1
|
Grzybowski A, Koperwas K, Paluch M. Role of anisotropy in understanding the molecular grounds for density scaling in dynamics of glass-forming liquids. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2024; 87:084501. [PMID: 38861964 DOI: 10.1088/1361-6633/ad569d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 06/11/2024] [Indexed: 06/13/2024]
Abstract
Molecular Dynamics (MD) simulations of glass-forming liquids play a pivotal role in uncovering the molecular nature of the liquid vitrification process. In particular, much focus was given to elucidating the interplay between the character of intermolecular potential and molecular dynamics behaviour. This has been tried to achieve by simulating the spherical particles interacting via isotropic potential. However, when simulation and experimental data are analysed in the same way by using the density scaling approaches, serious inconsistency is revealed between them. Similar scaling exponent values are determined by analysing the relaxation times and pVT data obtained from computer simulations. In contrast, these values differ significantly when the same analysis is carried out in the case of experimental data. As discussed thoroughly herein, the coherence between results of simulation and experiment can be achieved if anisotropy of intermolecular interactions is introduced to MD simulations. In practice, it has been realized in two different ways: (1) by using the anisotropic potential of the Gay-Berne type or (2) by replacing the spherical particles with quasi-real polyatomic anisotropic molecules interacting through isotropic Lenard-Jones potential. In particular, the last strategy has the potential to be used to explore the relationship between molecular architecture and molecular dynamics behaviour. Finally, we hope that the results presented in this review will also encourage others to explore how 'anisotropy' affects remaining aspects related to liquid-glass transition, like heterogeneity, glass transition temperature, glass forming ability, etc.
Collapse
Affiliation(s)
- A Grzybowski
- Institute of Physics, University of Silesia in Katowice, 41-500 Chorzów, Poland
| | - K Koperwas
- Institute of Physics, University of Silesia in Katowice, 41-500 Chorzów, Poland
| | - M Paluch
- Institute of Physics, University of Silesia in Katowice, 41-500 Chorzów, Poland
| |
Collapse
|
2
|
Liszka K, Grzybowski A, Grzybowska K, Koperwas K, Paluch M. Entropy Scaling of Molecular Dynamics in a Prototypical Anisotropic Model near the Glass Transition. J Phys Chem B 2023. [PMID: 37257018 DOI: 10.1021/acs.jpcb.3c02429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Dynamics and thermodynamics of molecular systems in the vicinity of the boundary between thermodynamically nonequilibrium glassy and metastable supercooled liquid states are still incompletely explored and their theoretical and simulation models are imperfect despite many previous efforts. Among them, the role of total system entropy, configurational entropy, and excess entropy in the temperature-pressure or temperature-density dependence of global molecular dynamics (MD) timescale relevant to the glass transition is an essential topic intensively studied for over half of a century. By exploiting a well-known simple ellipsoidal model recently successfully applied to simulate the supercooled liquid state and the glass transition, we gain a new insight into the different views on the relationship between entropy and relaxation dynamics of glass formers, showing the molecular grounds for the entropy scaling of global MD timescale. Our simulations in the anisotropic model of supercooled liquid, which involves only translational and rotational degrees of freedom, give evidence that the total system entropy is sufficient to scale global MD timescale. It complies with the scaling effect on relaxation dynamics exerted by the configurational entropy defined as the total entropy diminished by vibrational contributions, which was earlier discovered for measurement data collected near the glass transition. Moreover, we argue that such a scaling behavior is not possible to achieve by using the excess entropy that is in excess of the ideal gas entropy, which is contrary to the results earlier suggested within the framework of simple isotropic models of supercooled liquids. Thus, our findings also warn against an excessive reliance on isotropic models in theoretical interpretations of molecular phenomena, despite their simplicity and popularity, because they may reflect improperly various physicochemical properties of glass formers.
Collapse
Affiliation(s)
- Karol Liszka
- Institute of Physics, University of Silesia in Katowice, ul. 75 Pułku Piechoty 1, 41-500 Chorzów, Poland
| | - Andrzej Grzybowski
- Institute of Physics, University of Silesia in Katowice, ul. 75 Pułku Piechoty 1, 41-500 Chorzów, Poland
| | - Katarzyna Grzybowska
- Institute of Physics, University of Silesia in Katowice, ul. 75 Pułku Piechoty 1, 41-500 Chorzów, Poland
| | - Kajetan Koperwas
- Institute of Physics, University of Silesia in Katowice, ul. 75 Pułku Piechoty 1, 41-500 Chorzów, Poland
| | - Marian Paluch
- Institute of Physics, University of Silesia in Katowice, ul. 75 Pułku Piechoty 1, 41-500 Chorzów, Poland
| |
Collapse
|
3
|
Grzybowski A, Lowe AR, Jasiok B, Chorążewski M. Volumetric and viscosity data of selected oils analyzed in the density scaling regime. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118728] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
4
|
Liszka K, Grzybowski A, Koperwas K, Paluch M. Density Scaling of Translational and Rotational Molecular Dynamics in a Simple Ellipsoidal Model near the Glass Transition. Int J Mol Sci 2022; 23:ijms23094546. [PMID: 35562937 PMCID: PMC9103086 DOI: 10.3390/ijms23094546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/15/2022] [Accepted: 04/17/2022] [Indexed: 12/03/2022] Open
Abstract
In this paper, we show that a simple anisotropic model of supercooled liquid properly reflects some density scaling properties observed for experimental data, contrary to many previous results obtained from isotropic models. We employ a well-known Gay–Berne model earlier parametrized to achieve a supercooling and glass transition at zero pressure to find the point of glass transition and explore volumetric and dynamic properties in the supercooled liquid state at elevated pressure. We focus on dynamic scaling properties of the anisotropic model of supercooled liquid to gain a better insight into the grounds for the density scaling idea that bears hallmarks of universality, as follows from plenty of experimental data collected near the glass transition for different dynamic quantities. As a result, the most appropriate values of the scaling exponent γ are established as invariants for a given anisotropy aspect ratio to successfully scale both the translational and rotational relaxation times considered as single variable functions of densityγ/temperature. These scaling exponent values are determined based on the density scaling criterion and differ from those obtained in other ways, such as the virial–potential energy correlation and the equation of state derived from the effective short-range intermolecular potential, which is qualitatively in accordance with the results yielded from experimental data analyses. Our findings strongly suggest that there is a deep need to employ anisotropic models in the study of glass transition and supercooled liquids instead of the isotropic ones very commonly exploited in molecular dynamics simulations of supercooled liquids over the last decades.
Collapse
Affiliation(s)
- Karol Liszka
- Institute of Physics, University of Silesia in Katowice, ul. 75 Pulku Piechoty 1, 41-500 Chorzow, Poland; (K.L.); (K.K.); (M.P.)
- Silesian Center for Education and Interdisciplinary Research, ul. 75 Pulku Piechoty 1a, 41-500 Chorzow, Poland
| | - Andrzej Grzybowski
- Institute of Physics, University of Silesia in Katowice, ul. 75 Pulku Piechoty 1, 41-500 Chorzow, Poland; (K.L.); (K.K.); (M.P.)
- Silesian Center for Education and Interdisciplinary Research, ul. 75 Pulku Piechoty 1a, 41-500 Chorzow, Poland
- Correspondence:
| | - Kajetan Koperwas
- Institute of Physics, University of Silesia in Katowice, ul. 75 Pulku Piechoty 1, 41-500 Chorzow, Poland; (K.L.); (K.K.); (M.P.)
- Silesian Center for Education and Interdisciplinary Research, ul. 75 Pulku Piechoty 1a, 41-500 Chorzow, Poland
| | - Marian Paluch
- Institute of Physics, University of Silesia in Katowice, ul. 75 Pulku Piechoty 1, 41-500 Chorzow, Poland; (K.L.); (K.K.); (M.P.)
