O.V.K.); (O.V.B.)
| | - Joshua Zimmerberg
- Section on Integrative Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA;
| | - Oleg V. Batishchev
- Laboratory of Bioelectrochemistry, A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/4 Leninskiy Prospekt, 119071 Moscow, Russia; (O.V.K.); (O.V.B.)
| |
Collapse
|
10
|
Akimov SA, Molotkovsky RJ, Kuzmin PI, Galimzyanov TR, Batishchev OV. Continuum Models of Membrane Fusion: Evolution of the Theory. Int J Mol Sci 2020; 21:E3875. [PMID: 32485905 PMCID: PMC7312925 DOI: 10.3390/ijms21113875] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/24/2020] [Accepted: 05/27/2020] [Indexed: 12/18/2022] Open
Abstract
Starting from fertilization, through tissue growth, hormone secretion, synaptic transmission, and sometimes morbid events of carcinogenesis and viral infections, membrane fusion regulates the whole life of high organisms. Despite that, a lot of fusion processes still lack well-established models and even a list of main actors. A merger of membranes requires their topological rearrangements controlled by elastic properties of a lipid bilayer. That is why continuum models based on theories of membrane elasticity are actively applied for the construction of physical models of membrane fusion. Started from the view on the membrane as a structureless film with postulated geometry of fusion intermediates, they developed along with experimental and computational techniques to a powerful tool for prediction of the whole process with molecular accuracy. In the present review, focusing on fusion processes occurring in eukaryotic cells, we scrutinize the history of these models, their evolution and complication, as well as open questions and remaining theoretical problems. We show that modern approaches in this field allow continuum models of membrane fusion to stand shoulder to shoulder with molecular dynamics simulations, and provide the deepest understanding of this process in multiple biological systems.
Collapse
Affiliation(s)
- Sergey A. Akimov
- Laboratory of Bioelectrochemistry, A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/4 Leninskiy Prospekt, 119071 Moscow, Russia; (R.J.M.); (P.I.K.); (T.R.G.); (O.V.B.)
| | | | | | | | | |
Collapse
|
11
|
Pinigin KV, Kondrashov OV, Jiménez-Munguía I, Alexandrova VV, Batishchev OV, Galimzyanov TR, Akimov SA. Elastic deformations mediate interaction of the raft boundary with membrane inclusions leading to their effective lateral sorting. Sci Rep 2020; 10:4087. [PMID: 32139760 PMCID: PMC7058020 DOI: 10.1038/s41598-020-61110-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 02/18/2020] [Indexed: 02/06/2023] Open
Abstract
Liquid-ordered lipid domains represent a lateral inhomogeneity in cellular membranes. These domains have elastic and physicochemical properties different from those of the surrounding membrane. In particular, their thickness exceeds that of the disordered membrane. Thus, elastic deformations arise at the domain boundary in order to compensate for the thickness mismatch. In equilibrium, the deformations lead to an incomplete register of monolayer ordered domains: the elastic energy is minimal if domains in opposing monolayers lie on the top of each other, and their boundaries are laterally shifted by about 3 nm. This configuration introduces a region, composed of one ordered and one disordered monolayers, with an intermediate bilayer thickness. Besides, a jump in a local monolayer curvature takes place in this intermediate region, concentrating here most of the elastic stress. This region can participate in a lateral sorting of membrane inclusions by offering them an optimal bilayer thickness and local curvature conditions. In the present study, we consider the sorting of deformable lipid inclusions, undeformable peripheral and deeply incorporated peptide inclusions, and undeformable transmembrane inclusions of different molecular geometry. With rare exceptions, all types of inclusions have an affinity to the ordered domain boundary as compared to the bulk phases. The optimal lateral distribution of inclusions allows relaxing the elastic stress at the boundary of domains.
