1
|
Szavits-Nossan J, Grima R. Solving stochastic gene-expression models using queueing theory: A tutorial review. Biophys J 2024; 123:1034-1057. [PMID: 38594901 PMCID: PMC11079947 DOI: 10.1016/j.bpj.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 02/12/2024] [Accepted: 04/02/2024] [Indexed: 04/11/2024] Open
Abstract
Stochastic models of gene expression are typically formulated using the chemical master equation, which can be solved exactly or approximately using a repertoire of analytical methods. Here, we provide a tutorial review of an alternative approach based on queueing theory that has rarely been used in the literature of gene expression. We discuss the interpretation of six types of infinite-server queues from the angle of stochastic single-cell biology and provide analytical expressions for the stationary and nonstationary distributions and/or moments of mRNA/protein numbers and bounds on the Fano factor. This approach may enable the solution of complex models that have hitherto evaded analytical solution.
Collapse
Affiliation(s)
- Juraj Szavits-Nossan
- School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Ramon Grima
- School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom.
| |
Collapse
|
2
|
Gorin G, Yoshida S, Pachter L. Assessing Markovian and Delay Models for Single-Nucleus RNA Sequencing. Bull Math Biol 2023; 85:114. [PMID: 37828255 DOI: 10.1007/s11538-023-01213-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 09/11/2023] [Indexed: 10/14/2023]
Abstract
The serial nature of reactions involved in the RNA life-cycle motivates the incorporation of delays in models of transcriptional dynamics. The models couple a transcriptional process to a fairly general set of delayed monomolecular reactions with no feedback. We provide numerical strategies for calculating the RNA copy number distributions induced by these models, and solve several systems with splicing, degradation, and catalysis. An analysis of single-cell and single-nucleus RNA sequencing data using these models reveals that the kinetics of nuclear export do not appear to require invocation of a non-Markovian waiting time.
Collapse
Affiliation(s)
- Gennady Gorin
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Shawn Yoshida
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Lior Pachter
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA.
- Department of Computing and Mathematical Sciences, California Institute of Technology, Pasadena, CA, 91125, USA.
| |
Collapse
|
3
|
Kim M, Kim E. Mathematical model of the cell signaling pathway based on the extended Boolean network model with a stochastic process. BMC Bioinformatics 2022; 23:515. [PMID: 36451112 PMCID: PMC9710037 DOI: 10.1186/s12859-022-05077-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 11/23/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND In cell signaling pathways, proteins interact with each other to determine cell fate in response to either cell-extrinsic (micro-environmental) or intrinsic cues. One of the well-studied pathways, the mitogen-activated protein kinase (MAPK) signaling pathway, regulates cell processes such as differentiation, proliferation, apoptosis, and survival in response to various micro-environmental stimuli in eukaryotes. Upon micro-environmental stimulus, receptors on the cell membrane become activated. Activated receptors initiate a cascade of protein activation in the MAPK pathway. This activation involves protein binding, creating scaffold proteins, which are known to facilitate effective MAPK signaling transduction. RESULTS This paper presents a novel mathematical model of a cell signaling pathway coordinated by protein scaffolding. The model is based on the extended Boolean network approach with stochastic processes. Protein production or decay in a cell was modeled considering the stochastic process, whereas the protein-protein interactions were modeled based on the extended Boolean network approach. Our model fills a gap in the binary set applied to previous models. The model simultaneously considers the stochastic process directly. Using the model, we simulated a simplified mitogen-activated protein kinase (MAPK) signaling pathway upon stimulation of both a single receptor at the initial time and multiple receptors at several time points. Our simulations showed that the signal is amplified as it travels down to the pathway from the receptor, generating substantially amplified downstream ERK activity. The noise generated by the stochastic process of protein self-activity in the model was also amplified as the signaling propagated through the pathway. CONCLUSIONS The signaling transduction in a simplified MAPK signaling pathway could be explained by a mathematical model based on the extended Boolean network model with a stochastic process. The model simulations demonstrated signaling amplifications when it travels downstream, which was already observed in experimental settings. We also highlight the importance of stochastic activity in regulating protein inactivation.