- Silesian Center for Education and Interdisciplinary Research, ul. 75 Pulku Piechoty 1a, 41-500 Chorzow, Poland
| |
Collapse
|
5
|
Cheng S, Wojnarowska Z, Musiał M, Paluch M. The behavior of conductivity dynamic modulus and its connection to thermodynamic bulk modulus in ionic liquids. Phys Chem Chem Phys 2020; 22:19342-19348. [PMID: 32822445 DOI: 10.1039/d0cp03422c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In this paper, we investigate the interplay between the dynamics and thermodynamics of aprotic ionic liquids in the supercooled and normal liquid states. For this purpose, the conductivity dynamic modulus Mσp-T, being defined as the ratio of activation energy (Ep) and activation volume (VT), and its relation to bulk modulus BT under isobaric and isothermal conditions is examined. We found that both isobaric cooling and isothermal compression lead to an increase in Mσp-T. Specifically, Mσp-T(P)T rises linearly similar to BT. Consequently, a direct linear relationship between Mσp-T(P)T and BT is established under isothermal conditions.
Collapse
Affiliation(s)
- Shinian Cheng
- Institute of Physics, University of Silesia in Katowice, 75 Pułku Piechoty 1A, 41-500 Chorzów, Poland.
| | - Zaneta Wojnarowska
- Institute of Physics, University of Silesia in Katowice, 75 Pułku Piechoty 1A, 41-500 Chorzów, Poland.
| | - Małgorzata Musiał
- Institute of Physics, University of Silesia in Katowice, 75 Pułku Piechoty 1A, 41-500 Chorzów, Poland.
| | - Marian Paluch
- Institute of Physics, University of Silesia in Katowice, 75 Pułku Piechoty 1A, 41-500 Chorzów, Poland.
| |
Collapse
|
6
|
Cheng S, Musiał M, Wojnarowska Z, Holt A, Roland CM, Drockenmuller E, Paluch M. Structurally Related Scaling Behavior in Ionic Systems. J Phys Chem B 2020; 124:1240-1244. [PMID: 31999929 PMCID: PMC7497657 DOI: 10.1021/acs.jpcb.9b10783] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 01/27/2020] [Indexed: 01/12/2023]
Abstract
We examine the density scaling properties of two ionic materials, a classic aprotic low molecular weight ionic liquid, 1-butyl-3-methylimidazolium bis(perfluoroethylsulfonyl)imide ([BMIm][BETI]), and a polymeric ionic liquid, poly(3-methyl-1,2,3-triazolium bis(trifluoromethylsulfonyl)imide) (TPIL). Density scaling is known to apply rigorously to simple liquids lacking specific intermolecular associations such as hydrogen bonds. Previous work has found that ionic liquids conform to density scaling over limited ranges of temperature and pressure. In this work, we find that the dc-conductivity of [BMIm][BETI] accurately scales for density changes of 17%; however, there is a departure from scaling for TPIL for even more modest variations of temperature and pressure. The entropy of both ionic samples conforms to density scaling only if the scaling exponent is allowed to vary linearly with the magnitude of the entropy.
Collapse
Affiliation(s)
- S. Cheng
- Institute
of Physics, University of Silesia in Katowice,
Silesian Center for Education and Interdisciplinary Research, 75 Pułku Piechoty 1A, 41−500 Chorzów, Poland
| | - M. Musiał
- Institute
of Physics, University of Silesia in Katowice,
Silesian Center for Education and Interdisciplinary Research, 75 Pułku Piechoty 1A, 41−500 Chorzów, Poland
| | - Z. Wojnarowska
- Institute
of Physics, University of Silesia in Katowice,
Silesian Center for Education and Interdisciplinary Research, 75 Pułku Piechoty 1A, 41−500 Chorzów, Poland
| | - A. Holt
- Naval
Research Laboratory, Chemistry Division, Washington, DC 20375-5342, United States
| | - C. M. Roland
- Naval
Research Laboratory, Chemistry Division, Washington, DC 20375-5342, United States
| | - E. Drockenmuller
- Univ
Lyon, Université Lyon 1, CNRS, Ingénierie des Matériaux Polymères, UMR
5223, F-69003, Lyon, France
| | - M. Paluch
- Institute
of Physics, University of Silesia in Katowice,
Silesian Center for Education and Interdisciplinary Research, 75 Pułku Piechoty 1A, 41−500 Chorzów, Poland
| |
Collapse
|
7
|
Chat K, Szklarz G, Adrjanowicz K. Testing density scaling in nanopore-confinement for hydrogen-bonded liquid dipropylene glycol. RSC Adv 2019; 9:20954-20962. [PMID: 35515549 PMCID: PMC9065994 DOI: 10.1039/c9ra02289a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 06/28/2019] [Indexed: 12/30/2022] Open
Abstract
Recently, it has been demonstrated that the glassy dynamics of the molecular liquids and polymers confined at the nanoscale level might satisfy the density scaling law (ρ γ /T) with the same value of the scaling exponent, γ, as that determined from the high-pressure studies of the bulk material. In this work, we have tested the validity of this interesting experimental finding for strongly hydrogen-bonded molecular liquid, dipropylene glycol (DPG), which is known to violate the ρ γ /T scaling rule in the supercooled liquid bulk state. The results of the independent dielectric relaxation studies carried out on increased pressure and in nanopores, have led to an important finding that when the density change induced by geometrical confinement is not very large, DPG can still obey the density scaling law with the same value of the scaling exponent as that found for the bulk sample. In this way, we confirm that the information obtained from the universal density scaling approach applied to nanoscale confined systems is somehow consistent with the macroscopic ones and that in both cases the same fundamental rules governs the glass-transition dynamics.
Collapse
Affiliation(s)
- Katarzyna Chat
- Institute of Physics, University of Silesia 75 Pulku Piechoty 1 41-500 Chorzow Poland
- Silesian Center for Education and Interdisciplinary Research (SMCEBI) 75 Pulku Piechoty 1a 41-500 Chorzow Poland
| | - Grzegorz Szklarz
- Institute of Physics, University of Silesia 75 Pulku Piechoty 1 41-500 Chorzow Poland
- Silesian Center for Education and Interdisciplinary Research (SMCEBI) 75 Pulku Piechoty 1a 41-500 Chorzow Poland
| | - Karolina Adrjanowicz
- Institute of Physics, University of Silesia 75 Pulku Piechoty 1 41-500 Chorzow Poland
- Silesian Center for Education and Interdisciplinary Research (SMCEBI) 75 Pulku Piechoty 1a 41-500 Chorzow Poland
| |
Collapse
|
8
|
Koperwas K, Grzybowski A, Paluch M. The effect of molecular architecture on the physical properties of supercooled liquids studied by MD simulations: Density scaling and its relation to the equation of state. J Chem Phys 2019; 150:014501. [PMID: 30621418 DOI: 10.1063/1.5050330] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Theoretical concepts in condensed matter physics are typically verified and also developed by exploiting computer simulations mostly in simple models. Predictions based on these usually isotropic models are often at odds with measurement results obtained for real materials. One of the examples is an intriguing problem within the density scaling idea that has attracted attention in recent decades due to its hallmarks of universality, i.e., the fact that the difference between the density scaling exponent and the exponent of the equation of state is observed for real materials, whereas it has not been reported for the model system. In this paper, we use new model molecules of simple but anisotropic architecture to study the effect of molecular anisotropy on the dynamic and thermodynamic properties of the system. We identify the applicable range of intermolecular interactions for a given physical process, and then we explain the reason for observed differences between the behavior of the model and real systems. It demonstrates that the new model systems open broad perspectives for simulation and theoretical research, for example, into unifying concepts in the glass transition physics.