Collapse
Affiliation(s)
- Konstantin V Pinigin
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/4 Leninskiy prospekt, Moscow, 119071, Russia
| | - Oleg V Kondrashov
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/4 Leninskiy prospekt, Moscow, 119071, Russia
| | - Irene Jiménez-Munguía
- National University of Science and Technology "MISiS", 4 Leninskiy prospect, Moscow, 119049, Russia
| | | | - Oleg V Batishchev
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/4 Leninskiy prospekt, Moscow, 119071, Russia
| | - Timur R Galimzyanov
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/4 Leninskiy prospekt, Moscow, 119071, Russia
| | - Sergey A Akimov
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/4 Leninskiy prospekt, Moscow, 119071, Russia.
| |
Collapse
|
12
|
Ermakov YA, Sokolov VS, Akimov SA, Batishchev OV. Physicochemical and Electrochemical Aspects of the Functioning of Biological Membranes. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2020. [DOI: 10.1134/s0036024420030085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
The Effect of Transmembrane Protein Shape on Surrounding Lipid Domain Formation by Wetting. Biomolecules 2019; 9:biom9110729. [PMID: 31726783 PMCID: PMC6920788 DOI: 10.3390/biom9110729] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 11/09/2019] [Accepted: 11/11/2019] [Indexed: 12/11/2022] Open
Abstract
Signal transduction through cellular membranes requires the highly specific and coordinated work of specialized proteins. Proper functioning of these proteins is provided by an interplay between them and the lipid environment. Liquid-ordered lipid domains are believed to be important players here, however, it is still unclear whether conditions for a phase separation required for lipid domain formation exist in cellular membranes. Moreover, membrane leaflets are compositionally asymmetric, that could be an obstacle for the formation of symmetric domains spanning the lipid bilayer. We theoretically show that the presence of protein in the membrane leads to the formation of a stable liquid-ordered lipid phase around it by the mechanism of protein wetting by lipids, even in the absence of conditions necessary for the global phase separation in the membrane. Moreover, we show that protein shape plays a crucial role in this process, and protein conformational rearrangement can lead to changes in the size and characteristics of surrounding lipid domains.
Collapse
|
14
|
Kondrashov OV, Galimzyanov TR, Jiménez-Munguía I, Batishchev OV, Akimov SA. Membrane-mediated interaction of amphipathic peptides can be described by a one-dimensional approach. Phys Rev E 2019; 99:022401. [PMID: 30934249 DOI: 10.1103/physreve.99.022401] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Indexed: 01/03/2023]
Abstract
Amphipathic alpha-helical peptides, among other peripheral components of plasma membranes, are promising antimicrobial agents. Partial incorporation of a peptide into a lipid monolayer causes elastic deformations. Deformations induced by two peptides distant from each other are independent; when peptides get closer, interference between the deformations causes effective lateral interaction. We quantified the energy of membrane deformations for arbitrary configuration of two amphipathic peptides on the membrane surface. The global minimum of the deformation energy proved to be achieved when two parallel peptides are in registry at the distance of about 6 nm between the axes of peptides. The energy calculated in the unidimensional approach provides a good approximation for the dependence of the energy of peptides being in the registered configuration upon the distance between them, valid for a broad range of peptide lengths. The effective interactional length of peptides for the unidimensional approach is close to their actual length. If two parallel peptides are shifted along their axes with respect to each other, the interaction energy is also well approximated by the unidimensional potential, within the projection of one peptide onto the other. In the case when the axes of alpha helices cross at a substantial angle, the main contribution to peptide interactions comes from their edges: the effective length of peptides for the unidimensional approach is almost equal to the characteristic length of decay of deformations. Based on the results we obtained it can be concluded that interaction of membrane inclusions is quite adequately described by the potential calculated in the unidimensional approach.
