1
|
Hu JD, Wang T, Lei QL, Ma YQ. Transformable Superisostatic Crystals Self-Assembled from Segment Colloidal Rods. ACS NANO 2024; 18:8073-8082. [PMID: 38456633 DOI: 10.1021/acsnano.3c11538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
Transformable mechanical structures can switch between distinct mechanical states. Whether this kind of structure can be self-assembled from simple building blocks at microscale is a question to be answered. In this work, we propose a self-assembly strategy for these structures based on a nematic monolayer of segmented colloidal rods with lateral cutting. By using Monte Carlo simulation, we find that rods with different cutting degrees can self-assemble into different crystals characterized by bond coordination z that varies from 3 to 6. Among these, we identify a transformable superisostatic structure with pgg symmetry and redundant bonds (z = 5). We show that this structure can support either soft bulk modes or soft edge modes depending on its Poisson's ratio, which can be tuned from positive to negative through a uniform soft deformation. We also prove that the bulk soft modes are associated with states of self-stress along the direction of zero strain during uniform soft deformation. The self-assembled transformable structures may act as mechanical metamaterials with potential applications in micromechanical engineering.
Collapse
Affiliation(s)
- Ji-Dong Hu
- National Laboratory of Solid State Microstructures and Department of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, 210093 Nanjing, China
| | - Ting Wang
- School of Chemistry and Life Sciences, Nanjing University of Posts and Telecommunications, 210023 Nanjing, China
| | - Qun-Li Lei
- National Laboratory of Solid State Microstructures and Department of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, 210093 Nanjing, China
| | - Yu-Qiang Ma
- National Laboratory of Solid State Microstructures and Department of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, 210093 Nanjing, China
| |
Collapse
|
2
|
Sun YW, Li ZW, Chen ZQ, Zhu YL, Sun ZY. Colloidal cubic diamond photonic crystals through cooperative self-assembly. SOFT MATTER 2022; 18:2654-2662. [PMID: 35311843 DOI: 10.1039/d1sm01770e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Colloidal cubic diamond crystals with low-coordinated and staggered structures could display a wide photonic bandgap at low refractive index contrasts, which makes them extremely valuable for photonic applications. However, self-assembly of cubic diamond crystals using simple colloidal building blocks is still considerably challenging, due to their low packing fraction and mechanical instability. Here we propose a new strategy for constructing colloidal cubic diamond crystals through cooperative self-assembly of surface-anisotropic triblock Janus colloids and isotropic colloidal spheres into superlattices. In self-assembly, cooperativity is achieved by tuning the interaction and particle size ratio of colloidal building blocks. The pyrochlore lattice formed by self-assembly of triblock Janus colloids acts as a soft template to direct the packing of colloidal spheres into cubic diamond lattices. Numerical simulations show that this cooperative self-assembly strategy works well in a large range of particle size ratio of these two species. Moreover, photonic band structure calculations reveal that the resulting cubic diamond lattices exhibit wide and complete photonic bandgaps and the width and frequency of the bandgaps can also be easily adjusted by tuning the particle size ratio. Our work will open up a promising avenue toward photonic bandgap materials by cooperative self-assembly employing surface-anisotropic Janus or patchy colloids as a soft template.
