1
|
Hoshino T, Nakayama M, Hosokawa Y, Mochizuki K, Kajiyama S, Kohmura Y, Kato T. Experimental probing of dynamic self-organized columnar assemblies in colloidal liquid crystals. NANOSCALE ADVANCES 2023; 5:3646-3654. [PMID: 37441264 PMCID: PMC10334381 DOI: 10.1039/d3na00183k] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/19/2023] [Indexed: 07/15/2023]
Abstract
Self-organized supramolecular assemblies are widespread in nature and technology in the form of liquid crystals, colloids, and gels. The reversible nature of non-covalent bonding leads to dynamic functions such as stimuli-responsive switching and self-healing, which are unachievable from an isolated molecule. However, multiple intermolecular interactions generate diverse conformational and configurational molecular motions over various time scales in their self-assembled states, and their specific dynamics remains unclear. In the present study, we have experimentally unveiled the static structures and dynamical behaviors in columnar colloidal liquid crystals by a coherent X-ray scattering technique using refined model samples. We have found that controlling the size distribution of the colloidal nanoplates dramatically changed their static and dynamic properties. Furthermore, the resulting dynamical behaviors obtained by X-ray photon correlation spectroscopy have been successfully decomposed into multiple distinct modes, allowing us to explore the dynamical origin in the colloidal liquid-crystalline state. The present approaches using a columnar liquid crystal may contribute to a better understanding of the dynamic nature of molecular assemblies and dense colloidal systems and bring valuable insights into rational design of functional properties of self-assembled materials such as stimuli-responsive liquid crystals, self-healing gels, and colloidal crystals. For these materials, the motion of constituent particles and molecules in the self-assembled state is a key factor for structural formation and dynamically responsive performance.
Collapse
Affiliation(s)
- Taiki Hoshino
- International Center for Synchrotron Radiation Innovation Smart (SRIS), Tohoku University 2-1-1 Katahira, Aoba-ku Sendai 980-8577 Japan
- RIKEN SPring-8 Center 1-1-1, Kouto, Sayo-cho, Sayo-gun Hyogo 679-5148 Japan
- Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University 2-1-1 Katahira, Aoba-ku Sendai 980-8577 Japan
| | - Masanari Nakayama
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo 7-3-1, Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| | - Yoshihiro Hosokawa
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo 7-3-1, Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| | - Kohei Mochizuki
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo 7-3-1, Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| | - Satoshi Kajiyama
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo 7-3-1, Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| | - Yoshiki Kohmura
- RIKEN SPring-8 Center 1-1-1, Kouto, Sayo-cho, Sayo-gun Hyogo 679-5148 Japan
| | - Takashi Kato
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo 7-3-1, Hongo, Bunkyo-ku Tokyo 113-8656 Japan
- Research Initiative for Supra-Materials, Shinshu University 4-17-1, Wakasato Nagano Japan
| |
Collapse
|
2
|
Ladd-Parada M, Li H, Karina A, Kim KH, Perakis F, Reiser M, Dallari F, Striker N, Sprung M, Westermeier F, Grübel G, Nilsson A, Lehmkühler F, Amann-Winkel K. Using coherent X-rays to follow dynamics in amorphous ices. ENVIRONMENTAL SCIENCE: ATMOSPHERES 2022; 2:1314-1323. [PMID: 36561555 PMCID: PMC9648632 DOI: 10.1039/d2ea00052k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 08/23/2022] [Indexed: 12/25/2022]
Abstract
Amorphous solid water plays an important role in our overall understanding of water's phase diagram. X-ray scattering is an important tool for characterising the different states of water, and modern storage ring and XFEL facilities have opened up new pathways to simultaneously study structure and dynamics. Here, X-ray photon correlation spectroscopy (XPCS) was used to study the dynamics of high-density amorphous (HDA) ice upon heating. We follow the structural transition from HDA to low-density amorphous (LDA) ice, by using wide-angle X-ray scattering (WAXS), for different heating rates. We used a new type of sample preparation, which allowed us to study μm-sized ice layers rather than powdered bulk samples. The study focuses on the non-equilibrium dynamics during fast heating, spontaneous transformation and crystallization. Performing the XPCS study at ultra-small angle (USAXS) geometry allows us to characterize the transition dynamics at length scales ranging from 60 nm-800 nm. For the HDA-LDA transition we observe a clear separation in three dynamical regimes, which show different dynamical crossovers at different length scales. The crystallization from LDA, instead, is observed to appear homogenously throughout the studied length scales.