Collapse
Affiliation(s)
- K Koperwas
- Institute of Physics, University of Silesia in Katowice, 75 Pułku Piechoty 1, 41-500 Chorzów, Poland
| | - A Grzybowski
- Institute of Physics, University of Silesia in Katowice, 75 Pułku Piechoty 1, 41-500 Chorzów, Poland
| | - M Paluch
- Institute of Physics, University of Silesia in Katowice, 75 Pułku Piechoty 1, 41-500 Chorzów, Poland
| |
Collapse
|
9
|
Hansen HW, Frick B, Capaccioli S, Sanz A, Niss K. Isochronal superposition and density scaling of the α-relaxation from pico- to millisecond. J Chem Phys 2018; 149:214503. [DOI: 10.1063/1.5055665] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Henriette Wase Hansen
- Glass and Time, IMFUFA, Department of Science and Environment, Roskilde University, P.O. Box 260, DK-4000 Roskilde, Denmark
- Institut Laue-Langevin, 71 Avenue des Martyrs, CS 20156, 38042 Grenoble Cedex 9, France
| | - Bernhard Frick
- Institut Laue-Langevin, 71 Avenue des Martyrs, CS 20156, 38042 Grenoble Cedex 9, France
| | - Simone Capaccioli
- Dipartimento di Fisica, Università di Pisa, Largo B. Pontecorvo 3, I-56127 Pisa, Italy
| | - Alejandro Sanz
- Glass and Time, IMFUFA, Department of Science and Environment, Roskilde University, P.O. Box 260, DK-4000 Roskilde, Denmark
| | - Kristine Niss
- Glass and Time, IMFUFA, Department of Science and Environment, Roskilde University, P.O. Box 260, DK-4000 Roskilde, Denmark
| |
Collapse
|
10
|
Hansen HW, Sanz A, Adrjanowicz K, Frick B, Niss K. Evidence of a one-dimensional thermodynamic phase diagram for simple glass-formers. Nat Commun 2018; 9:518. [PMID: 29410398 PMCID: PMC5802781 DOI: 10.1038/s41467-017-02324-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 11/20/2017] [Indexed: 11/09/2022] Open
Abstract
Glass formers show motional processes over an extremely broad range of timescales, covering more than ten orders of magnitude, meaning that a full understanding of the glass transition needs to comprise this tremendous range in timescales. Here we report simultaneous dielectric and neutron spectroscopy investigations of three glass-forming liquids, probing in a single experiment the full range of dynamics. For two van der Waals liquids, we locate in the pressure-temperature phase diagram lines of identical dynamics of the molecules on both second and picosecond timescales. This confirms predictions of the isomorph theory and effectively reduces the phase diagram from two to one dimension. The implication is that dynamics on widely different timescales are governed by the same underlying mechanisms.
Collapse
Affiliation(s)
- H W Hansen
- Glass and Time, IMFUFA, Department of Science and Environment, Roskilde University, Postbox 260, DK-4000, Roskilde, Denmark
| | - A Sanz
- Glass and Time, IMFUFA, Department of Science and Environment, Roskilde University, Postbox 260, DK-4000, Roskilde, Denmark
| | - K Adrjanowicz
- Institute of Physics, University of Silesia, ul. Uniwersytecka 4, 40-007, Katowice, Poland
| | - B Frick
- Institut Laue-Langevin, 71 avenue des Martyrs, CS 20156, 38042, Grenoble Cedex 9, France
| | - K Niss
- Glass and Time, IMFUFA, Department of Science and Environment, Roskilde University, Postbox 260, DK-4000, Roskilde, Denmark.
| |
Collapse
|
11
|
López ER, Fandiño O, Cabaleiro D, Lugo L, Fernández J. Determination of derived volumetric properties and heat capacities at high pressures using two density scaling based equations of state. Application to dipentaerythritol hexa(3,5,5-trimethylhexanoate). Phys Chem Chem Phys 2018; 20:3531-3542. [DOI: 10.1039/c7cp07180a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Scaling based EoSs describe the complex behavior of derived properties for broad temperature and pressure ranges from diPEiC9 experimental densities.
Collapse
Affiliation(s)
- E. R. López
- Laboratorio de Propiedades Termofísicas
- Grupo NaFoMat
- Departamento de Física Aplicada
- Universidade de Santiago de Compostela
- E-15782 Santiago de Compostela
| | - O. Fandiño
- Laboratorio de Propiedades Termofísicas
- Grupo NaFoMat
- Departamento de Física Aplicada
- Universidade de Santiago de Compostela
- E-15782 Santiago de Compostela
| | - D. Cabaleiro
- Departamento de Física Aplicada
- Facultade de Ciencias
- Universidade de Vigo
- E-36310 Vigo
- Spain
| | - L. Lugo
- Laboratorio de Propiedades Termofísicas
- Grupo NaFoMat
- Departamento de Física Aplicada
- Universidade de Santiago de Compostela
- E-15782 Santiago de Compostela
| | - J. Fernández
- Laboratorio de Propiedades Termofísicas
- Grupo NaFoMat
- Departamento de Física Aplicada
- Universidade de Santiago de Compostela
- E-15782 Santiago de Compostela
| |
Collapse
|
12
|
Guimarey MJG, Comuñas MJP, López ER, Amigo A, Fernández J. Volumetric Behavior of Some Motor and Gear-Boxes Oils at High Pressure: Compressibility Estimation at EHL Conditions. Ind Eng Chem Res 2017. [DOI: 10.1021/acs.iecr.7b02002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- María J. G. Guimarey
- Laboratorio
de Propiedades Termofísicas, Grupo Nafomat, Departamento de
Física Aplicada, Facultad de Física, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - María J. P. Comuñas
- Laboratorio
de Propiedades Termofísicas, Grupo Nafomat, Departamento de
Física Aplicada, Facultad de Física, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Enriqueta R. López
- Laboratorio
de Propiedades Termofísicas, Grupo Nafomat, Departamento de
Física Aplicada, Facultad de Física, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Alfredo Amigo
- Laboratorio
de Propiedades Termofísicas y Superficiales de Líquidos,
Departamento de Física Aplicada, Facultad de Física, Universidad de Santiago de Compostela, 15782 Santiago
de Compostela, Spain
| | - Josefa Fernández
- Laboratorio
de Propiedades Termofísicas, Grupo Nafomat, Departamento de
Física Aplicada, Facultad de Física, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| |
Collapse
|
13
|
Jedrzejowska A, Grzybowski A, Paluch M. In search of invariants for viscous liquids in the density scaling regime: investigations of dynamic and thermodynamic moduli. Phys Chem Chem Phys 2017; 19:18348-18355. [PMID: 28678273 DOI: 10.1039/c7cp01144j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
In this paper, we report the nontrivial results of our investigations of dynamic and thermodynamic moduli in search of invariants for viscous liquids in the density scaling regime by using selected supercooled van der Waals liquids as representative materials. Previously, the dynamic modulus Mp-T (defined in the pressure-temperature representation by the ratio of isobaric activation energy and activation volume) as well as the ratio BT/Mp-T (where BT is the thermodynamic modulus defined as the inverse isothermal compressibility) have been suggested as some kinds of material constants. We have established that they are not valid in the explored wide range of temperatures T over a dozen decades of structural relaxation times τ. The temperature dependences of Mp-T and BT/Mp-T have been elucidated by comparison with the well-known measure of the relative contribution of temperature and density fluctuations to molecular dynamics near the glass transition, i.e., the ratio of isochoric and isobaric activation energies. Then, we have implemented an idea to transform the definition of the dynamic modulus Mp-T from the p-T representation to the V-T one. This idea relied on the disentanglement of combined temperature and density fluctuations involved in isobaric parameters and has resulted in finding an invariant for viscous liquids in the density scaling regime, which is the ratio of thermodynamic and dynamic moduli, BT/MV-T. In this way, we have constituted a characteristic of thermodynamics and molecular dynamics, which remains unchanged in the supercooled liquid state for a given material, the molecular dynamics of which obeys the power density scaling law.