Collapse
Affiliation(s)
- Minsoo Kim
- grid.35541.360000000121053345Natural Product Informatics Research Center, Korea Institute of Science and Technology, Gangneung, South Korea
| | - Eunjung Kim
- grid.35541.360000000121053345Natural Product Informatics Research Center, Korea Institute of Science and Technology, Gangneung, South Korea
| |
Collapse
|
4
|
Baron JW, Peralta AF, Galla T, Toral R. Analytical and Numerical Treatment of Continuous Ageing in the Voter Model. ENTROPY (BASEL, SWITZERLAND) 2022; 24:1331. [PMID: 37420351 DOI: 10.3390/e24101331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/13/2022] [Accepted: 09/16/2022] [Indexed: 07/09/2023]
Abstract
The conventional voter model is modified so that an agent's switching rate depends on the 'age' of the agent-that is, the time since the agent last switched opinion. In contrast to previous work, age is continuous in the present model. We show how the resulting individual-based system with non-Markovian dynamics and concentration-dependent rates can be handled both computationally and analytically. The thinning algorithm of Lewis and Shedler can be modified in order to provide an efficient simulation method. Analytically, we demonstrate how the asymptotic approach to an absorbing state (consensus) can be deduced. We discuss three special cases of the age-dependent switching rate: one in which the concentration of voters can be approximated by a fractional differential equation, another for which the approach to consensus is exponential in time, and a third case in which the system reaches a frozen state instead of consensus. Finally, we include the effects of a spontaneous change of opinion, i.e., we study a noisy voter model with continuous ageing. We demonstrate that this can give rise to a continuous transition between coexistence and consensus phases. We also show how the stationary probability distribution can be approximated, despite the fact that the system cannot be described by a conventional master equation.
Collapse
Affiliation(s)
- Joseph W Baron
- Instituto de Física Interdisciplinar y Sistemas Complejos IFISC (CSIC-UIB), 07122 Palma de Mallorca, Spain
| | - Antonio F Peralta
- Department of Network and Data Science, Central European University, A-1100 Vienna, Austria
| | - Tobias Galla
- Instituto de Física Interdisciplinar y Sistemas Complejos IFISC (CSIC-UIB), 07122 Palma de Mallorca, Spain
| | - Raúl Toral
- Instituto de Física Interdisciplinar y Sistemas Complejos IFISC (CSIC-UIB), 07122 Palma de Mallorca, Spain
| |
Collapse
|
5
|
Öcal K, Gutmann MU, Sanguinetti G, Grima R. Inference and uncertainty quantification of stochastic gene expression via synthetic models. J R Soc Interface 2022; 19:20220153. [PMID: 35858045 PMCID: PMC9277240 DOI: 10.1098/rsif.2022.0153] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 06/21/2022] [Indexed: 12/26/2022] Open
Abstract
Estimating uncertainty in model predictions is a central task in quantitative biology. Biological models at the single-cell level are intrinsically stochastic and nonlinear, creating formidable challenges for their statistical estimation which inevitably has to rely on approximations that trade accuracy for tractability. Despite intensive interest, a sweet spot in this trade-off has not been found yet. We propose a flexible procedure for uncertainty quantification in a wide class of reaction networks describing stochastic gene expression including those with feedback. The method is based on creating a tractable coarse-graining of the model that is learned from simulations, a synthetic model, to approximate the likelihood function. We demonstrate that synthetic models can substantially outperform state-of-the-art approaches on a number of non-trivial systems and datasets, yielding an accurate and computationally viable solution to uncertainty quantification in stochastic models of gene expression.