Collapse
Affiliation(s)
- Marjorie Ladd-Parada
- Department of Physics, Stockholm UniversityRoslagstullsbacken 2110691 StockholmSweden
| | - Hailong Li
- Department of Physics, Stockholm UniversityRoslagstullsbacken 2110691 StockholmSweden,Max-Planck-Institute for Polymer ResearchAckermannweg 1055128 MainzGermany
| | - Aigerim Karina
- Department of Physics, Stockholm UniversityRoslagstullsbacken 2110691 StockholmSweden
| | - Kyung Hwan Kim
- Department of ChemistryPOSTECHPohang 37673Republic of Korea
| | - Fivos Perakis
- Department of Physics, Stockholm UniversityRoslagstullsbacken 2110691 StockholmSweden
| | - Mario Reiser
- Department of Physics, Stockholm UniversityRoslagstullsbacken 2110691 StockholmSweden
| | - Francesco Dallari
- Deutsches Elektronen-Synchrotron DESYNotkestr. 8522607 HamburgGermany
| | - Nele Striker
- Deutsches Elektronen-Synchrotron DESYNotkestr. 8522607 HamburgGermany
| | - Michael Sprung
- Deutsches Elektronen-Synchrotron DESYNotkestr. 8522607 HamburgGermany
| | | | - Gerhard Grübel
- Deutsches Elektronen-Synchrotron DESYNotkestr. 8522607 HamburgGermany,Hamburg Centre for Ultrafast ImagingLuruper Chaussee 14922761 HamburgGermany
| | - Anders Nilsson
- Department of Physics, Stockholm UniversityRoslagstullsbacken 2110691 StockholmSweden
| | - Felix Lehmkühler
- Deutsches Elektronen-Synchrotron DESYNotkestr. 8522607 HamburgGermany,Hamburg Centre for Ultrafast ImagingLuruper Chaussee 14922761 HamburgGermany
| | - Katrin Amann-Winkel
- Department of Physics, Stockholm UniversityRoslagstullsbacken 2110691 StockholmSweden,Max-Planck-Institute for Polymer ResearchAckermannweg 1055128 MainzGermany,Institute of Physics, Johannes Gutenberg University MainzStaudingerweg 755128 MainzGermany
| |
Collapse
|
3
|
Chen Y, Xu H, Ma Y, Liu J, Zhang L. Diffusion of polymer-grafted nanoparticles with dynamical fluctuations in unentangled polymer melts. Phys Chem Chem Phys 2022; 24:11322-11335. [PMID: 35485911 DOI: 10.1039/d2cp00002d] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The dynamics of polymer-grafted nanoparticles (PGNPs) in melts of unentangled linear chains were investigated by means of coarse-grained molecular dynamics simulations. The results demonstrated that the graft monomers closer to the particle surface relax more slowly than those farther away due to the constraint of the grafted surface and the confinement of the neighboring chains. Such heterogeneous relaxations of the surrounding environment would perturb the particle motion, making them fluctuating around their centers before they can diffuse through the melt. During such intermediate-time stage, the dynamics is subdiffusive while the distribution of particle displacements is Gaussian, which can be described by the popular fractional Brownian motion model. For the long-time Fickian diffusion, we found that the diffusivity D decreases with increasing grafting density Σg, grafted chain length Ng, and matrix chain length Nm. This is due to the fact that the diffusivity is controlled by the viscous drag of an effective core, consisting of the NP and the non-draining layer of graft segments, and that of the free-draining graft layer outside the "core". With increasing Σg, the PGNPs become harder with greater effective size and thinner free draining layer, resulting in a reduction in D. At extremely high Σg, the diffusivity can even be estimated by the diameter-renormalized Stokes-Einstein (SE) relation. With increasing Ng, both the effective core size and the thickness of the free-draining layer increase, leading to a reduction in diffusivity by D ∼ N-γg with 0.5 < γ < 1. Increasing Nm would lead to the enlargement of the effective core size but meanwhile result in the reduction of the free-draining layer thickness due to autophobic dewetting. The counteraction between these two opposite effects leads to only a slight reduction in the diffusivity, significantly different from the typical SE behavior where D ∼ Nm-1. These findings bear significance in unraveling the fundamental physics of the anomalous dynamics of PGNPs in various polymers, including biological and synthetic.
Collapse
Affiliation(s)
- Yulong Chen
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Haohao Xu
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Yangwei Ma
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Jun Liu
- Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Liqun Zhang
- Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
4
|
Bustamante-Torres M, Romero-Fierro D, Arcentales-Vera B, Pardo S, Bucio E. Interaction between Filler and Polymeric Matrix in Nanocomposites: Magnetic Approach and Applications. Polymers (Basel) 2021; 13:2998. [PMID: 34503038 PMCID: PMC8434030 DOI: 10.3390/polym13172998] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/30/2021] [Accepted: 09/03/2021] [Indexed: 01/09/2023] Open
Abstract
In recent years, polymer nanocomposites produced by combining nanofillers and a polymeric matrix are emerging as interesting materials. Polymeric composites have a wide range of applications due to the outstanding and enhanced properties that are obtained thanks to the introduction of nanoparticles. Therefore, understanding the filler-matrix relationship is an important factor in the continued growth of this scientific area and the development of new materials with desired properties and specific applications. Due to their performance in response to a magnetic field magnetic nanocomposites represent an important class of functional nanocomposites. Due to their properties, magnetic nanocomposites have found numerous applications in biomedical applications such as drug delivery, theranostics, etc. This article aims to provide an overview of the filler-polymeric matrix relationship, with a special focus on magnetic nanocomposites and their potential applications in the biomedical field.