Collapse
Affiliation(s)
- Oleg V Kondrashov
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/4 Leninskiy Prospekt, Moscow 119071, Russia.,Moscow Institute of Physics and Technology, Institutsky Lane 9, Dolgoprudny, Moscow Region 141700, Russia
| | - Timur R Galimzyanov
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/4 Leninskiy Prospekt, Moscow 119071, Russia.,National University of Science and Technology "MISiS," 4 Leninskiy Prospect, Moscow 119049, Russia
| | - Irene Jiménez-Munguía
- National University of Science and Technology "MISiS," 4 Leninskiy Prospect, Moscow 119049, Russia
| | - Oleg V Batishchev
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/4 Leninskiy Prospekt, Moscow 119071, Russia.,Moscow Institute of Physics and Technology, Institutsky Lane 9, Dolgoprudny, Moscow Region 141700, Russia
| | - Sergey A Akimov
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/4 Leninskiy Prospekt, Moscow 119071, Russia.,National University of Science and Technology "MISiS," 4 Leninskiy Prospect, Moscow 119049, Russia
| |
Collapse
|
15
|
Abstract
On mesoscopic scales, lipid membranes are well described by continuum theories whose main ingredients are the curvature of a membrane's reference surface and the tilt of its lipid constituents. In particular, Hamm and Kozlov [Eur. Phys. J. E 3, 323 (2000)] have shown how to systematically derive such a tilt-curvature Hamiltonian based on the elementary assumption of a thin fluid elastic sheet experiencing internal lateral pre-stress. Performing a dimensional reduction, they not only derive the basic form of the effective surface Hamiltonian but also express its emergent elastic couplings as trans-membrane moments of lower-level material parameters. In the present paper, we argue, though, that their derivation unfortunately missed a coupling term between curvature and tilt. This term arises because, as one moves along the membrane, the curvature-induced change of transverse distances contributes to the area strain-an effect that was believed to be small but nevertheless ends up contributing at the same (quadratic) order as all other terms in their Hamiltonian. We illustrate the consequences of this amendment by deriving the monolayer and bilayer Euler-Lagrange equations for the tilt, as well as the power spectra of shape, tilt, and director fluctuations. A particularly curious aspect of our new term is that its associated coupling constant is the second moment of the lipid monolayer's lateral stress profile-which within this framework is equal to the monolayer Gaussian curvature modulus, κ¯m. On the one hand, this implies that many theoretical predictions now contain a parameter that is poorly known (because the Gauss-Bonnet theorem limits access to the integrated Gaussian curvature); on the other hand, the appearance of κ¯m outside of its Gaussian curvature provenance opens opportunities for measuring it by more conventional means, for instance by monitoring a membrane's undulation spectrum at short scales.
Collapse
Affiliation(s)
- M Mert Terzi
- Department of Physics, Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, Pennsylvania 15213, USA
| | - Markus Deserno
- Department of Physics, Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, Pennsylvania 15213, USA
| |
Collapse
|
16
|
Akimov SA, Aleksandrova VV, Galimzyanov TR, Bashkirov PV, Batishchev OV. Interaction of amphipathic peptides mediated by elastic membrane deformations. BIOCHEMISTRY (MOSCOW), SUPPLEMENT SERIES A: MEMBRANE AND CELL BIOLOGY 2017. [DOI: 10.1134/s1990747817030035] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
Galimzyanov TR, Lyushnyak AS, Aleksandrova VV, Shilova LA, Mikhalyov II, Molotkovskaya IM, Akimov SA, Batishchev OV. Line Activity of Ganglioside GM1 Regulates the Raft Size Distribution in a Cholesterol-Dependent Manner. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:3517-3524. [PMID: 28324651 DOI: 10.1021/acs.langmuir.7b00404] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Liquid-ordered lipid domains, also called rafts, are assumed to be important players in different cellular processes, mainly signal transduction and membrane trafficking. They are thicker than the disordered part of the membrane and are thought to form to compensate for the hydrophobic mismatch between transmembrane proteins and the lipid environment. Despite the existence of such structures in vivo still being an open question, they are observed in model systems of multicomponent lipid bilayers. Moreover, the predictions obtained from model experiments allow the explanation of different physiological processes possibly involving rafts. Here we present the results of the study of the regulation of raft size distribution by ganglioside GM1. Combining atomic force microscopy with theoretical considerations based on the theory of membrane elasticity, we predict that this glycolipid should change the line tension of raft boundaries in two different ways, mainly depending on the cholesterol content. These results explain the shedding of gangliosides from the surface of tumor cells and the following ganglioside-induced apoptosis of T-lymphocytes in a raft-dependent manner. Moreover, the generality of the model allows the prediction of the line activity of different membrane components based on their molecular geometry.