Collapse
Affiliation(s)
- Kaan Öcal
- School of Informatics, University of Edinburgh, Edinburgh EH9 3JH, UK
- School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JH, UK
| | | | - Guido Sanguinetti
- Scuola Internazionale Superiore di Studi Avanzati, 34136 Trieste, Italy
| | - Ramon Grima
- School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JH, UK
| |
Collapse
|
6
|
Gorin G, Pachter L. Modeling bursty transcription and splicing with the chemical master equation. Biophys J 2022; 121:1056-1069. [PMID: 35143775 PMCID: PMC8943761 DOI: 10.1016/j.bpj.2022.02.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 11/29/2021] [Accepted: 02/03/2022] [Indexed: 11/16/2022] Open
Abstract
Splicing cascades that alter gene products posttranscriptionally also affect expression dynamics. We study a class of processes and associated distributions that emerge from models of bursty promoters coupled to directed acyclic graphs of splicing. These solutions provide full time-dependent joint distributions for an arbitrary number of species with general noise behaviors and transient phenomena, offering qualitative and quantitative insights about how splicing can regulate expression dynamics. Finally, we derive a set of quantitative constraints on the minimum complexity necessary to reproduce gene coexpression patterns using synchronized burst models. We validate these findings by analyzing long-read sequencing data, where we find evidence of expression patterns largely consistent with these constraints.
Collapse
Affiliation(s)
- Gennady Gorin
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California
| | - Lior Pachter
- Division of Biology and Biological Engineering & Department of Computing and Mathematical Sciences, California Institute of Technology, Pasadena, California.
| |
Collapse
|
7
|
Zhang Z, Deng Q, Wang Z, Chen Y, Zhou T. Exact results for queuing models of stochastic transcription with memory and crosstalk. Phys Rev E 2021; 103:062414. [PMID: 34271765 DOI: 10.1103/physreve.103.062414] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 06/03/2021] [Indexed: 11/07/2022]
Abstract
Gene transcription is a complex multistep biochemical process, which can create memory between individual reaction events. On the other hand, many inducible genes, when activated by external cues, are often coregulated by several competitive pathways with crosstalk. This raises an unexplored question: how do molecular memory and crosstalk together affect gene expressions? To address this question, we introduce a queuing model of stochastic transcription, where two crossing signaling pathways are used to direct gene activation in response to external signals and memory functions to model multistep reaction processes involved in transcription. We first establish, based on the total probability principle, the chemical master equation for this queuing model, and then we derive, based on the binomial moment approach, exact expressions for statistical quantities (including distributions) of mRNA, which provide insights into the roles of crosstalk and memory in controlling the mRNA level and noise. We find that molecular memory of gene activation decreases the mRNA level but increases the mRNA noise, and double activation pathways always reduce the mRNA noise in contrast to a single pathway. In addition, we find that molecular memory can make the mRNA bimodality disappear.
Collapse
Affiliation(s)
- Zhenquan Zhang
- Guangdong Province Key Laboratory of Computational Science, School of Mathematics, Sun Yat-sen University, Guangzhou 510275, China
| | - Qiqi Deng
- Guangdong Province Key Laboratory of Computational Science, School of Mathematics, Sun Yat-sen University, Guangzhou 510275, China
| | - Zihao Wang
- Guangdong Province Key Laboratory of Computational Science, School of Mathematics, Sun Yat-sen University, Guangzhou 510275, China
| | - Yiren Chen
- College of Mathematics and Statistics, Shenzhen University, Shenzhen 518060, China
| | - Tianshou Zhou
- Guangdong Province Key Laboratory of Computational Science, School of Mathematics, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
8
|
Jiang Q, Fu X, Yan S, Li R, Du W, Cao Z, Qian F, Grima R. Neural network aided approximation and parameter inference of non-Markovian models of gene expression. Nat Commun 2021; 12:2618. [PMID: 33976195 PMCID: PMC8113478 DOI: 10.1038/s41467-021-22919-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 04/07/2021] [Indexed: 02/03/2023] Open
Abstract
Non-Markovian models of stochastic biochemical kinetics often incorporate explicit time delays to effectively model large numbers of intermediate biochemical processes. Analysis and simulation of these models, as well as the inference of their parameters from data, are fraught with difficulties because the dynamics depends on the system's history. Here we use an artificial neural network to approximate the time-dependent distributions of non-Markovian models by the solutions of much simpler time-inhomogeneous Markovian models; the approximation does not increase the dimensionality of the model and simultaneously leads to inference of the kinetic parameters. The training of the neural network uses a relatively small set of noisy measurements generated by experimental data or stochastic simulations of the non-Markovian model. We show using a variety of models, where the delays stem from transcriptional processes and feedback control, that the Markovian models learnt by the neural network accurately reflect the stochastic dynamics across parameter space.