Collapse
Affiliation(s)
- Yu-Wei Sun
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
- University of Science and Technology of China, Hefei, 230026, China
| | - Zhan-Wei Li
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
- University of Science and Technology of China, Hefei, 230026, China
| | - Zi-Qin Chen
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
- University of Science and Technology of China, Hefei, 230026, China
| | - You-Liang Zhu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Zhao-Yan Sun
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
- University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
3
|
Lieu UT, Yoshinaga N. Inverse design of two-dimensional structure by self-assembly of patchy particles. J Chem Phys 2022; 156:054901. [DOI: 10.1063/5.0072234] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
| | - Natsuhiko Yoshinaga
- WPI Advanced Institute for Materials Research, Tohoku University - Katahira Campus, Japan
| |
Collapse
|
4
|
Li ZW, Sun YW, Wang YH, Zhu YL, Lu ZY, Sun ZY. Softness-Enhanced Self-Assembly of Pyrochlore- and Perovskite-like Colloidal Photonic Crystals from Triblock Janus Particles. J Phys Chem Lett 2021; 12:7159-7165. [PMID: 34297560 DOI: 10.1021/acs.jpclett.1c01969] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
It remains extremely challenging to build three-dimensional photonic crystals with complete photonic bandgaps by simple and experimentally realizable colloidal building blocks. Here, we demonstrate that particle softness can enhance both the self-assembly of pyrochlore- and perovskite-like lattice structures from simple deformable triblock Janus colloids and their photonic bandgap performances. Dynamics simulation results show that the region of stability of pyrochlore lattices can be greatly expanded by appropriately increasing softness, and the perovskite lattices are unexpectedly obtained at enough high softness. Photonic calculations show that the direct pyrochlore lattices formed from overlapping soft triblock Janus particles exhibit even larger photonic bandgaps than the ideal nonoverlapping pyrochlore lattice, and proper overlap arising from softness can also dramatically improve the photonic properties of the inverse pyrochlore and perovskite lattices. Our study offers a new and feasible self-assembly path toward three-dimensional photonic crystals with large and robust photonic bandgaps.
Collapse
Affiliation(s)
- Zhan-Wei Li
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei 230026, China
| | - Yu-Wei Sun
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei 230026, China
| | - Yan-Hui Wang
- Xinjiang Laboratory of Phase Transitions and Microstructures in Condensed Matter Physics, College of Physical Science and Technology, Yili Normal University, Yining 835000, China
| | - You-Liang Zhu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei 230026, China
| | - Zhong-Yuan Lu
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, Jilin University, Changchun 130023, China
| | - Zhao-Yan Sun
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei 230026, China
- Xinjiang Laboratory of Phase Transitions and Microstructures in Condensed Matter Physics, College of Physical Science and Technology, Yili Normal University, Yining 835000, China
| |
Collapse
|
5
|
Lei QL, Zheng W, Tang F, Wan X, Ni R, Ma YQ. Self-Assembly of Isostatic Self-Dual Colloidal Crystals. PHYSICAL REVIEW LETTERS 2021; 127:018001. [PMID: 34270286 DOI: 10.1103/physrevlett.127.018001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 06/01/2021] [Indexed: 06/13/2023]
Abstract
Self-dual structures whose dual counterparts are themselves possess unique hidden symmetry, beyond the description of classical spatial symmetry groups. Here we propose a strategy based on a nematic monolayer of attractive half-cylindrical colloids to self-assemble these exotic structures. This system can be seen as a 2D system of semidisks. By using Monte Carlo simulations, we discover two isostatic self-dual crystals, i.e., an unreported crystal with pmg space-group symmetry and the twisted kagome crystal. For the pmg crystal approaching the critical point, we find the double degeneracy of the full phononic spectrum at the self-dual point and the merging of two tilted Weyl nodes into one critically tilted Dirac node. The latter is "accidentally" located on the high-symmetry line. The formation of this unconventional Dirac node is due to the emergence of the critical flatbands at the self-dual point, which are linear combinations of "finite-frequency" floppy modes. These modes can be understood as mechanically coupled self-dual rhombus chains vibrating in some unique uncoupled ways. Our work paves the way for designing and fabricating self-dual materials with exotic mechanical or phononic properties.