Collapse
Affiliation(s)
- T R Galimzyanov
- A. N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences , 31/4 Leninskii Prospekt, Moscow, 119071 Russia
- National University of Science and Technology "MISiS" , 4 Leninskii Prospekt, Moscow, 119049 Russia
| | - A S Lyushnyak
- A. N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences , 31/4 Leninskii Prospekt, Moscow, 119071 Russia
- Moscow Institute of Physics and Technology , 9 Institutskii per., Dolgoprudnyi, Moscow Region, 141700 Russia
| | - V V Aleksandrova
- National University of Science and Technology "MISiS" , 4 Leninskii Prospekt, Moscow, 119049 Russia
| | - L A Shilova
- A. N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences , 31/4 Leninskii Prospekt, Moscow, 119071 Russia
- Moscow Institute of Physics and Technology , 9 Institutskii per., Dolgoprudnyi, Moscow Region, 141700 Russia
| | - I I Mikhalyov
- M. M. Shemyakin and Yu. A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences , 16/10 Miklukho-Maklaya Str., Moscow, 117997 Russia
| | - I M Molotkovskaya
- M. M. Shemyakin and Yu. A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences , 16/10 Miklukho-Maklaya Str., Moscow, 117997 Russia
| | - S A Akimov
- A. N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences , 31/4 Leninskii Prospekt, Moscow, 119071 Russia
- National University of Science and Technology "MISiS" , 4 Leninskii Prospekt, Moscow, 119049 Russia
| | - O V Batishchev
- A. N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences , 31/4 Leninskii Prospekt, Moscow, 119071 Russia
- Moscow Institute of Physics and Technology , 9 Institutskii per., Dolgoprudnyi, Moscow Region, 141700 Russia
| |
Collapse
|
18
|
Bocharov EV, Mineev KS, Pavlov KV, Akimov SA, Kuznetsov AS, Efremov RG, Arseniev AS. Helix-helix interactions in membrane domains of bitopic proteins: Specificity and role of lipid environment. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1859:561-576. [PMID: 27884807 DOI: 10.1016/j.bbamem.2016.10.024] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 09/18/2016] [Accepted: 10/20/2016] [Indexed: 12/23/2022]
Abstract
Interaction between transmembrane helices often determines biological activity of membrane proteins. Bitopic proteins, a broad subclass of membrane proteins, form dimers containing two membrane-spanning helices. Some aspects of their structure-function relationship cannot be fully understood without considering the protein-lipid interaction, which can determine the protein conformational ensemble. Experimental and computer modeling data concerning transmembrane parts of bitopic proteins are reviewed in the present paper. They highlight the importance of lipid-protein interactions and resolve certain paradoxes in the behavior of such proteins. Besides, some properties of membrane organization provided a clue to understanding of allosteric interactions between distant parts of proteins. Interactions of these kinds appear to underlie a signaling mechanism, which could be widely employed in the functioning of many membrane proteins. Treatment of membrane proteins as parts of integrated fine-tuned proteolipid system promises new insights into biological function mechanisms and approaches to drug design. This article is part of a Special Issue entitled: Lipid order/lipid defects and lipid-control of protein activity edited by Dirk Schneider.
Collapse
Affiliation(s)
- Eduard V Bocharov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Miklukho-Maklaya ul. 16/10, Moscow, 117997, Russian Federation; National Research Centre "Kurchatov Institute", Akad. Kurchatova pl. 1, Moscow, 123182, Russian Federation.
| | - Konstantin S Mineev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Miklukho-Maklaya ul. 16/10, Moscow, 117997, Russian Federation
| | - Konstantin V Pavlov
- Frumkin Institute of Physical Chemistry and Electrochemistry RAS, Leninskiy prospect 31/5, Moscow, 119071, Russian Federation
| | - Sergey A Akimov
- Frumkin Institute of Physical Chemistry and Electrochemistry RAS, Leninskiy prospect 31/5, Moscow, 119071, Russian Federation; National University of Science and Technology "MISiS", Leninskiy prospect 4, Moscow, 119049, Russian Federation
| | - Andrey S Kuznetsov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Miklukho-Maklaya ul. 16/10, Moscow, 117997, Russian Federation
| | - Roman G Efremov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Miklukho-Maklaya ul. 16/10, Moscow, 117997, Russian Federation; Higher School of Economics, Myasnitskaya ul. 20, Moscow, 101000, Russian Federation
| | - Alexander S Arseniev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Miklukho-Maklaya ul. 16/10, Moscow, 117997, Russian Federation.