Collapse
Affiliation(s)
- Agnieszka Jedrzejowska
- Institute of Physics, University of Silesia in Katowice, Uniwersytecka 4, 40-007 Katowice, Poland.
| | | | | |
Collapse
|
14
|
Shrivastav G, Agarwal M, Chakravarty C, Kashyap HK. Thermodynamic regimes over which homologous alkane fluids can be treated as simple liquids. J Mol Liq 2017. [DOI: 10.1016/j.molliq.2017.01.085] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
15
|
Activation volume of selected liquid crystals in the density scaling regime. Sci Rep 2017; 7:42174. [PMID: 28181530 PMCID: PMC5299607 DOI: 10.1038/srep42174] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 01/06/2017] [Indexed: 01/20/2023] Open
Abstract
In this paper, we demonstrate and thoroughly analyze the activation volumetric properties of selected liquid crystals in the nematic and crystalline E phases in comparison with those reported for glass-forming liquids. In the analysis, we have employed and evaluated two entropic models (based on either total or configurational entropies) to describe the longitudinal relaxation times of the liquid crystals in the density scaling regime. In this study, we have also exploited two equations of state: volumetric and activation volumetric ones. As a result, we have established that the activation volumetric properties of the selected liquid crystals are quite opposite to such typical properties of glass-forming materials, i.e., the activation volume decreases and the isothermal bulk modulus increases when a liquid crystal is isothermally compressed. Using the model based on the configurational entropy, we suggest that the increasing pressure dependences of the activation volume in isothermal conditions and the negative curvature of the pressure dependences of isothermal longitudinal relaxation times can be related to the formation of antiparallel doublets in the examined liquid crystals. A similar pressure effect on relaxation dynamics may be also observed for other material groups in case of systems, the molecules of which form some supramolecular structures.
Collapse
|
16
|
Grzybowska K, Capaccioli S, Paluch M. Recent developments in the experimental investigations of relaxations in pharmaceuticals by dielectric techniques at ambient and elevated pressure. Adv Drug Deliv Rev 2016; 100:158-82. [PMID: 26705851 DOI: 10.1016/j.addr.2015.12.008] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 12/05/2015] [Accepted: 12/09/2015] [Indexed: 10/22/2022]
Abstract
In recent years, there is a growing interest in improving the physicochemical stability of amorphous pharmaceutical solids due to their very promising applications to manufacture medicines characterized by a better water solubility, and consequently by a higher dissolution rate than those of their crystalline counterparts. In this review article, we show that the molecular mobility investigated both in the supercooled liquid and glassy states is the crucial factor required to understand molecular mechanisms that govern the physical stability of amorphous drugs. We demonstrate that pharmaceuticals can be thoroughly examined by means of the broadband dielectric spectroscopy, which is a very useful experimental technique to explore different relaxation processes and crystallization kinetics as well. Such studies conducted in the wide temperature and pressure ranges provide data needed in searching correlations between properties of molecular dynamics and crystallization process, which are aimed at developing effective and efficient methods for stabilizing amorphous drugs.
Collapse
|
17
|
Adrjanowicz K, Kaminski K, Tarnacka M, Szutkowski K, Popenda L, Bartkowiak G, Paluch M. The effect of hydrogen bonding propensity and enantiomeric composition on the dynamics of supercooled ketoprofen - dielectric, rheological and NMR studies. Phys Chem Chem Phys 2016; 18:10585-93. [PMID: 27035123 DOI: 10.1039/c6cp00578k] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The aim of this work is to analyze in detail the effect of small hydrogen bonding (HB) structures and enantiomeric composition on the dynamics of glass-forming liquid ketoprofen. For that purpose dielectric relaxation, rheological and NMR studies were performed. Investigated samples are racemic ketoprofen, a single enantiomer of ketoprofen and a racemic ketoprofen methyl ester with no tendency to form HB dimers. The combination of complementary experimental techniques enables us to show that macroscopic viscosity η and α-relaxation time τα have nearly the same temperature dependencies, whereas the relation between the viscosity (or molecular reorientation) and the translational self-diffusion coefficient violates Stokes-Einstein law already at high temperature. Additionally, based on dielectric relaxation studies performed on increased pressure we were able to identify similarities and key differences in the supercooled liquid dynamics of investigated materials affected by their tendency to form intermolecular hydrogen bonds. This includes the effect of pressure on the glass transition temperature Tg, changes in the fragility parameter m and activation volume ΔV, the role of thermal energy and density fluctuations in governing the viscous liquid dynamics (Ev/Ep ratio). Finally, we have also demonstrated that the dynamic behaviour of a single enantiomer and the racemic mixture of the same compound are very much alike. Nevertheless, some slight differences were observed, particularly in the τα(T) dependencies measured in the vicinity of glass transition both at ambient and elevated pressure.
Collapse
Affiliation(s)
- K Adrjanowicz
- NanoBioMedical Centre, Adam Mickiewicz University, ul. Umultowska 85, 61-614 Poznan, Poland
| | | | | | | | | | | | | |
Collapse
|
18
|
Adrjanowicz K, Pionteck J, Paluch M. Isochronal superposition and density scaling of the intermolecular dynamics in glass-forming liquids with varying hydrogen bonding propensity. RSC Adv 2016. [DOI: 10.1039/c6ra08406k] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We have tested the idea of thermodynamic scaling T−1ργ and isochronal superposition in glass-forming liquids with varying propensity to form hydrogen bonds.
Collapse
Affiliation(s)
- K. Adrjanowicz
- Institute of Physics
- University of Silesia
- Katowice
- Poland
- NanoBioMedical Centre
| | - J. Pionteck
- Leibniz Institute of Polymer Research Dresden
- Dresden
- Germany
| | - M. Paluch
- Institute of Physics
- University of Silesia
- Katowice
- Poland
- SMCEBI
| |
Collapse
|
19
|
Adrjanowicz K, Kaminski K, Koperwas K, Paluch M. Negative Pressure Vitrification of the Isochorically Confined Liquid in Nanopores. PHYSICAL REVIEW LETTERS 2015; 115:265702. [PMID: 26765007 DOI: 10.1103/physrevlett.115.265702] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Indexed: 06/05/2023]
Abstract
Dielectric relaxation studies for model glass-forming liquids confined to nanoporous alumina matrices were examined together with high-pressure results. For confined liquids which show the deviation from bulk dynamics upon approaching the glass transition (the change from the Vogel-Fulcher-Tammann to the Arrhenius law), we have observed a striking agreement between the temperature dependence of the α-relaxation time in the Arrhenius-like region and the isochoric relaxation times extrapolated from the positive range of pressure to the negative pressure domain. Our finding provides strong evidence that glass-forming liquid confined to native nanopores enters the isochoric conditions once the mobility of the interfacial layer becomes frozen in. This results in the negative pressure effects on cooling. We also demonstrate that differences in the sensitivity of various glass-forming liquids to the "confinement effects" can be rationalized by considering the relative importance of thermal energy and density contributions in controlling the α-relaxation dynamics (the E(v)/E(p) ratio).