Collapse
Affiliation(s)
- Moises Bustamante-Torres
- Departamento de Biología, Escuela de Ciencias Biológicas e Ingeniería, Universidad de Investigación de Tecnología Experimental Yachay, Urcuquí 100650, Ecuador
- Departamento de Química de Radiaciones y Radioquímica, Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Ciudad de Mexico 04510, Mexico;
| | - David Romero-Fierro
- Departamento de Química de Radiaciones y Radioquímica, Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Ciudad de Mexico 04510, Mexico;
- Departamento de Química, Escuela de Ciencias Química e Ingeniería, Universidad de Investigación de Tecnología Experimental Yachay, Urcuquí 100650, Ecuador;
| | - Belén Arcentales-Vera
- Departamento de Química, Escuela de Ciencias Química e Ingeniería, Universidad de Investigación de Tecnología Experimental Yachay, Urcuquí 100650, Ecuador;
| | - Samantha Pardo
- Facultad de Ciencias de la Vida, Universidad Politécnica Salesiana, Quito 170702, Ecuador;
| | - Emilio Bucio
- Facultad de Ciencias de la Vida, Universidad Politécnica Salesiana, Quito 170702, Ecuador;
| |
Collapse
|
5
|
Cheng CH, Kamitani K, Masuda S, Uno K, Dechnarong N, Hoshino T, Kojio K, Takahara A. Dynamics of matrix-free nanocomposites consisting of block copolymer-grafted silica nanoparticles under elongation evaluated through X-ray photon correlation spectroscopy. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.124003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
6
|
Wang L, Ma J, Hong W, Zhang H, Lin J. Nanoscale Diffusion of Polymer-Grafted Nanoparticles in Entangled Polymer Melts. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00721] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Liquan Wang
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jun Ma
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Wei Hong
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Haojing Zhang
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jiaping Lin
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
7
|
Takahara A, Higaki Y, Hirai T, Ishige R. Application of Synchrotron Radiation X-ray Scattering and Spectroscopy to Soft Matter. Polymers (Basel) 2020; 12:polym12071624. [PMID: 32708350 PMCID: PMC7407237 DOI: 10.3390/polym12071624] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/04/2020] [Accepted: 07/20/2020] [Indexed: 12/04/2022] Open
Abstract
Light produced by synchrotron radiation (SR) is much brighter than that produced by conventional laboratory X-ray sources. The photon energy of SR X-ray ranges from soft and tender X-rays to hard X-rays. Moreover, X-rays become element sensitive with decreasing photon energy. By using a wide energy range and high-quality light of SR, different scattering and spectroscopic methods were applied to various soft matters. We present five of our recent studies performed using specific light properties of a synchrotron facility, which are as follows: (1) In situ USAXS study to understand the deformation behavior of colloidal crystals during uniaxial stretching; (2) structure characterization of semiconducting polymer thin films along the film thickness direction by grazing-incidence wide-angle X-ray scattering using tender X-rays; (3) X-ray absorption fine structure (XAFS) analysis of the formation mechanism of poly(3-hexylthiophene) (P3HT); (4) soft X-ray absorption and emission spectroscopic analysis of water structure in polyelectrolyte brushes; and (5) X-ray photon correlation spectroscopic analysis of the diffusion behavior of polystyrene-grafted nanoparticles dispersed in a polystyrene matrix.
Collapse
Affiliation(s)
- Atsushi Takahara
- Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan; (Y.H.); (T.H.); (R.I.)
- Correspondence:
| | - Yuji Higaki
- Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan; (Y.H.); (T.H.); (R.I.)
- Department of Integrated Science and Technology, Faculty of Science and Technology, Oita University, 700 Dannoharu, Oita 870-1192, Japan
| | - Tomoyasu Hirai
- Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan; (Y.H.); (T.H.); (R.I.)
- Department of Applied Chemistry, Faculty of Engineering, and Graduate School of Engineering, Osaka Institute of Technology, 5-16-1, Asahi-ku, Osaka 535-8585, Japan
| | - Ryohei Ishige
- Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan; (Y.H.); (T.H.); (R.I.)