Collapse
Affiliation(s)
- Qingchao Jiang
- grid.28056.390000 0001 2163 4895Key Laboratory of Smart Manufacturing in Energy Chemical Process, Ministry of Education, East China University of Science and Technology, Shanghai, China
| | - Xiaoming Fu
- grid.28056.390000 0001 2163 4895Key Laboratory of Smart Manufacturing in Energy Chemical Process, Ministry of Education, East China University of Science and Technology, Shanghai, China ,grid.4305.20000 0004 1936 7988School of Biological Sciences, The University of Edinburgh, Edinburgh, Scotland UK
| | - Shifu Yan
- grid.28056.390000 0001 2163 4895Key Laboratory of Smart Manufacturing in Energy Chemical Process, Ministry of Education, East China University of Science and Technology, Shanghai, China
| | - Runlai Li
- grid.4280.e0000 0001 2180 6431Department of Chemistry, National University of Singapore, Singapore, Singapore
| | - Wenli Du
- grid.28056.390000 0001 2163 4895Key Laboratory of Smart Manufacturing in Energy Chemical Process, Ministry of Education, East China University of Science and Technology, Shanghai, China
| | - Zhixing Cao
- grid.28056.390000 0001 2163 4895Key Laboratory of Smart Manufacturing in Energy Chemical Process, Ministry of Education, East China University of Science and Technology, Shanghai, China ,grid.28056.390000 0001 2163 4895State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Feng Qian
- grid.28056.390000 0001 2163 4895Key Laboratory of Smart Manufacturing in Energy Chemical Process, Ministry of Education, East China University of Science and Technology, Shanghai, China
| | - Ramon Grima
- grid.4305.20000 0004 1936 7988School of Biological Sciences, The University of Edinburgh, Edinburgh, Scotland UK
| |
Collapse
|
9
|
Kirunda JB, Yang L, Lu L, Jia Y. Effects of noise and time delay on E2F's expression level in a bistable Rb-E2F gene's regulatory network. IET Syst Biol 2021; 15:111-125. [PMID: 33881232 PMCID: PMC8675803 DOI: 10.1049/syb2.12017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/18/2021] [Accepted: 03/24/2021] [Indexed: 12/15/2022] Open
Abstract
The bistable Rb-E2F gene regulatory network plays a central role in regulating cellular proliferation-quiescence transition. Based on Gillespie's chemical Langevin method, the stochastic bistable Rb-E2F gene's regulatory network with time delays is proposed. It is found that under the moderate intensity of internal noise, delay in the Cyclin E synthesis rate can greatly increase the average concentration value of E2F. When the delay is considered in both E2F-related positive feedback loops, within a specific range of delay (3-13) hr , the average expression of E2F is significantly increased. Also, this range is in the scope with that experimentally given by Dong et al. [65]. By analysing the quasi-potential curves at different delay times, simulation results show that delay regulates the dynamic behaviour of the system in the following way: small delay stabilises the bistable system; the medium delay is conducive to a high steady-state, making the system fluctuate near the high steady-state; large delay induces approximately periodic transitions between high and low steady-state. Therefore, by regulating noise and time delay, the cell itself can control the expression level of E2F to respond to different situations. These findings may provide an explanation of some experimental result intricacies related to the cell cycle.