| |
Collapse
|
19
|
Galimzyanov TR, Kuzmin PI, Pohl P, Akimov SA. Elastic deformations of bolalipid membranes. SOFT MATTER 2016; 12:2357-64. [PMID: 26791255 PMCID: PMC7116075 DOI: 10.1039/c5sm02635k] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Archaeal membranes have unique mechanical properties that enable these organisms to survive under extremely aggressive environmental conditions. The so-called bolalipids contribute to this exceptional stability. They have two polar heads joined by two hydrocarbon chains. The two headgroups can face different sides of the membrane (O-shape conformation) or the same side (U-shape conformation). We have developed an elasticity theory for bolalipid membranes and show that the energetic contributions of (i) tilt deformations, (ii) area compression/stretching deformations, (iii) as well as those of Gaussian splay from the two membrane surfaces are additive, while splay deformations yield a cross-term. The presence of a small fraction of U-shaped molecules resulted in spontaneous membrane curvature. We estimated the tilt modulus to be approximately equal to that of membranes in eukaryotic cells. In contrast to conventional lipids, the bolalipid membrane possesses two splay moduli, one of which is estimated to be an order of magnitude larger than that of conventional lipids. The projected values of elastic moduli act to hamper pore formation and to decelerate membrane fusion and fission.
Collapse
Affiliation(s)
- Timur R Galimzyanov
- Laboratory of Bioelectrochemistry, A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/4 Leninskiy Prospekt, Moscow 119071, Russia. and Department of Theoretical Physics and Quantum Technologies, National University of Science and Technology "MISiS", 4 Leninskiy Prospect, Moscow 119049, Russia
| | - Peter I Kuzmin
- Laboratory of Bioelectrochemistry, A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/4 Leninskiy Prospekt, Moscow 119071, Russia.
| | - Peter Pohl
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstrasse 40-42, Linz, 4020, Austria
| | - Sergey A Akimov
- Laboratory of Bioelectrochemistry, A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/4 Leninskiy Prospekt, Moscow 119071, Russia. and Department of Theoretical Physics and Quantum Technologies, National University of Science and Technology "MISiS", 4 Leninskiy Prospect, Moscow 119049, Russia
| |
Collapse
|
20
|
Staneva G, Osipenko DS, Galimzyanov TR, Pavlov KV, Akimov SA. Metabolic Precursor of Cholesterol Causes Formation of Chained Aggregates of Liquid-Ordered Domains. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:1591-1600. [PMID: 26783730 DOI: 10.1021/acs.langmuir.5b03990] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
7-Dehydrocholesterol, an immediate metabolic predecessor of cholesterol, can accumulate in tissues due to some metabolic abnormalities, causing an array of symptoms known as Smith-Lemli-Opitz syndrome. Enrichment of cellular membranes with 7-dehydrocholesterol interferes with normal cell-signaling processes, which involve interaction between rafts and formation of the so-called signaling platforms. In model membranes, cholesterol-based ordered domains usually merge upon contact. According to our experimental data, ordered domains in the model systems where cholesterol is substituted for 7-dehydrocholesterol never merge on the time scale of the experiment, but clusterize into necklace-like aggregates. We attribute such different dynamical behavior to altered properties of the domain boundary. In the framework of thickness mismatch model, we analyzed changes of interaction energy profiles of two approaching domains caused by substitution of cholesterol by 7-dehydrocholesterol. The energy barrier for domain merger is shown to increase notably, with simultaneous appearance of another distinct local energy minimum. Such energy profile is in perfect qualitative agreement with the experimental observations. The observed change of domain dynamics can impair proper interaction between cellular rafts underlying pathologies associated with deviations in cholesterol metabolism.