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, E4-5, 2-12-1, Ookayama, Meguro-ku, Tokyo 152-8552, Japan
| |
Collapse
|
8
|
Bailey EJ, Winey KI. Dynamics of polymer segments, polymer chains, and nanoparticles in polymer nanocomposite melts: A review. Prog Polym Sci 2020. [DOI: 10.1016/j.progpolymsci.2020.101242] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
9
|
Park J, Bailey EJ, Composto RJ, Winey KI. Single-Particle Tracking of Nonsticky and Sticky Nanoparticles in Polymer Melts. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00457] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Jinseok Park
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Eric J. Bailey
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Russell J. Composto
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Karen I. Winey
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
10
|
Hoshino T, Fujinami S, Nakatani T, Kohmura Y. Dynamical Heterogeneity near Glass Transition Temperature under Shear Conditions. PHYSICAL REVIEW LETTERS 2020; 124:118004. [PMID: 32242701 DOI: 10.1103/physrevlett.124.118004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 02/07/2020] [Indexed: 06/11/2023]
Abstract
We experimentally studied the shear effect on dynamical heterogeneity near glass transition temperature. X-ray photon correlation spectroscopy was utilized to study the dynamics of polyvinyl acetate with tracer particles near its glass transition temperature, to determine the local shear rate from the anisotropic behavior of the time autocorrelation function and to calculate the dynamical heterogeneity using higher-order correlation function. The obtained results show a decrease in the dynamical heterogeneity and faster dynamics with increasing shear rate. This is the first experimental result that proved the predictions of previous molecular dynamics simulations.
Collapse
Affiliation(s)
- Taiki Hoshino
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - So Fujinami
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Tomotaka Nakatani
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Yoshiki Kohmura
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| |
Collapse
|
11
|
Mansel BW, Chen CY, Lin JM, Huang YS, Lin YC, Chen HL. Hierarchical Structure and Dynamics of a Polymer/Nanoparticle Hybrid Displaying Attractive Polymer–Particle Interaction. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b01141] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Bradley W. Mansel
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Chun-Yu Chen
- Experimental Facility Division, National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Jhih-Min Lin
- Experimental Facility Division, National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Yu-Shan Huang
- Experimental Facility Division, National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Yu-Chiao Lin
- Material and Chemical Research Laboratories, Industrial Technology Research Institute, Chutung, Hsinchu 31057, Taiwan
| | - Hsin-Lung Chen
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| |
Collapse
|
12
|
You W, Yu W. Slow Linear Viscoelastic Relaxation of Polymer Nanocomposites: Contribution from Confined Diffusion of Nanoparticles. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b01538] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Wei You
- Advanced Rheology Institute, Department of Polymer Science and Engineering, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Wei Yu
- Advanced Rheology Institute, Department of Polymer Science and Engineering, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| |
Collapse
|
13
|
Frenzel L, Lehmkühler F, Lokteva I, Narayanan S, Sprung M, Grübel G. Anomalous Dynamics of Concentrated Silica-PNIPAm Nanogels. J Phys Chem Lett 2019; 10:5231-5236. [PMID: 31433650 DOI: 10.1021/acs.jpclett.9b01690] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We present the structure and dynamics of highly concentrated core-shell nanoparticles composed of a silica core and a poly(N-isoproylacrylamide) (PNIPAm) shell suspended in water. With X-ray photon correlation spectroscopy, we are able to follow dynamical changes over the volume phase transition of PNIPAm at LCST = 32 °C. On raising the temperature beyond LCST, the structural relaxation times continue to decrease. The effect is accompanied by a transition from stretched to compressed exponential shape of the intensity autocorrelation function. Upon further heating, we find a sudden slowing down for the particles in their collapsed state. The q dependence of the relaxation time shows an anomalous change from τc ∝ q-3 to τc ∝ q-1. Small angle X-ray scattering data evidence a temperature-induced transition from repulsive to attractive forces. Our results indicate a temperature-induced phase transition from a colloidal liquid with polymer-driven dynamics toward a colloidal gel.
Collapse
Affiliation(s)
- Lara Frenzel
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging (CUI), Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Felix Lehmkühler
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging (CUI), Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Irina Lokteva
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging (CUI), Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Suresh Narayanan
- Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Michael Sprung
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Gerhard Grübel
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging (CUI), Luruper Chaussee 149, 22761 Hamburg, Germany
| |
Collapse
|
14
|
Senses E, Narayanan S, Faraone A. Nanoscale Particle Motion Reveals Polymer Mobility Gradient in Nanocomposites. ACS Macro Lett 2019; 8:558-562. [PMID: 35619363 PMCID: PMC11132598 DOI: 10.1021/acsmacrolett.9b00176] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Polymer mobility near nanoparticle surfaces has been extensively discussed; however, direct experimental observation in the nanocomposite melts has been a difficult task. Here, by taking advantage of large dynamical asymmetry between the miscible matrix and surface-bound polymers, we highlighted their interphases and studied the resulting effect on the nanoparticle relaxation using X-ray photon correlation spectroscopy. The local mobility gradient is signified by an unprecedented increase in the relaxation time at length scales on the order of polymer radius of gyration. The effect is accompanied by a transition from simple diffusive to subdiffusive behavior in accord with viscous and entangled dynamics of polymers in the matrix and in the interphase, respectively. Our results demonstrate that the nanoparticle-induced polymer mobility changes in the interphases of nanocomposite melts can be extracted from the length-scale-dependent slow particle motion.