Collapse
Affiliation(s)
- Qun-Li Lei
- National Laboratory of Solid State Microstructures and School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, 210093 Nanjing, China
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, 637459 Singapore
| | - Wei Zheng
- National Laboratory of Solid State Microstructures and School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, 210093 Nanjing, China
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, 637459 Singapore
| | - Feng Tang
- National Laboratory of Solid State Microstructures and School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, 210093 Nanjing, China
| | - Xiangang Wan
- National Laboratory of Solid State Microstructures and School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, 210093 Nanjing, China
| | - Ran Ni
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, 637459 Singapore
| | - Yu-Qiang Ma
- National Laboratory of Solid State Microstructures and School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, 210093 Nanjing, China
| |
Collapse
|
6
|
Moore TC, Anderson JA, Glotzer SC. Shape-driven entropic self-assembly of an open, reconfigurable, binary host-guest colloidal crystal. SOFT MATTER 2021; 17:2840-2848. [PMID: 33564812 DOI: 10.1039/d0sm02073g] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Entropically driven self-assembly of hard anisotropic particles, where particle shape gives rise to emergent valencies, provides a useful perspective for the design of nanoparticle and colloidal systems. Hard particles self-assemble into a rich variety of crystal structures, ranging in complexity from simple close-packed structures to structures with 432 particles in the unit cell. Entropic crystallization of open structures, however, is missing from this landscape. Here, we report the self-assembly of a two-dimensional binary mixture of hard particles into an open host-guest structure, where nonconvex, triangular host particles form a honeycomb lattice that encapsulates smaller guest particles. Notably, this open structure forms in the absence of enthalpic interactions by effectively splitting the structure into low- and high-entropy sublattices. This is the first such structure to be reported in a two-dimensional athermal system. We discuss the observed compartmentalization of entropy in this system, and show that the effect of the size of the guest particle on the stability of the structure gives rise to a reentrant phase behavior. This reentrance suggests the possibility for a reconfigurable colloidal material, and we provide a proof-of-concept by showing the assembly behavior while changing the size of the guest particles in situ. Our findings provide a strategy for designing open colloidal crystals, as well as binary systems that exhibit co-crystallization, which have been elusive thus far.
Collapse
Affiliation(s)
- Timothy C Moore
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA.
| | - Joshua A Anderson
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA.
| | - Sharon C Glotzer
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA. and Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
7
|
Role of Entropy in Colloidal Self-Assembly. ENTROPY 2020; 22:e22080877. [PMID: 33286648 PMCID: PMC7517482 DOI: 10.3390/e22080877] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 08/03/2020] [Accepted: 08/05/2020] [Indexed: 12/13/2022]
Abstract
Entropy plays a key role in the self-assembly of colloidal particles. Specifically, in the case of hard particles, which do not interact or overlap with each other during the process of self-assembly, the free energy is minimized due to an increase in the entropy of the system. Understanding the contribution of entropy and engineering it is increasingly becoming central to modern colloidal self-assembly research, because the entropy serves as a guide to design a wide variety of self-assembled structures for many technological and biomedical applications. In this work, we highlight the importance of entropy in different theoretical and experimental self-assembly studies. We discuss the role of shape entropy and depletion interactions in colloidal self-assembly. We also highlight the effect of entropy in the formation of open and closed crystalline structures, as well as describe recent advances in engineering entropy to achieve targeted self-assembled structures.