Collapse
Affiliation(s)
- Galya Staneva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences , 21 Academic G. Bonchev Str., Sofia 1113, Bulgaria
| | - Denis S Osipenko
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences , 31/4 Leninskiy prospekt, Moscow 119071, Russia
| | - Timur R Galimzyanov
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences , 31/4 Leninskiy prospekt, Moscow 119071, Russia
- National University of Science and Technology "MISiS" , 4 Leninskiy prospect, Moscow 119049, Russia
| | - Konstantin V Pavlov
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences , 31/4 Leninskiy prospekt, Moscow 119071, Russia
| | - Sergey A Akimov
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences , 31/4 Leninskiy prospekt, Moscow 119071, Russia
- National University of Science and Technology "MISiS" , 4 Leninskiy prospect, Moscow 119049, Russia
| |
Collapse
|
21
|
Greenall MJ, Marques CM. Can adding oil control domain formation in binary amphiphile bilayers? SOFT MATTER 2014; 10:7925-7931. [PMID: 25099471 DOI: 10.1039/c4sm01265h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Bilayers formed of two species of amphiphile of different chain lengths may segregate into thinner and thicker domains composed predominantly of the respective species. Using a coarse-grained mean-field model, we investigate how mixing oil with the amphiphiles affects the structure and thickness of the bilayer at and on either side of the boundary between two neighbouring domains. In particular, we find that oil molecules whose chain length is close to that of the shorter amphiphiles segregate to the thicker domain. This smooths the surface of the hydrophobic bilayer core on this side of the boundary, reducing its area and curvature and their associated free-energy penalties. The smoothing effect is weaker for oil molecules that are shorter or longer than this optimum value: short molecules spread evenly through the bilayer, while long molecules swell the thicker domain, increasing the surface area and curvature of the bilayer core in the interfacial region. Our results show that adding an appropriate oil could make the formation of domain boundaries more or less favourable, raising the possibility of controlling the domain size distribution.
Collapse
Affiliation(s)
- Martin J Greenall
- Institut Charles Sadron, 23, rue du Loess, 67034 Strasbourg, France.
| | | |
Collapse
|
22
|
Mueller NS, Wedlich-Söldner R, Spira F. From mosaic to patchwork: matching lipids and proteins in membrane organization. Mol Membr Biol 2012; 29:186-96. [PMID: 22594654 DOI: 10.3109/09687688.2012.687461] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Biological membranes encompass and compartmentalize cells and organelles and are a prerequisite to life as we know it. One defining feature of membranes is an astonishing diversity of building blocks. The mechanisms and principles organizing the thousands of proteins and lipids that make up membrane bilayers in cells are still under debate. Many terms and mechanisms have been introduced over the years to account for certain phenomena and aspects of membrane organization and function. Recently, the different viewpoints - focusing on lipids vs. proteins or physical vs. molecular driving forces for membrane organization - are increasingly converging. Here we review the basic properties of biological membranes and the most common theories for lateral segregation of membrane components before discussing an emerging model of a self-organized, multi-domain membrane or 'patchwork membrane'.
Collapse
Affiliation(s)
- Nikola S Mueller
- Cellular Dynamics and Cell Patterning, Max Planck Institute of Biochemistry, Martinsried, Germany
| | | | | |
Collapse
|
23
|
Zakhvataev VE, Khlebopros RG. The Kupershtokh-Medvedev electrostrictive instability as possible mechanism of initiation of phase transitions, domains and pores in lipid membranes and influence of microwave irradiation on cell. Biophysics (Nagoya-shi) 2012. [DOI: 10.1134/s0006350912010198] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
|
24
|
Loew S, Hinderliter A, May S. Stability of protein-decorated mixed lipid membranes: The interplay of lipid-lipid, lipid-protein, and protein-protein interactions. J Chem Phys 2009; 130:045102. [PMID: 19191415 DOI: 10.1063/1.3063117] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Membrane-associated proteins are likely to contribute to the regulation of the phase behavior of mixed lipid membranes. To gain insight into the underlying mechanism, we study a thermodynamic model for the stability of a protein-decorated binary lipid layer. Here, proteins interact preferentially with one lipid species and thus locally sequester that species. We aim to specify conditions that lead to an additional macroscopic phase separation of the protein-decorated lipid membrane. Our model is based on a standard mean-field lattice-gas description for both the lipid mixture and the adsorbed protein layer. Besides accounting for the lipid-protein binding strength, we also include attractive lipid-lipid and protein-protein interactions. Our analysis characterizes the decrease in the membrane's critical interaction parameter as a function of the lipid-protein binding strength. For small and large binding strengths we provide analytical expressions; numerical results cover the intermediate range. Our results reiterate the crucial importance of the line tension associated with protein-induced compositional gradients and the presence of attractive lipid-lipid interactions within the membrane. Direct protein-protein attraction effectively increases the line tension and thus tends to further destabilize the membrane.
Collapse
Affiliation(s)
- Stephan Loew
- Department of Physics, North Dakota State University, Fargo, North Dakota 58105-5566, USA
| | | | | |
Collapse
|