Collapse
Affiliation(s)
- Erkan Senses
- Department of Chemical and Biological Engineering, Koç University, Istanbul 34450, Turkey
| | - Suresh Narayanan
- Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Antonio Faraone
- NIST Center for Neutron Research, Gaithersburg, Maryland 20899, United States
| |
Collapse
|
15
|
Ge T, Rubinstein M. Mobility of Polymer-Tethered Nanoparticles in Unentangled Polymer Melts. Macromolecules 2019; 52:1536-1545. [PMID: 30956355 PMCID: PMC6449055 DOI: 10.1021/acs.macromol.8b02138] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A scaling theory is developed for the motion of a polymer-tethered nanoparticle (NP) in an unentangled polymer melt. We identify two types of scaling regimes depending on the NP diameter d and the size of a grafted polymer chain (tail) R tail . In one type of regimes, the tethered NP motion is dominated by the bare NP, as the friction coefficient of the tails is lower than that of the less mobile particle. The time dependence of the mean square displacement (MSD) of the tethered NP ⟨Δr 2(t)⟩ in the particle-dominated regime can be approximated by ⟨Δr 2(t)⟩ bare for the bare NP. In the other type of regimes, the tethered NP motion is dominated by the tails when the friction coefficient of the tails surpasses that of the particle at times longer than the crossover time τ ∗. In a tail-dominated regime, the MSD ⟨Δr 2(t)⟩ ≈ ⟨Δr 2(t)⟩ bare only for t < τ ∗. ⟨Δr 2(t)⟩ of a single-tail NP for t > τ ∗ is approximated as the MSD ⟨Δr 2(t)⟩ tail of monomers in a free tail, whereas ⟨Δr 2(t)⟩ of a multi-tail NP for t > τ ∗ is approximated as the MSD ⟨Δr 2(t)⟩ star of the branch point of a star polymer. The time dependence of ⟨Δr 2(t)⟩ in a tail-dominated regime exhibits two qualitatively different sub-diffusive regimes. The first sub-diffusive regime for t < τ ∗ arises from the dynamical coupling between the particle and the melt chains. The second sub-diffusive regime for t > τ ∗ occurs as the particle participates in the dynamics of the tails. For NPs with loosely grafted chains, there is a Gaussian brush region surrounding the NP, where the chain strands in Gaussian conformations undergo Rouse dynamics with no hydrodynamic coupling. The crossover time τ ∗ for loosely grafted multi-tail NPs in a tail-dominated regime decreases as the number of tails increases. For NPs with densely grafted chains, the tails are hydrodynamically coupled to each other. The hydrodynamic radii for the diffusion of densely grafted multi-tail NPs are approximated by the sum of the particle and tail sizes.
Collapse
Affiliation(s)
- Ting Ge
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA
| | - Michael Rubinstein
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA
| |
Collapse
|
16
|
Medidhi KR, Padmanabhan V. Diffusion of polymer-grafted nanoparticles in a homopolymer matrix. J Chem Phys 2019; 150:044905. [DOI: 10.1063/1.5084146] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Koteswara Rao Medidhi
- Department of Chemical Engineering, Tennessee Technological University, Cookeville, Tennessee 38505, USA
| | - Venkat Padmanabhan
- Department of Chemical Engineering, Tennessee Technological University, Cookeville, Tennessee 38505, USA
| |
Collapse
|
17
|
Bhadauriya S, Wang X, Pitliya P, Zhang J, Raghavan D, Bockstaller MR, Stafford CM, Douglas JF, Karim A. Tuning the Relaxation of Nanopatterned Polymer Films with Polymer-Grafted Nanoparticles: Observation of Entropy-Enthalpy Compensation. NANO LETTERS 2018; 18:7441-7447. [PMID: 30398875 PMCID: PMC6537094 DOI: 10.1021/acs.nanolett.8b02514] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Polymer films provide a versatile platform in which complex functional relief patterns can be thermally imprinted with a resolution down to few nanometers. However, a practical limitation of this method is the tendency for the imprinted patterns to relax ("slump"), leading to loss of pattern fidelity over time. While increasing temperature above glass transition temperature ( Tg) accelerates the slumping kinetics of neat films, we find that the addition of polymer-grafted nanoparticles (PGNP) can greatly enhance the thermal stability of these patterns. Specifically, increasing the concentration of poly(methyl methacrylate) (PMMA) grafted titanium dioxide (TiO2) nanoparticles in the composite films slows down film relaxation dynamics, leading to enhanced pattern stability for the temperature range that we investigated. Interestingly, slumping relaxation time is found to obey an entropy-enthalpy compensation (EEC) relationship with varying PGNP concentration, similar to recently observed relaxation of strain-induced wrinkling in glassy polymer films having variable film thickness. The compensation temperature, Tcomp was found to be in the vicintity of the bulk Tg of PMMA. Our results suggest a common origin of EEC relaxation in patterned polymer thin films and nanocomposites.