Collapse
Affiliation(s)
- John Billy Kirunda
- Department of Physics and Institute of Biophysics, Central China Normal University, Wuhan, China
| | - Lijian Yang
- Department of Physics and Institute of Biophysics, Central China Normal University, Wuhan, China
| | - Lulu Lu
- Department of Physics and Institute of Biophysics, Central China Normal University, Wuhan, China
| | - Ya Jia
- Department of Physics and Institute of Biophysics, Central China Normal University, Wuhan, China
| |
Collapse
|
10
|
Escaff D, Rosas A, Toral R, Lindenberg K. Synchronization of coupled noisy oscillators: Coarse graining from continuous to discrete phases. Phys Rev E 2016; 94:052219. [PMID: 27967072 DOI: 10.1103/physreve.94.052219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Indexed: 06/06/2023]
Abstract
The theoretical description of synchronization phenomena often relies on coupled units of continuous time noisy Markov chains with a small number of states in each unit. It is frequently assumed, either explicitly or implicitly, that coupled discrete-state noisy Markov units can be used to model mathematically more complex coupled noisy continuous phase oscillators. In this work we explore conditions that justify this assumption by coarse graining continuous phase units. In particular, we determine the minimum number of states necessary to justify this correspondence for Kuramoto-like oscillators.
Collapse
Affiliation(s)
- Daniel Escaff
- Complex Systems Group, Facultad de Ingeniería y Ciencias Aplicadas, Universidad de los Andes, Avenida Monseñor Álvaro del Portillo No. 12.455, Las Condes, Santiago, Chile
| | - Alexandre Rosas
- Departamento de Física, CCEN, Universidade Federal da Paraíba, Caixa Postal 5008, 58059-900 João Pessoa, Brazil
| | - Raúl Toral
- IFISC (Instituto de Física Interdisciplinaria y Sistemas Complejos), CSIC-UIB, E-07122 Palma de Mallorca, Spain
| | - Katja Lindenberg
- Department of Chemistry and Biochemistry and BioCircuits Institute, University of California San Diego, La Jolla, California 92093-0340, USA
| |
Collapse
|
11
|
Brett T, Galla T. Generating functionals and Gaussian approximations for interruptible delay reactions. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 92:042105. [PMID: 26565166 DOI: 10.1103/physreve.92.042105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Indexed: 06/05/2023]
Abstract
We develop a generating functional description of the dynamics of non-Markovian individual-based systems in which delay reactions can be terminated before completion. This generalizes previous work in which a path-integral approach was applied to dynamics in which delay reactions complete with certainty. We construct a more widely applicable theory, and from it we derive Gaussian approximations of the dynamics, valid in the limit of large, but finite, population sizes. As an application of our theory we study predator-prey models with delay dynamics due to gestation or lag periods to reach the reproductive age. In particular, we focus on the effects of delay on noise-induced cycles.
Collapse
Affiliation(s)
- Tobias Brett
- Theoretical Physics, School of Physics and Astronomy, The University of Manchester, Manchester M13 9PL, United Kingdom
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan 48109, USA
- Center for the Study of Complex Systems, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Tobias Galla
- Theoretical Physics, School of Physics and Astronomy, The University of Manchester, Manchester M13 9PL, United Kingdom
| |
Collapse
|
12
|
Boguñá M, Lafuerza LF, Toral R, Serrano MÁ. Simulating non-Markovian stochastic processes. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 90:042108. [PMID: 25375439 DOI: 10.1103/physreve.90.042108] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2013] [Indexed: 05/12/2023]
Abstract
We present a simple and general framework to simulate statistically correct realizations of a system of non-Markovian discrete stochastic processes. We give the exact analytical solution and a practical and efficient algorithm like the Gillespie algorithm for Markovian processes, with the difference being that now the occurrence rates of the events depend on the time elapsed since the event last took place. We use our non-Markovian generalized Gillespie stochastic simulation methodology to investigate the effects of nonexponential interevent time distributions in the susceptible-infected-susceptible model of epidemic spreading. Strikingly, our results unveil the drastic effects that very subtle differences in the modeling of non-Markovian processes have on the global behavior of complex systems, with important implications for their understanding and prediction. We also assess our generalized Gillespie algorithm on a system of biochemical reactions with time delays. As compared to other existing methods, we find that the generalized Gillespie algorithm is the most general because it can be implemented very easily in cases (such as for delays coupled to the evolution of the system) in which other algorithms do not work or need adapted versions that are less efficient in computational terms.