Collapse
|
8
|
Rolland N, Mehandzhiyski AY, Garg M, Linares M, Zozoulenko IV. New Patchy Particle Model with Anisotropic Patches for Molecular Dynamics Simulations: Application to a Coarse-Grained Model of Cellulose Nanocrystal. J Chem Theory Comput 2020; 16:3699-3711. [DOI: 10.1021/acs.jctc.0c00259] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Nicolas Rolland
- Laboratory of Organic Electronics, ITN, Linköping University, SE-601 74 Norrköping, Sweden
| | | | - Mohit Garg
- Laboratory of Organic Electronics, ITN, Linköping University, SE-601 74 Norrköping, Sweden
| | - Mathieu Linares
- Laboratory of Organic Electronics, ITN, Linköping University, SE-601 74 Norrköping, Sweden
- Scientific Visualization Group, ITN, Linköping University, SE-601 74 Norrköping, Sweden
- Swedish e-Science Research Centre (SeRC), Linköping University, SE-581 83 Linköping, Sweden
| | - Igor V. Zozoulenko
- Laboratory of Organic Electronics, ITN, Linköping University, SE-601 74 Norrköping, Sweden
- Wallenberg Wood Science Center, Linköping University, SE-601 74 Norrköping, Sweden
| |
Collapse
|
9
|
Li J, Wang J, Yao Q, Yan Y, Li Z, Zhang J. Manipulating Hybrid Nanostructures by the Cooperative Assembly of Amphiphilic Oligomers and Triblock Janus Nanoparticles. J Phys Chem Lett 2020; 11:3369-3375. [PMID: 32281386 DOI: 10.1021/acs.jpclett.0c00681] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The cooperative assembly of nanoparticles and amphiphilic molecules has emerged as an appealing strategy for fabricating hybrid nanomaterials for a wide range of potential applications. However, it is challenging to precisely manipulate hybrid nanostructures. In this study, extensive dissipative particle dynamics simulations are carried out to investigate the cooperative assembly of amphiphilic oligomers and triblock Janus nanoparticles with different hydrophobic-hydrophilic patches. Three different hybrid nanostructures (networks, disks, and vesicles) are observed from the simulations. The structural characteristics and kinetic pathways are analyzed in detail. We reveal that the hydrophobic-hydrophilic patches in the triblock Janus nanoparticles significantly affect the arrangement of amphiphiles and nanoparticles, as well as the orientational degree of freedom between nanoparticles; therefore, the triblock Janus nanoparticles can function as a robust structure-directing agent to regulate the spatial organization of nanoparticles in networks, the curvature of disks, and the size of vesicles. This study demonstrates the cooperative assembly can serve as an efficient platform for the engineering of hybrid nanomaterials with tailored nanostructures.
Collapse
Affiliation(s)
- Jiawei Li
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
- Department of Chemical & Biomolecular Engineering, National University of Singapore, Singapore 117576
| | - Junfeng Wang
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Qiang Yao
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Youguo Yan
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
- Institute of Advanced Materials, China University of Petroleum (East China), Qingdao 266580, China
| | - Zhen Li
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Jun Zhang
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
- Institute of Advanced Materials, China University of Petroleum (East China), Qingdao 266580, China
| |
Collapse
|
10
|
Li ZW, Sun YW, Wang YH, Zhu YL, Lu ZY, Sun ZY. Kinetics-controlled design principles for two-dimensional open lattices using atom-mimicking patchy particles. NANOSCALE 2020; 12:4544-4551. [PMID: 32040105 DOI: 10.1039/c9nr09656f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The design and discovery of new two-dimensional materials with desired structures and properties are always one of the most fundamental goals in materials science. Here we present an atom-mimicking design concept to achieve direct self-assembly of two-dimensional low-coordinated open lattices using three-dimensional patchy particle systems. Besides honeycomb lattices, a new type of two-dimensional square-octagon lattice is obtained through rational design of the patch configuration of soft three-patch particles. However, unexpectedly the building blocks with thermodynamically favoured patch configuration cannot form square-octagon lattices in our simulations. We further reveal the kinetic mechanisms controlling the formation of the honeycomb and square-octagon lattices. The results indicate that the kinetically favoured intermediates play a critical role in determining the structure of obtained open lattices. This kinetics-controlled design principle provides a particularly effective and extendable framework to construct other novel open lattice structures.