Collapse
Affiliation(s)
- Sonal Bhadauriya
- Department of Polymer Engineering, University of Akron, Akron, Ohio 44325 United States
| | - Xiaoteng Wang
- Department of Polymer Engineering, University of Akron, Akron, Ohio 44325 United States
| | - Praveen Pitliya
- Department of Chemistry, Howard University, Washington, District of Columbia 20059, United States
| | - Jianan Zhang
- Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Dharmaraj Raghavan
- Department of Chemistry, Howard University, Washington, District of Columbia 20059, United States
| | - Michael R. Bockstaller
- Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Christopher M. Stafford
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Jack F. Douglas
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Alamgir Karim
- Department of Polymer Engineering, University of Akron, Akron, Ohio 44325 United States
| |
Collapse
|
18
|
Lehmkühler F, Valerio J, Sheyfer D, Roseker W, Schroer MA, Fischer B, Tono K, Yabashi M, Ishikawa T, Grübel G. Dynamics of soft nanoparticle suspensions at hard X-ray FEL sources below the radiation-damage threshold. IUCRJ 2018; 5:801-807. [PMID: 30443363 PMCID: PMC6211528 DOI: 10.1107/s2052252518013696] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 09/26/2018] [Indexed: 05/20/2023]
Abstract
The application of X-ray photon correlation spectroscopy (XPCS) at free-electron laser (FEL) facilities enables, for the first time, the study of dynamics on a (sub-)nanometre scale in an unreached time range between femtoseconds and seconds. For soft-matter materials, radiation damage is a major limitation when going beyond single-shot applications. Here, an XPCS study is presented at a hard X-ray FEL on radiation-sensitive polymeric poly(N-isopropylacrylamide) (PNIPAM) nanoparticles. The dynamics of aqueous suspensions of densely packed silica-PNIPAM core-shell particles and a PNIPAM nanogel below the radiation-damage threshold are determined. The XPCS data indicate non-diffusive behaviour, suggesting ballistic and stress-dominated heterogeneous particle motions. These results demonstrate the feasibility of XPCS experiments on radiation-sensitive soft-matter materials at FEL sources and pave the way for future applications at MHz repetition rates as well as ultrafast modes using split-pulse devices.
Collapse
Affiliation(s)
- Felix Lehmkühler
- Deutsches Elektronen-Synchrotron (DESY), Notkestrasse 85, 22607 Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Joana Valerio
- Deutsches Elektronen-Synchrotron (DESY), Notkestrasse 85, 22607 Hamburg, Germany
| | - Dina Sheyfer
- Deutsches Elektronen-Synchrotron (DESY), Notkestrasse 85, 22607 Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Wojciech Roseker
- Deutsches Elektronen-Synchrotron (DESY), Notkestrasse 85, 22607 Hamburg, Germany
| | - Martin A. Schroer
- Deutsches Elektronen-Synchrotron (DESY), Notkestrasse 85, 22607 Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Birgit Fischer
- Institute of Physical Chemistry, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany
| | - Kensuke Tono
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Makina Yabashi
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Tetsuya Ishikawa
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Gerhard Grübel
- Deutsches Elektronen-Synchrotron (DESY), Notkestrasse 85, 22607 Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
| |
Collapse
|
19
|
Lin CC, Griffin PJ, Chao H, Hore MJA, Ohno K, Clarke N, Riggleman RA, Winey KI, Composto RJ. Grafted polymer chains suppress nanoparticle diffusion in athermal polymer melts. J Chem Phys 2018; 146:203332. [PMID: 28571331 DOI: 10.1063/1.4982216] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
We measure the center-of-mass diffusion of poly(methyl methacrylate) (PMMA)-grafted nanoparticles (NPs) in unentangled to slightly entangled PMMA melts using Rutherford backscattering spectrometry. These grafted NPs diffuse ∼100 times slower than predicted by the Stokes-Einstein relation assuming a viscosity equal to bulk PMMA and a hydrodynamic NP size equal to the NP core diameter, 2Rcore = 4.3 nm. This slow NP diffusion is consistent with an increased effective NP size, 2Reff ≈ 20 nm, nominally independent of the range of grafting density and matrix molecular weights explored in this study. Comparing these experimental results to a modified Daoud-Cotton scaling estimate for the brush thickness as well as dynamic mean field simulations of polymer-grafted NPs in athermal polymer melts, we find that 2Reff is in quantitative agreement with the size of the NP core plus the extended grafted chains. Our results suggest that grafted polymer chains of moderate molecular weight and grafting density may alter the NP diffusion mechanism in polymer melts, primarily by increasing the NP effective size.