Collapse
Affiliation(s)
- K Adrjanowicz
- Institute of Physics, University of Silesia, ulica Uniwersytecka 4, 40-007 Katowice, Poland
- NanoBioMedical Centre, Adam Mickiewicz University, ulica Umultowska 85, 61-614 Poznan, Poland
| | - K Kaminski
- Institute of Physics, University of Silesia, ulica Uniwersytecka 4, 40-007 Katowice, Poland
- Silesian Center for Education and Interdisciplinary Research, ulica 75 Pulku Piechoty 1a, 41-500 Chorzow, Poland
| | - K Koperwas
- Institute of Physics, University of Silesia, ulica Uniwersytecka 4, 40-007 Katowice, Poland
- Silesian Center for Education and Interdisciplinary Research, ulica 75 Pulku Piechoty 1a, 41-500 Chorzow, Poland
| | - M Paluch
- Institute of Physics, University of Silesia, ulica Uniwersytecka 4, 40-007 Katowice, Poland
- Silesian Center for Education and Interdisciplinary Research, ulica 75 Pulku Piechoty 1a, 41-500 Chorzow, Poland
| |
Collapse
|
20
|
Koperwas K, Grzybowski A, Tripathy SN, Masiewicz E, Paluch M. Thermodynamic consequences of the kinetic nature of the glass transition. Sci Rep 2015; 5:17782. [PMID: 26657017 PMCID: PMC4674716 DOI: 10.1038/srep17782] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 11/03/2015] [Indexed: 01/18/2023] Open
Abstract
In this paper, we consider the glass transition as a kinetic process and establish one universal equation for the pressure coefficient of the glass transition temperature, dTg/dp, which is a thermodynamic characteristic of this process. Our findings challenge the common previous expectations concerning key characteristics of the transformation from the liquid to the glassy state, because it suggests that without employing an additional condition, met in the glass transition, derivation of the two independent equations for dTg/dp is not possible. Hence, the relation among the thermodynamic coefficients, which could be equivalent to the well-known Prigogine-Defay ratio for the process under consideration, cannot be obtained. Besides, by comparing the predictions of our universal equation for dTg/dp and Ehrenfest equations, we find the aforementioned supplementary restriction, which must be met to use the Prigogine-Defay ratio for the glass transition.
Collapse
Affiliation(s)
- Kajetan Koperwas
- Institute of Physics, University of Silesia, Uniwersytecka
4, 40-007
Katowice, Poland
- Silesian Center for Education and Interdisciplinary
Research, 75 Pulku Piechoty 1A, 41-500
Chorzow, Poland
| | - Andrzej Grzybowski
- Institute of Physics, University of Silesia, Uniwersytecka
4, 40-007
Katowice, Poland
- Silesian Center for Education and Interdisciplinary
Research, 75 Pulku Piechoty 1A, 41-500
Chorzow, Poland
| | - Satya N. Tripathy
- Institute of Physics, University of Silesia, Uniwersytecka
4, 40-007
Katowice, Poland
- Silesian Center for Education and Interdisciplinary
Research, 75 Pulku Piechoty 1A, 41-500
Chorzow, Poland
| | - Elzbieta Masiewicz
- Institute of Physics, University of Silesia, Uniwersytecka
4, 40-007
Katowice, Poland
- Silesian Center for Education and Interdisciplinary
Research, 75 Pulku Piechoty 1A, 41-500
Chorzow, Poland
| | - Marian Paluch
- Institute of Physics, University of Silesia, Uniwersytecka
4, 40-007
Katowice, Poland
- Silesian Center for Education and Interdisciplinary
Research, 75 Pulku Piechoty 1A, 41-500
Chorzow, Poland
| |
Collapse
|
21
|
Ionic liquids and their bases: Striking differences in the dynamic heterogeneity near the glass transition. Sci Rep 2015; 5:16876. [PMID: 26582136 PMCID: PMC4652270 DOI: 10.1038/srep16876] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Accepted: 10/21/2015] [Indexed: 11/08/2022] Open
Abstract
Ionic liquids (ILs) constitute an active field of research due to their important applications. A challenge for these investigations is to explore properties of ILs near the glass transition temperature Tg, which still require our better understanding. To shed a new light on the issues, we measured ILs and their base counterparts using the temperature modulated calorimetry. We performed a comparative analysis of the dynamic heterogeneity at Tg for bases and their salts with a simple monoatomic anion (Cl(-)). Each pair of ionic and non-ionic liquids is characterized by nearly the same chemical structure but their intermolecular interactions are completely different. We found that the size of the dynamic heterogeneity of ILs near Tg is considerably smaller than that established for their dipolar counterparts. Further results obtained for several other ILs near Tg additionally strengthen the conclusion about the relatively small size of the dynamic heterogeneity of molecular systems dominated by electrostatic interactions. Our finding opens up new perspectives on designing different material properties depending on intermolecular interaction types.
Collapse
|
22
|
Masiewicz E, Grzybowski A, Grzybowska K, Pawlus S, Pionteck J, Paluch M. Adam-Gibbs model in the density scaling regime and its implications for the configurational entropy scaling. Sci Rep 2015; 5:13998. [PMID: 26365623 PMCID: PMC4568462 DOI: 10.1038/srep13998] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 07/31/2015] [Indexed: 11/15/2022] Open
Abstract
To solve a long-standing problem of condensed matter physics with determining a proper description of the thermodynamic evolution of the time scale of molecular dynamics near the glass transition, we have extended the well-known Adam-Gibbs model to describe the temperature-volume dependence of structural relaxation times, τα(T, V). We also employ the thermodynamic scaling idea reflected in the density scaling power law, τα = f(T−1V−γ), recently acknowledged as a valid unifying concept in the glass transition physics, to differentiate between physically relevant and irrelevant attempts at formulating the temperature-volume representations of the Adam-Gibbs model. As a consequence, we determine a straightforward relation between the structural relaxation time τα and the configurational entropy SC, giving evidence that also SC(T, V) = g(T−1V−γ) with the exponent γ that enables to scale τα(T, V). This important findings have meaningful implications for the connection between thermodynamics and molecular dynamics near the glass transition, because it implies that τα can be scaled with SC.