Collapse
Affiliation(s)
- Zhan-Wei Li
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China. and University of Science and Technology of China, Hefei, 230026, China
| | - Yu-Wei Sun
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China. and University of Science and Technology of China, Hefei, 230026, China
| | - Yan-Hui Wang
- University of Science and Technology of China, Hefei, 230026, China and Xinjiang Laboratory of Phase Transitions and Microstructures in Condensed Matter Physics, College of Physical Science and Technology, Yili Normal University, Yining 835000, China
| | - You-Liang Zhu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China. and University of Science and Technology of China, Hefei, 230026, China
| | - Zhong-Yuan Lu
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, Jilin University, Changchun 130023, China
| | - Zhao-Yan Sun
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China. and University of Science and Technology of China, Hefei, 230026, China and Xinjiang Laboratory of Phase Transitions and Microstructures in Condensed Matter Physics, College of Physical Science and Technology, Yili Normal University, Yining 835000, China
| |
Collapse
|
11
|
Sankaewtong K, Lei QL, Ni R. Self-assembled multi-layer simple cubic photonic crystals of oppositely charged colloids in confinement. SOFT MATTER 2019; 15:3104-3110. [PMID: 30810154 DOI: 10.1039/c9sm00018f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Designing and fabricating self-assembled open colloidal crystals have become one major direction in the soft matter community because of many promising applications associated with open colloidal crystals. However, most of the self-assembled crystals found in experiments are not open but close-packed. Here, by using computer simulation, we systematically investigate the self-assembly of oppositely charged colloidal hard spheres confined between two parallel hard walls, and we find that the confinement can stabilize multi-layer NaCl-like (simple cubic) open crystals. The maximal number of layers of stable NaCl-like crystals increases with decreasing inverse screening length. More interestingly, at finite low temperature, the large vibrational entropy can stabilize some multi-layer NaCl-like crystals against the most energetically favoured close-packed crystals. In the parameter range studied, we find up to 4-layer NaCl-like crystals to be stable in confinement. Our photonic calculation shows that the inverse 4-layer NaCl-like crystal can already reproduce the large photonic band gaps of the bulk simple cubic crystal, which open in the low frequency range with a low dielectric contrast. This suggests new possibilities of using confined colloidal systems to fabricate open crystalline materials with novel photonic properties.
Collapse
Affiliation(s)
- Krongtum Sankaewtong
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, 637459, Singapore.
| | | | | |
Collapse
|
12
|
Li ZW, Zhu YL, Lu ZY, Sun ZY. General patchy ellipsoidal particle model for the aggregation behaviors of shape- and/or surface-anisotropic building blocks. SOFT MATTER 2018; 14:7625-7633. [PMID: 30152819 DOI: 10.1039/c8sm01631c] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We present a general patchy ellipsoidal particle model suitable for conducting dynamics simulations of the aggregation behaviors of various shape- and/or surface-anisotropic colloids, especially patchy ellipsoids with continuously variable shape and tunable patchiness. To achieve higher computational efficiency in dynamics simulations, we employ a multi-GPU acceleration technique based on a domain decomposition algorithm. The validation and performance evaluation of this GPU-assisted model are performed by simulating several typical benchmark systems of non-patchy and patchy ellipsoids. Given the generality and efficiency of our GPU-assisted patchy ellipsoidal particle model, it will provide a highly feasible dynamics simulation framework to investigate the aggregation behaviors of anisotropic soft matter systems comprised of shape- and/or surface-anisotropic building blocks.