Collapse
Affiliation(s)
- Chia-Chun Lin
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Philip J Griffin
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Huikuan Chao
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Michael J A Hore
- Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | - Kohji Ohno
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Nigel Clarke
- Department of Physics, University of Sheffield, Sheffield S3 7RH, United Kingdom
| | - Robert A Riggleman
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Karen I Winey
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Russell J Composto
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
20
|
Oparaji O, Narayanan S, Sandy A, Ramakrishnan S, Hallinan D. Structural Dynamics of Strongly Segregated Block Copolymer Electrolytes. Macromolecules 2018. [DOI: 10.1021/acs.macromol.7b01803] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Onyekachi Oparaji
- FAMU-FSU College of Engineering, Florida A&M University−Florida State University, Tallahassee, Florida 32310, United States
- The National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32303, United States
| | - Suresh Narayanan
- Argonne National
Laboratory, Argonne, Illinois 60439, United States
| | - Alec Sandy
- Argonne National
Laboratory, Argonne, Illinois 60439, United States
| | - Subramanian Ramakrishnan
- FAMU-FSU College of Engineering, Florida A&M University−Florida State University, Tallahassee, Florida 32310, United States
- The National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32303, United States
| | - Daniel Hallinan
- FAMU-FSU College of Engineering, Florida A&M University−Florida State University, Tallahassee, Florida 32310, United States
- The National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32303, United States
| |
Collapse
|
21
|
Lee JK, Akgun B, Jiang Z, Narayanan S, Foster MD. Altering surface fluctuations by blending tethered and untethered chains. SOFT MATTER 2017; 13:8264-8270. [PMID: 29071320 DOI: 10.1039/c7sm01616f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
"Partially tethering" a thin film of a polymer melt by covalently attaching to the substrate a fraction of the chains in an unentangled melt dramatically increases the relaxation time of the surface height fluctuations. This phenomenon is observed even when the film thickness, h, is 20 times the unperturbed chain radius, Rg,tethered, of the tethered chains, indicating that partial tethering is more influential than any physical attraction with the substrate. Furthermore, a partially tethered layer of a low average molecular weight of 5k showed much slower surface fluctuations than did a reference layer of pure untethered chains of much greater molecular weight (48k), so the partial tethering effect is stronger than the effects of entanglement and increase in glass transition temperature, Tg, with molecular weight. Partial tethering offers a means of tailoring these fluctuations which influence wetting, adhesion, and tribology of the surface.
Collapse
Affiliation(s)
- J K Lee
- Department of Polymer Science, The University of Akron, Akron, OH 44325, USA.
| | | | | | | | | |
Collapse
|
22
|
Chremos A, Douglas JF. Particle localization and hyperuniformity of polymer-grafted nanoparticle materials. ANNALEN DER PHYSIK 2017; 529:1600342. [PMID: 28690334 PMCID: PMC5497478 DOI: 10.1002/andp.201600342] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Accepted: 01/16/2017] [Indexed: 05/28/2023]
Abstract
The properties of materials largely reflect the degree and character of the localization of the molecules comprising them so that the study and characterization of particle localization has central significance in both fundamental science and material design. Soft materials are often comprised of deformable molecules and many of their unique properties derive from the distinct nature of particle localization. We study localization in a model material composed of soft particles, hard nanoparticles with grafted layers of polymers, where the molecular characteristics of the grafted layers allow us to "tune" the softness of their interactions. Soft particles are particular interesting because spatial localization can occur such that density fluctuations on large length scales are suppressed, while the material is disordered at intermediate length scales; such materials are called "disordered hyperuniform". We use molecular dynamics simulation to study a liquid composed of polymer-grafted nanoparticles (GNP), which exhibit a reversible self-assembly into dynamic polymeric GNP structures below a temperature threshold, suggesting a liquid-gel transition. We calculate a number of spatial and temporal correlations and we find a significant suppression of density fluctuations upon cooling at large length scales, making these materials promising for the practical fabrication of "hyperuniform" materials.