Collapse
Affiliation(s)
- Elżbieta Masiewicz
- Institute of Physics, University of Silesia, Uniwersytecka 4, 40-007 Katowice, Poland.,Silesian Center for Education and Interdisciplinary Research, 75 Pułku Piechoty 1A, 41-500 Chorzów, Poland
| | - Andrzej Grzybowski
- Institute of Physics, University of Silesia, Uniwersytecka 4, 40-007 Katowice, Poland.,Silesian Center for Education and Interdisciplinary Research, 75 Pułku Piechoty 1A, 41-500 Chorzów, Poland
| | - Katarzyna Grzybowska
- Institute of Physics, University of Silesia, Uniwersytecka 4, 40-007 Katowice, Poland.,Silesian Center for Education and Interdisciplinary Research, 75 Pułku Piechoty 1A, 41-500 Chorzów, Poland
| | - Sebastian Pawlus
- Institute of Physics, University of Silesia, Uniwersytecka 4, 40-007 Katowice, Poland.,Silesian Center for Education and Interdisciplinary Research, 75 Pułku Piechoty 1A, 41-500 Chorzów, Poland
| | - Jürgen Pionteck
- Leibniz Institute of Polymer Research Dresden, Hohe Str. 6, D-01069 Dresden, Germany
| | - Marian Paluch
- Institute of Physics, University of Silesia, Uniwersytecka 4, 40-007 Katowice, Poland.,Silesian Center for Education and Interdisciplinary Research, 75 Pułku Piechoty 1A, 41-500 Chorzów, Poland
| |
Collapse
|
23
|
Koperwas K, Grzybowski A, Grzybowska K, Wojnarowska Z, Paluch M. Effects of dynamic heterogeneity and density scaling of molecular dynamics on the relationship among thermodynamic coefficients at the glass transition. J Chem Phys 2015; 143:024502. [DOI: 10.1063/1.4923005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- K. Koperwas
- Institute of Physics, University of Silesia, Uniwersytecka 4, 40-007 Katowice, Poland
- Silesian Center for Education and Interdisciplinary Research, 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland
| | - A. Grzybowski
- Institute of Physics, University of Silesia, Uniwersytecka 4, 40-007 Katowice, Poland
- Silesian Center for Education and Interdisciplinary Research, 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland
| | - K. Grzybowska
- Institute of Physics, University of Silesia, Uniwersytecka 4, 40-007 Katowice, Poland
- Silesian Center for Education and Interdisciplinary Research, 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland
| | - Z. Wojnarowska
- Institute of Physics, University of Silesia, Uniwersytecka 4, 40-007 Katowice, Poland
- Silesian Center for Education and Interdisciplinary Research, 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland
| | - M. Paluch
- Institute of Physics, University of Silesia, Uniwersytecka 4, 40-007 Katowice, Poland
- Silesian Center for Education and Interdisciplinary Research, 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland
| |
Collapse
|
24
|
Chorążewski M, Grzybowski A, Paluch M. Isobaric Thermal Expansion of Compressed 1,4-Dichlorobutane and 1-Bromo-4-chlorobutane: Transitiometric Results and a Novel Application of the General Density Scaling-Based Equation of State. Ind Eng Chem Res 2015. [DOI: 10.1021/acs.iecr.5b00953] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Mirosław Chorążewski
- Institute
of Chemistry, University of Silesia, Szkolna 9, 40-006 Katowice, Poland
| | - Andrzej Grzybowski
- Institute
of Physics, University of Silesia, Uniwersytecka 4, 40-007 Katowice, Poland
- Silesian Center for Education and Interdisciplinary Research, 75 Pułku Piechoty 1A, 41-500 Chorzów, Poland
| | - Marian Paluch
- Institute
of Physics, University of Silesia, Uniwersytecka 4, 40-007 Katowice, Poland
- Silesian Center for Education and Interdisciplinary Research, 75 Pułku Piechoty 1A, 41-500 Chorzów, Poland
| |
Collapse
|
25
|
Tarnacka M, Madejczyk O, Adrjanowicz K, Pionteck J, Kaminska E, Kamiński K, Paluch M. Thermodynamic scaling of molecular dynamics in supercooled liquid state of pharmaceuticals: Itraconazole and ketoconazole. J Chem Phys 2015; 142:224507. [PMID: 26071720 DOI: 10.1063/1.4921985] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Pressure-Volume-Temperature (PVT) measurements and broadband dielectric spectroscopy were carried out to investigate molecular dynamics and to test the validity of thermodynamic scaling of two homologous compounds of pharmaceutical activity: itraconazole and ketoconazole in the wide range of thermodynamic conditions. The pressure coefficients of the glass transition temperature (dT(g)/dp) for itraconazole and ketoconazole were determined to be equal to 183 and 228 K/GPa, respectively. However, for itraconazole, the additional transition to the nematic phase was observed and characterized by the pressure coefficient dT(n)/dp = 258 K/GPa. From PVT and dielectric data, we obtained that the liquid-nematic phase transition is governed by the relaxation time since it occurred at constant τ(α) = 10(-5) s. Furthermore, we plotted the obtained relaxation times as a function of T(-1)v(-γ), which has revealed that the validity of thermodynamic scaling with the γ exponent equals to 3.69 ± 0.04 and 3.64 ± 0.03 for itraconazole and ketoconazole, respectively. Further analysis of the scaling parameter in itraconazole revealed that it unexpectedly decreases with increasing relaxation time, which resulted in dramatic change of the shape of the thermodynamic scaling master curve. While in the case of ketoconazole, it remained the same within entire range of data (within experimental uncertainty). We suppose that in case of itraconazole, this peculiar behavior is related to the liquid crystals' properties of itraconazole molecule.
Collapse
Affiliation(s)
- M Tarnacka
- Institute of Physics, University of Silesia, ul. Uniwersytecka 4, 40-007 Katowice, Poland
| | - O Madejczyk
- Institute of Physics, University of Silesia, ul. Uniwersytecka 4, 40-007 Katowice, Poland
| | - K Adrjanowicz
- NanoBioMedical Centre, ul. Umultowska 85, 61-614 Poznan, Poland
| | - J Pionteck
- Leibniz Institute of Polymer Research Dresden, Hohe Strasse 6, D-01069 Dresden, Germany
| | - E Kaminska
- Department of Pharmacognosy and Phytochemistry, School of Pharmacy and Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, ul. Jagiellonska 4, 41-200 Sosnowiec, Poland
| | - K Kamiński
- Institute of Physics, University of Silesia, ul. Uniwersytecka 4, 40-007 Katowice, Poland
| | - M Paluch
- Institute of Physics, University of Silesia, ul. Uniwersytecka 4, 40-007 Katowice, Poland
| |
Collapse
|
26
|
Grzybowska K, Grzybowski A, Pawlus S, Pionteck J, Paluch M. Role of entropy in the thermodynamic evolution of the time scale of molecular dynamics near the glass transition. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 91:062305. [PMID: 26172717 DOI: 10.1103/physreve.91.062305] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Indexed: 06/04/2023]
Abstract
In this paper, we investigate how changes in the system entropy influence the characteristic time scale of the system molecular dynamics near the glass transition. Independently of any model of thermodynamic evolution of the time scale, against some previous suppositions, we show that the system entropy S is not sufficient to govern the time scale defined by structural relaxation time τ. In the density scaling regime, we argue that the decoupling between τ and S is a consequence of different values of the scaling exponents γ and γ(S) in the density scaling laws, τ=f(ρ(γ)/T) and S=h(ρ(γ(S))/T), where ρ and T denote density and temperature, respectively. It implies that the proper relation between τ and S requires supplementing with a density factor, u(ρ), i.e., τ=g(u(ρ)w(S)). This meaningful finding additionally demonstrates that the density scaling idea can be successfully used to separate physically relevant contributions to the time scale of molecular dynamics near the glass transition. The relation reported by us between τ and S constitutes a general pattern based on nonconfigurational quantities for describing the thermodynamic evolution of the characteristic time scale of molecular dynamics near the glass transition in the density scaling regime, which is a promising alternative to the approaches based as the Adam-Gibbs model on the configurational entropy that is difficult to evaluate in the entire thermodynamic space. As an example, we revise the Avramov entropic model of the dependence τ(T,ρ), giving evidence that its entropic basis has to be extended by the density dependence of the maximal energy barrier for structural relaxation. We also discuss the excess entropy S(ex), the density scaling of which is found to mimic the density scaling of the total system entropy S.
Collapse
Affiliation(s)
- K Grzybowska
- Institute of Physics, University of Silesia, Uniwersytecka 4, 40-007 Katowice, Poland
- Silesian Center for Education and Interdisciplinary Research, 75 Pułku Piechoty 1A, 41-500 Chorzów, Poland
| | - A Grzybowski
- Institute of Physics, University of Silesia, Uniwersytecka 4, 40-007 Katowice, Poland
- Silesian Center for Education and Interdisciplinary Research, 75 Pułku Piechoty 1A, 41-500 Chorzów, Poland
| | - S Pawlus
- Institute of Physics, University of Silesia, Uniwersytecka 4, 40-007 Katowice, Poland
- Silesian Center for Education and Interdisciplinary Research, 75 Pułku Piechoty 1A, 41-500 Chorzów, Poland
| | - J Pionteck
- Leibniz Institute of Polymer Research Dresden, Hohe Strasse 6, D-01069 Dresden, Germany
| | - M Paluch
- Institute of Physics, University of Silesia, Uniwersytecka 4, 40-007 Katowice, Poland
- Silesian Center for Education and Interdisciplinary Research, 75 Pułku Piechoty 1A, 41-500 Chorzów, Poland
| |
Collapse
|
27
|
Wojnarowska Z, Paluch M. Recent progress on dielectric properties of protic ionic liquids. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2015; 27:073202. [PMID: 25634823 DOI: 10.1088/0953-8984/27/7/073202] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Protic ionic liquids (PILs) are key materials for a wide range of emerging technologies. In particular, these systems have long been envisioned as promising candidates for fuel cells. Therefore, in recent years special attention has been devoted to thorough studies of these compounds. Amongst others, dielectric properties of PILs at ambient and elevated pressure have become the subject of intense research. The reason for this lies in the role of broadband dielectric spectroscopy in recognizing the conductivity mechanism in protic ionic systems. In this paper, we summarize the dielectric results of various PILs reflecting recent advances in this field.