Collapse
Affiliation(s)
- Zhan-Wei Li
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| | | | | | | |
Collapse
|
13
|
Ferrar JA, Bedi DS, Zhou S, Zhu P, Mao X, Solomon MJ. Capillary-driven binding of thin triangular prisms at fluid interfaces. SOFT MATTER 2018; 14:3902-3918. [PMID: 29726881 DOI: 10.1039/c8sm00271a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We observe capillary-driven binding between thin, equilateral triangular prisms at a flat air-water interface. The edge length of the equilateral triangle face is 120 μm, and the thickness of the prism is varied between 2 and 20 μm. For thickness to length (T/L) ratios of 1/10 or less, pairs of triangles preferentially bind in either tip-to-tip or tip-to-midpoint edge configurations; for pairs of prisms of thickness T/L = 1/5, the tip of one triangle binds to any position along the other triangle's edge. The distinct binding configurations for small T/L ratios result from physical bowing of the prisms, a property that arises during their fabrication. When bowed prisms are placed at the air-water interface, two distinct polarity states arise: prisms either sit with their center of mass above or below the interface. The interface pins to the edge of the prism's concave face, resulting in an interface profile that is similar to that of a capillary hexapole, but with important deviations close to the prism that enable directed binding. We present corresponding theoretical and numerical analysis of the capillary interactions between these prisms and show how prism bowing and contact-line pinning yield a capillary hexapole-like interaction that results in the two sets of distinct, highly-directional binding events. Prisms of all T/L ratios self-assemble into space-spanning open networks; the results suggest design parameters for the fabrication of building blocks of ordered open structures such as the Kagome lattice.
Collapse
Affiliation(s)
- Joseph A Ferrar
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA.
| | | | | | | | | | | |
Collapse
|
14
|
Hu H, Ruiz PS, Ni R. Entropy Stabilizes Floppy Crystals of Mobile DNA-Coated Colloids. PHYSICAL REVIEW LETTERS 2018; 120:048003. [PMID: 29437422 DOI: 10.1103/physrevlett.120.048003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Indexed: 06/08/2023]
Abstract
Grafting linkers with open ends of complementary single-stranded DNA makes a flexible tool to tune interactions between colloids, which facilitates the design of complex self-assembly structures. Recently, it has been proposed to coat colloids with mobile DNA linkers, which alleviates kinetic barriers without high-density grafting, and also allows the design of valency without patches. However, the self-assembly mechanism of this novel system is poorly understood. Using a combination of theory and simulation, we obtain phase diagrams for the system in both two and three dimensional spaces, and find stable floppy square and CsCl crystals when the binding strength is strong, even in the infinite binding strength limit. We demonstrate that these floppy phases are stabilized by vibrational entropy, and "floppy" modes play an important role in stabilizing the floppy phases for the infinite binding strength limit. This special entropic effect in the self-assembly of mobile DNA-coated colloids is very different from conventional molecular self-assembly, and it offers a new axis to help design novel functional materials using mobile DNA-coated colloids.
Collapse
Affiliation(s)
- Hao Hu
- Chemical Engineering, School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, 637459, Singapore
| | - Pablo Sampedro Ruiz
- Chemical Engineering, School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, 637459, Singapore
| | - Ran Ni
- Chemical Engineering, School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, 637459, Singapore
| |
Collapse
|
15
|
Pattabhiraman H, Avvisati G, Dijkstra M. Novel Pyrochlorelike Crystal with a Photonic Band Gap Self-Assembled Using Colloids with a Simple Interaction Potential. PHYSICAL REVIEW LETTERS 2017; 119:157401. [PMID: 29077450 DOI: 10.1103/physrevlett.119.157401] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Indexed: 06/07/2023]
Abstract
Using computer simulations, we investigate the phase behavior of a system of particles interacting with a remarkably simple repulsive square-shoulder pair potential and report the formation of a novel (and stable) pyrochlorelike crystal phase. The lattice structure of the pyrochlorelike phase formed in our simulations possesses two inherent length scales corresponding to the inter- and intratetrahedral neighbors. We show that it can be used to fabricate a photonic crystal which displays complete photonic band gaps in both the direct and inverted dielectric structures.