Collapse
Affiliation(s)
- Alexandros Chremos
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| | | |
Collapse
|
23
|
Narayanan T, Wacklin H, Konovalov O, Lund R. Recent applications of synchrotron radiation and neutrons in the study of soft matter. CRYSTALLOGR REV 2017. [DOI: 10.1080/0889311x.2016.1277212] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
| | - Hanna Wacklin
- European Spallation Source ERIC, Lund, Sweden
- Physical Chemistry, Lund University, Lund, Sweden
| | | | - Reidar Lund
- Department of Chemistry, University of Oslo, Blindern, Oslo, Norway
| |
Collapse
|
24
|
Lee J, Grein-Iankovski A, Narayanan S, Leheny RL. Nanorod Mobility within Entangled Wormlike Micelle Solutions. Macromolecules 2016. [DOI: 10.1021/acs.macromol.6b02091] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Jonghun Lee
- X-ray Science Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Aline Grein-Iankovski
- X-ray Science Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
- Department of Chemistry, Federal University of Parana, Curitiba, PR, Brazil
| | - Suresh Narayanan
- X-ray Science Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Robert L. Leheny
- Department of Physics & Astronomy, Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
25
|
Hoshino T, Nojima S, Sato M, Hirai T, Higaki Y, Fujinami S, Murakami D, Ogawa S, Jinnai H, Takahara A, Takata M. Observation of constraint surface dynamics of polystyrene thin films by functionalization of a silsesquioxane cage. POLYMER 2016. [DOI: 10.1016/j.polymer.2016.08.040] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
26
|
|
27
|
Liu S, Senses E, Jiao Y, Narayanan S, Akcora P. Structure and Entanglement Factors on Dynamics of Polymer-Grafted Nanoparticles. ACS Macro Lett 2016; 5:569-573. [PMID: 35632389 DOI: 10.1021/acsmacrolett.6b00089] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Nanoparticles functionalized with long polymer chains at low graft density are interesting systems to study structure-dynamic relationships in polymer nanocomposites since they are shown to aggregate into strings in both solution and melts and also into spheres and branched aggregates in the presence of free polymer chains. This work investigates structure and entanglement effects in composites of polystyrene-grafted iron oxide nanoparticles by measuring particle relaxations using X-ray photon correlation spectroscopy. Particles within highly ordered strings and aggregated systems experience a dynamically heterogeneous environment displaying hyperdiffusive relaxation commonly observed in jammed soft glassy systems. Furthermore, particle dynamics is diffusive for branched aggregated structures which could be caused by less penetration of long matrix chains into brushes. These results suggest that particle motion is dictated by the strong interactions of chains grafted at low density with the host matrix polymer.
Collapse
Affiliation(s)
- Siqi Liu
- Department
of Chemical Engineering and Materials Science, Stevens Institute of Technology, Hoboken, New Jersey 07030, United States
| | - Erkan Senses
- Department
of Chemical Engineering and Materials Science, Stevens Institute of Technology, Hoboken, New Jersey 07030, United States
| | - Yang Jiao
- Department
of Chemical Engineering and Materials Science, Stevens Institute of Technology, Hoboken, New Jersey 07030, United States
| | - Suresh Narayanan
- Advanced
Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Pinar Akcora
- Department
of Chemical Engineering and Materials Science, Stevens Institute of Technology, Hoboken, New Jersey 07030, United States
| |
Collapse
|
28
|
|
29
|
Conrad H, Lehmkühler F, Fischer B, Westermeier F, Schroer MA, Chushkin Y, Gutt C, Sprung M, Grübel G. Correlated heterogeneous dynamics in glass-forming polymers. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 91:042309. [PMID: 25974493 DOI: 10.1103/physreve.91.042309] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Indexed: 06/04/2023]
Abstract
We report x-ray photon correlation spectroscopy experiments on the dynamics of the glass-former polypropylene glycol covering a temperature range from room temperature to the glass transition at T(g)=205 K using silica tracer particles. Three temperature regimes are identified: At high temperatures, Brownian motion of the tracer particles is observed. Near T(g), the dynamics is hyperdiffusive and ballistic. Around 1.12T(g), we observe an intermediate regime. Here the stretching exponent of the Kohlrausch-Williams-Watts function becomes q dependent. By analyzing higher-order correlations in the scattering data, we find that dynamical heterogeneities dramatically increase in this intermediate-temperature regime. This leads to two effects: increasing heterogeneous dynamics and correlated motion at temperatures close to and below 1.12T(g).
Collapse
Affiliation(s)
- H Conrad
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - F Lehmkühler
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - B Fischer
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - F Westermeier
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - M A Schroer
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Y Chushkin
- European Synchrotron Radiation Facility, Avenue des Martyrs 71, 38000 Grenoble, France
| | - C Gutt
- University of Siegen, Walter-Flex Straße 3, 57072 Siegen, Germany
| | - M Sprung
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - G Grübel
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
| |
Collapse
|