Collapse
Affiliation(s)
- Zaneta Wojnarowska
- Institute of Physics, University of Silesia, Uniwersytecka 4, 40-007 Katowice, Poland
| | | |
Collapse
|
28
|
Paluch M, Masiewicz E, Grzybowski A, Pawlus S, Pionteck J, Wojnarowska Z. General rules prospected for the liquid fragility in various material groups and different thermodynamic conditions. J Chem Phys 2014; 141:134507. [DOI: 10.1063/1.4897208] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- M. Paluch
- Institute of Physics, University of Silesia, Uniwersytecka 4, 40-007 Katowice, Poland
- Silesian Center for Education and Interdisciplinary Research, 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland
| | - E. Masiewicz
- Institute of Physics, University of Silesia, Uniwersytecka 4, 40-007 Katowice, Poland
- Silesian Center for Education and Interdisciplinary Research, 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland
| | - A. Grzybowski
- Institute of Physics, University of Silesia, Uniwersytecka 4, 40-007 Katowice, Poland
- Silesian Center for Education and Interdisciplinary Research, 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland
| | - S. Pawlus
- Institute of Physics, University of Silesia, Uniwersytecka 4, 40-007 Katowice, Poland
- Silesian Center for Education and Interdisciplinary Research, 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland
| | - J. Pionteck
- Leibniz Institute of Polymer Research Dresden, Hohe Str. 6, D-01069 Dresden, Germany
| | - Z. Wojnarowska
- Institute of Physics, University of Silesia, Uniwersytecka 4, 40-007 Katowice, Poland
- Silesian Center for Education and Interdisciplinary Research, 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland
| |
Collapse
|
29
|
Abstract
Recent developments show that many liquids and solids have an approximate "hidden" scale invariance that implies the existence of lines in the thermodynamic phase diagram, so-called isomorphs, along which structure and dynamics in properly reduced units are invariant to a good approximation. This means that the phase diagram becomes effectively one-dimensional with regard to several physical properties. Liquids and solids with isomorphs include most or all van der Waals bonded systems and metals, as well as weakly ionic or dipolar systems. On the other hand, systems with directional bonding (hydrogen bonds or covalent bonds) or strong Coulomb forces generally do not exhibit hidden scale invariance. The article reviews the theory behind this picture of condensed matter and the evidence for it coming from computer simulations and experiments.
Collapse
Affiliation(s)
- Jeppe C Dyre
- DNRF Center "Glass and Time", IMFUFA, Department of Sciences, Roskilde University , P.O. Box 260, DK-4000 Roskilde, Denmark
| |
Collapse
|
30
|
Grzybowski A, Koperwas K, Paluch M. Equation of state in the generalized density scaling regime studied from ambient to ultra-high pressure conditions. J Chem Phys 2014; 140:044502. [DOI: 10.1063/1.4861907] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
31
|
Voyiatzis E, Müller-Plathe F, Böhm MC. Excess entropy scaling for the segmental and global dynamics of polyethylene melts. Phys Chem Chem Phys 2014; 16:24301-11. [DOI: 10.1039/c4cp03559c] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The range of validity of the Rosenfeld and Dzugutov excess entropy scaling laws is analyzed for unentangled linear polyethylene chains.
Collapse
Affiliation(s)
- Evangelos Voyiatzis
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie and Center of Smart Interfaces
- Technische Universität Darmstadt
- D-64287 Darmstadt, Germany
| | - Florian Müller-Plathe
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie and Center of Smart Interfaces
- Technische Universität Darmstadt
- D-64287 Darmstadt, Germany
| | - Michael C. Böhm
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie and Center of Smart Interfaces
- Technische Universität Darmstadt
- D-64287 Darmstadt, Germany
| |
Collapse
|
32
|
Chorążewski M, Grzybowski A, Paluch M. The complex, non-monotonic thermal response of the volumetric space of simple liquids. Phys Chem Chem Phys 2014; 16:19900-8. [PMID: 25117028 DOI: 10.1039/c4cp02350a] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We show that a non-monotonic solution of the equation ∂αp(p,T)/∂T = 0 divides the phase diagram of simple liquids into two parts.
Collapse
Affiliation(s)
- M. Chorążewski
- Institute of Chemistry
- University of Silesia
- 40-006 Katowice, Poland
| | - A. Grzybowski
- Institute of Physics
- University of Silesia
- 40-007 Katowice, Poland
- Silesian Center for Education and Interdisciplinary Research
- 41-500 Chorzów, Poland
| | - M. Paluch
- Institute of Physics
- University of Silesia
- 40-007 Katowice, Poland
- Silesian Center for Education and Interdisciplinary Research
- 41-500 Chorzów, Poland
| |
Collapse
|
33
|
Wojnarowska Z, Jarosz G, Grzybowski A, Pionteck J, Jacquemin J, Paluch M. On the scaling behavior of electric conductivity in [C4mim][NTf2]. Phys Chem Chem Phys 2014; 16:20444-50. [DOI: 10.1039/c4cp02253j] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
In this work we examine, for the first time, the molar conductivity behavior of the deeply supercooled room temperature ionic liquid [C4mim][NTf2] in the temperature, pressure and volume thermodynamic space in terms of density scaling regime (TVγ)−1 combined with the equation of state (EOS).
Collapse
Affiliation(s)
- Z. Wojnarowska
- Institute of Physics
- University of Silesia
- 40-007 Katowice, Poland
- Silesian Center for Education and Interdisciplinary Research
- 41-500 Chorzów, Poland
| | - G. Jarosz
- Institute of Physics
- University of Silesia
- 40-007 Katowice, Poland
- Silesian Center for Education and Interdisciplinary Research
- 41-500 Chorzów, Poland
| | - A. Grzybowski
- Institute of Physics
- University of Silesia
- 40-007 Katowice, Poland
- Silesian Center for Education and Interdisciplinary Research
- 41-500 Chorzów, Poland
| | - J. Pionteck
- Leibniz Institute of Polymer Research Dresden
- D-01069 Dresden, Germany
| | - J. Jacquemin
- The School of Chemistry and Chemical Engineering/QUILL Research Centre
- Queen’s University of Belfast
- David Keir Building
- Belfast BT9 5AG, UK
| | - M. Paluch
- Institute of Physics
- University of Silesia
- 40-007 Katowice, Poland
- Silesian Center for Education and Interdisciplinary Research
- 41-500 Chorzów, Poland
| |
Collapse
|
34
|
Grzybowski A, Koperwas K, Kolodziejczyk K, Grzybowska K, Paluch M. Spatially Heterogeneous Dynamics in the Density Scaling Regime: Time and Length Scales of Molecular Dynamics near the Glass Transition. J Phys Chem Lett 2013; 4:4273-4278. [PMID: 26296178 DOI: 10.1021/jz402060x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Affiliation(s)
- A Grzybowski
- Institute of Physics, University of Silesia, Uniwersytecka 4, 40-007 Katowice, Poland
| | - K Koperwas
- Institute of Physics, University of Silesia, Uniwersytecka 4, 40-007 Katowice, Poland
| | - K Kolodziejczyk
- Institute of Physics, University of Silesia, Uniwersytecka 4, 40-007 Katowice, Poland
| | - K Grzybowska
- Institute of Physics, University of Silesia, Uniwersytecka 4, 40-007 Katowice, Poland
| | - M Paluch
- Institute of Physics, University of Silesia, Uniwersytecka 4, 40-007 Katowice, Poland
| |
Collapse
|
35
|
Koperwas K, Grzybowski A, Grzybowska K, Wojnarowska Z, Sokolov AP, Paluch M. Effect of temperature and density fluctuations on the spatially heterogeneous dynamics of glass-forming Van der Waals liquids under high pressure. PHYSICAL REVIEW LETTERS 2013; 111:125701. [PMID: 24093275 DOI: 10.1103/physrevlett.111.125701] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Indexed: 06/02/2023]
Abstract
In this Letter, we show how temperature and density fluctuations affect the spatially heterogeneous dynamics at ambient and elevated pressures. By using high-pressure experimental data for van der Waals liquids, we examine contributions of the temperature and density fluctuations to the dynamics heterogeneity. We show that the dynamic heterogeneity decreases significantly with increasing pressure at a constant structural relaxation time (isochronal condition), while the broadening of the relaxation spectrum remains constant. This observation questions the relationship between spectral broadening and dynamic heterogeneity.