Collapse
Affiliation(s)
- Harini Pattabhiraman
- Soft Condensed Matter, Debye Institute for Nanomaterials Science, Department of Physics, Utrecht University, Princetonplein 5, 3584 CC Utrecht, Netherlands
| | - Guido Avvisati
- Soft Condensed Matter, Debye Institute for Nanomaterials Science, Department of Physics, Utrecht University, Princetonplein 5, 3584 CC Utrecht, Netherlands
| | - Marjolein Dijkstra
- Soft Condensed Matter, Debye Institute for Nanomaterials Science, Department of Physics, Utrecht University, Princetonplein 5, 3584 CC Utrecht, Netherlands
| |
Collapse
|
16
|
Li ZW, Zhu YL, Lu ZY, Sun ZY. A versatile model for soft patchy particles with various patch arrangements. SOFT MATTER 2016; 12:741-749. [PMID: 26510795 DOI: 10.1039/c5sm02125a] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We propose a simple and general mesoscale soft patchy particle model, which can felicitously describe the deformable and surface-anisotropic characteristics of soft patchy particles. This model can be used in dynamics simulations to investigate the aggregation behavior and mechanism of various types of soft patchy particles with tunable number, size, direction, and geometrical arrangement of the patches. To improve the computational efficiency of this mesoscale model in dynamics simulations, we give the simulation algorithm that fits the compute unified device architecture (CUDA) framework of NVIDIA graphics processing units (GPUs). The validation of the model and the performance of the simulations using GPUs are demonstrated by simulating several benchmark systems of soft patchy particles with 1 to 4 patches in a regular geometrical arrangement. Because of its simplicity and computational efficiency, the soft patchy particle model will provide a powerful tool to investigate the aggregation behavior of soft patchy particles, such as patchy micelles, patchy microgels, and patchy dendrimers, over larger spatial and temporal scales.
Collapse
Affiliation(s)
- Zhan-Wei Li
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| | | | | | | |
Collapse
|
17
|
Bedi DS, Mao X. Finite-temperature buckling of an extensible rod. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 92:062141. [PMID: 26764666 DOI: 10.1103/physreve.92.062141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Indexed: 06/05/2023]
Abstract
Thermal fluctuations can play an important role in the buckling of elastic objects at small scales, such as polymers or nanotubes. In this paper, we study the finite-temperature buckling transition of an extensible rod by analyzing fluctuation corrections to the elasticity of the rod. We find that, in both two and three dimensions, thermal fluctuations delay the buckling transition, and near the transition, there is a critical regime in which fluctuations are prominent and make a contribution to the effective force that is of order √T. We verify our theoretical prediction of the phase diagram with Monte Carlo simulations.
Collapse
Affiliation(s)
| | - Xiaoming Mao
- Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
18
|
Chapela GA, Guzmán O, Martínez-González JA, Díaz-Leyva P, Quintana-H J. Self-assembly of kagome lattices, entangled webs and linear fibers with vibrating patchy particles in two dimensions. SOFT MATTER 2014; 10:9167-9176. [PMID: 25319927 DOI: 10.1039/c4sm01818d] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
A vibrating version of patchy particles in two dimensions is introduced to study self-assembly of kagome lattices, disordered networks of looping structures, and linear arrays. Discontinuous molecular dynamics simulations in the canonical ensemble are used to characterize the molecular architectures and thermodynamic conditions that result in each of those morphologies, as well as the time evolution of lattice formation. Several versions of the new model are tested and analysed in terms of their ability to produce kagome lattices. Due to molecular flexibility, particles with just attractive sites adopt a polarized-like configuration and assemble into linear arrays. Particles with additional repulsive sites are able to form kagome lattices, but at low temperature connect as entangled webs. Abundance of hexagonal motifs, required for the kagome lattice, is promoted even for very small repulsive sites but hindered when the attractive range is large. Differences in behavior between the new flexible model and previous ones based on rigid bodies offer opportunities to test and develop theories about the relative stability, kinetics of formation and mechanical response of the observed morphologies.