Collapse
Affiliation(s)
- Marian Boguñá
- Departament de Física Fonamental, Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
| | - Luis F Lafuerza
- Theoretical Physics Division, School of Physics and Astronomy, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Raúl Toral
- IFISC (Instituto de Física Interdisciplinar y Sistemas Complejos), Universitat de les Illes Balears-CSIC, Palma de Mallorca, Spain
| | - M Ángeles Serrano
- Departament de Física Fonamental, Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
| |
Collapse
|
13
|
Brett T, Galla T. Gaussian approximations for stochastic systems with delay: Chemical Langevin equation and application to a Brusselator system. J Chem Phys 2014; 140:124112. [DOI: 10.1063/1.4867786] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
14
|
Lafuerza LF, Toral R. Stochastic description of delayed systems. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2013; 371:20120458. [PMID: 23960216 DOI: 10.1098/rsta.2012.0458] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
We study general stochastic birth and death processes including delay. We develop several approaches for the analytical treatment of these non-Markovian systems, valid, not only for constant delays, but also for stochastic delays with arbitrary probability distributions. The interplay between stochasticity and delay and, in particular, the effects of delay in the fluctuations and time correlations are discussed.
Collapse
Affiliation(s)
- L F Lafuerza
- IFISC, Instituto de Física Interdisciplinar y Sistemas Complejos, CSIC-UIB, Campus UIB, 07122 Palma de Mallorca, Spain
| | | |
Collapse
|
15
|
Brett T, Galla T. Stochastic processes with distributed delays: chemical Langevin equation and linear-noise approximation. PHYSICAL REVIEW LETTERS 2013; 110:250601. [PMID: 23829723 DOI: 10.1103/physrevlett.110.250601] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Indexed: 06/02/2023]
Abstract
We develop a systematic approach to the linear-noise approximation for stochastic reaction systems with distributed delays. Unlike most existing work our formalism does not rely on a master equation; instead it is based upon a dynamical generating functional describing the probability measure over all possible paths of the dynamics. We derive general expressions for the chemical Langevin equation for a broad class of non-Markovian systems with distributed delay. Exemplars of a model of gene regulation with delayed autoinhibition and a model of epidemic spread with delayed recovery provide evidence of the applicability of our results.
Collapse
Affiliation(s)
- Tobias Brett
- Theoretical Physics, School of Physics and Astronomy, The University of Manchester, Manchester M13 9PL, United Kingdom.
| | | |
Collapse
|
16
|
Pendar H, Platini T, Kulkarni RV. Exact protein distributions for stochastic models of gene expression using partitioning of Poisson processes. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013; 87:042720. [PMID: 23679462 DOI: 10.1103/physreve.87.042720] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2013] [Revised: 04/04/2013] [Indexed: 06/02/2023]
Abstract
Stochasticity in gene expression gives rise to fluctuations in protein levels across a population of genetically identical cells. Such fluctuations can lead to phenotypic variation in clonal populations; hence, there is considerable interest in quantifying noise in gene expression using stochastic models. However, obtaining exact analytical results for protein distributions has been an intractable task for all but the simplest models. Here, we invoke the partitioning property of Poisson processes to develop a mapping that significantly simplifies the analysis of stochastic models of gene expression. The mapping leads to exact protein distributions using results for mRNA distributions in models with promoter-based regulation. Using this approach, we derive exact analytical results for steady-state and time-dependent distributions for the basic two-stage model of gene expression. Furthermore, we show how the mapping leads to exact protein distributions for extensions of the basic model that include the effects of posttranscriptional and posttranslational regulation. The approach developed in this work is widely applicable and can contribute to a quantitative understanding of stochasticity in gene expression and its regulation.
Collapse
Affiliation(s)
- Hodjat Pendar
- Department of Engineering Science and Mechanics, Virginia Tech, Blacksburg, Virginia 24061, USA.
| | | | | |
Collapse
|