Collapse
Affiliation(s)
- K Koperwas
- Institute of Physics, University of Silesia, Uniwersytecka 4, 40-007 Katowice, Poland
| | | | | | | | | | | |
Collapse
|
36
|
Swiety-Pospiech A, Wojnarowska Z, Hensel-Bielowka S, Pionteck J, Paluch M. Effect of pressure on decoupling of ionic conductivity from structural relaxation in hydrated protic ionic liquid, lidocaine HCl. J Chem Phys 2013; 138:204502. [DOI: 10.1063/1.4807487] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
|
37
|
Shell MS. Systematic coarse-graining of potential energy landscapes and dynamics in liquids. J Chem Phys 2013; 137:084503. [PMID: 22938246 DOI: 10.1063/1.4746391] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Recent efforts have shown that the dynamic properties of a wide class of liquids can be mapped onto semi-universal scaling laws and constitutive relations that are motivated by thermodynamic analyses of much simpler models. In particular, it has been found that many systems exhibit dynamics whose behavior in state space closely follows that of soft-sphere particles interacting through an inverse power repulsion. In the present work, we show that a recently developed coarse-graining theory provides a natural way to understand how arbitrary liquids can be mapped onto effective soft-sphere models and hence how one might potentially be able to extract underlying dynamical scaling laws. The theory is based on the relative entropy, an information metric that quantifies how well a soft-sphere approximation to a liquid's multidimensional potential energy landscape performs. We show that optimization of the relative entropy not only enables one to extract effective soft-sphere potentials that suggest an inherent scaling of thermodynamic and dynamic properties in temperature-density space, but that also has rather interesting connections to excess entropy based theories of liquid dynamics. We apply the approach to a binary mixture of Lennard-Jones particles, and show that it gives effective soft-sphere scaling laws that well-describe the behavior of the diffusion constants. Our results suggest that the relative entropy formalism may be useful for "perturbative" type theories of dynamics, offering a general strategy for systematically connecting complex energy landscapes to simpler reference ones with better understood dynamic behavior.
Collapse
Affiliation(s)
- M Scott Shell
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, California 93106-5080, USA.
| |
Collapse
|
38
|
Koperwas K, Grzybowski A, Grzybowska K, Wojnarowska Z, Pionteck J, Sokolov AP, Paluch M. Pressure coefficient of the glass transition temperature in the thermodynamic scaling regime. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2012; 86:041502. [PMID: 23214586 DOI: 10.1103/physreve.86.041502] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Indexed: 06/01/2023]
Abstract
We report that the pressure coefficient of the glass transition temperature, dT(g)/dp, which is commonly used to determine the pressure sensitivity of the glass transition temperature T(g), can be predicted in the thermodynamic scaling regime. We show that the equation derived from the isochronal condition combined with the well-known scaling, TV(γ) = const, predicts successfully values of dT(g)/dp for a variety of glass-forming systems, including van der Waals liquids, polymers, and ionic liquids.
Collapse
Affiliation(s)
- K Koperwas
- Institute of Physics, University of Silesia, Uniwersytecka 4, 40-007 Katowice, Poland
| | | | | | | | | | | | | |
Collapse
|
39
|
Masiewicz E, Grzybowski A, Sokolov AP, Paluch M. Temperature-Volume Entropic Model for Viscosities and Structural Relaxation Times of Glass Formers. J Phys Chem Lett 2012; 3:2643-2648. [PMID: 26295885 DOI: 10.1021/jz301168c] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
In this Letter, an entropic model recently formulated by Mauro et al. for the temperature dependence of viscosity in glass-forming materials is generalized to describe the temperature-volume dependences of viscosities and structural relaxation times near the glass transition. It is found that the generalization shows limitations of its temperature precursor. The extended model describes well the structural dielectric relaxation times τα(T,V) of supercooled van der Waals liquids. The obtained results are discussed in the context of the thermodynamic scaling law for molecular dynamics of viscous systems.
Collapse
Affiliation(s)
- E Masiewicz
- †Institute of Physics, University of Silesia, Uniwersytecka 4, 40-007 Katowice, Poland
| | - A Grzybowski
- †Institute of Physics, University of Silesia, Uniwersytecka 4, 40-007 Katowice, Poland
| | - A P Sokolov
- ‡Department of Chemistry, University of Tennessee Knoxville, Tennessee 37996, United States
| | - M Paluch
- †Institute of Physics, University of Silesia, Uniwersytecka 4, 40-007 Katowice, Poland
- ‡Department of Chemistry, University of Tennessee Knoxville, Tennessee 37996, United States
| |
Collapse
|
40
|
Grzybowski A, Koperwas K, Paluch M. Scaling of volumetric data in model systems based on the Lennard-Jones potential. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2012; 86:031501. [PMID: 23030917 DOI: 10.1103/physreve.86.031501] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Revised: 07/22/2012] [Indexed: 06/01/2023]
Abstract
The crucial problem for better understanding the nature of glass transition and related relaxation phenomena is to find proper interrelations between the molecular dynamics and thermodynamics of viscous systems. To make progress towards this goal the recently observed density scaling of viscous liquid dynamics has been very intensively and successfully studied in the past few years. However, previous attempts at related scaling of volumetric data yielded results inconsistent with those found from the density scaling of molecular dynamics. In this paper, we show that volumetric data obtained from simulations in simple molecular models based on the Lennard-Jones (LJ) potential, such as the Kob-Andersen binary LJ liquid, its repulsive inverse power-law version, and the Lewis-Wahnström o-terphenyl model, can be scaled by using the same value of the exponent, which scales dynamic quantities and is directly related to the exponent of the repulsive inverse power law that underlies short-range approximations of the LJ potential.
Collapse
Affiliation(s)
- A Grzybowski
- Institute of Physics, University of Silesia, Uniwersytecka 4, 40-007 Katowice, Poland.
| | | | | |
Collapse
|
41
|
Swiety-Pospiech A, Wojnarowska Z, Pionteck J, Pawlus S, Grzybowski A, Hensel-Bielowka S, Grzybowska K, Szulc A, Paluch M. High pressure study of molecular dynamics of protic ionic liquid lidocaine hydrochloride. J Chem Phys 2012; 136:224501. [DOI: 10.1063/1.4727885] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
42
|
López ER, Pensado AS, Fernández J, Harris KR. On the density scaling of pVT data and transport properties for molecular and ionic liquids. J Chem Phys 2012; 136:214502. [DOI: 10.1063/1.4720070] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
|