Collapse
Affiliation(s)
- Gustavo A Chapela
- Departamento de Física, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186, Col. Vicentina, 09340 México, D.F., Mexico.
| | | | | | | | | |
Collapse
|
19
|
Escobedo FA. Engineering entropy in soft matter: the bad, the ugly and the good. SOFT MATTER 2014; 10:8388-8400. [PMID: 25164392 DOI: 10.1039/c4sm01646g] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The role of entropic interactions, often subtle and sometimes crucial, on the structure and properties of soft matter has a well-recognized place in the classic and modern scientific literature. However, the lessons learned from many of those studies do not always form part of the standard arsenal of strategies that are taught or used for de novo studies relevant to the engineering of new materials. Fortunately, a growing number of examples exist where entropic effects have been designed a priori to achieve a desired or new outcome. This tutorial review describes some recent such examples, selected to illustrate the potential benefits of a more pro-active approach to harnessing the often overlooked power of entropy.
Collapse
Affiliation(s)
- Fernando A Escobedo
- School of Chemical & Biomolecular Engineering, Cornell University, Ithaca, NY 14953, USA.
| |
Collapse
|
20
|
Rocklin DZ, Mao X. Self-assembly of three-dimensional open structures using patchy colloidal particles. SOFT MATTER 2014; 10:7569-7576. [PMID: 25115811 DOI: 10.1039/c4sm00587b] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Open structures can display a number of unusual properties, including a negative Poisson's ratio, negative thermal expansion, and holographic elasticity, and have many interesting applications in engineering. However, it is a grand challenge to self-assemble open structures at the colloidal scale, where short-range interactions and low coordination number can leave them mechanically unstable. In this paper we discuss the self-assembly of three-dimensional open structures using triblock Janus particles, which have two large attractive patches that can form multiple bonds, separated by a band with purely hard-sphere repulsion. Such surface patterning leads to open structures that are stabilized by orientational entropy (in an order-by-disorder effect) and selected over close-packed structures by vibrational entropy. For different patch sizes the particles can form into either tetrahedral or octahedral structural motifs which then compose open lattices, including the pyrochlore, the hexagonal tetrastack and the perovskite lattices. Using an analytic theory, we examine the phase diagrams of these possible open and close-packed structures for triblock Janus particles and characterize the mechanical properties of these structures. Our theory leads to rational designs of particles for the self-assembly of three-dimensional colloidal structures that are possible using current experimental techniques.
Collapse
Affiliation(s)
- D Zeb Rocklin
- Department of Physics, University of Michigan, 450 Church Street, Ann Arbor, MI 48109, USA.
| | | |
Collapse
|
21
|
Lucena D, Galván-Moya JE, Ferreira WP, Peeters FM. Single-file and normal diffusion of magnetic colloids in modulated channels. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 89:032306. [PMID: 24730841 DOI: 10.1103/physreve.89.032306] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Indexed: 06/03/2023]
Abstract
Diffusive properties of interacting magnetic dipoles confined in a parabolic narrow channel and in the presence of a periodic modulated (corrugated) potential along the unconfined direction are studied using Brownian dynamics simulations. We compare our simulation results with the analytical result for the effective diffusion coefficient of a single particle by Festa and d'Agliano [Physica A 90, 229 (1978)] and show the importance of interparticle interaction on the diffusion process. We present results for the diffusion of magnetic dipoles as a function of linear density, strength of the periodic modulation and commensurability factor.
Collapse
Affiliation(s)
- D Lucena
- Departamento de Física, Universidade Federal do Ceará, Caixa Postal 6030, Campus do Pici, 60440-554 Fortaleza, Ceará, Brazil and Department of Physics, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
| | - J E Galván-Moya
- Department of Physics, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
| | - W P Ferreira
- Departamento de Física, Universidade Federal do Ceará, Caixa Postal 6030, Campus do Pici, 60440-554 Fortaleza, Ceará, Brazil
| | - F M Peeters
- Departamento de Física, Universidade Federal do Ceará, Caixa Postal 6030, Campus do Pici, 60440-554 Fortaleza, Ceará, Brazil and Department of Physics, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
| |
Collapse
|