1
|
Domínguez-García P, Pinto JR, Akrap A, Jeney S. Micro-mechanical response and power-law exponents from the longitudinal fluctuations of F-actin solutions. SOFT MATTER 2023; 19:3652-3660. [PMID: 37165665 PMCID: PMC10208217 DOI: 10.1039/d2sm01445a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 04/24/2023] [Indexed: 05/12/2023]
Abstract
We investigate the local fluctuations of filamentous actin (F-actin), with a focus on the skeletal thin filament, using single-particle optical trapping interferometry. This experimental technique allows us to detect the Brownian motion of a tracer bead immersed in a complex fluid with nanometric resolution at the microsecond time-scale. The mean square displacement, loss modulus, and velocity autocorrelation function (VAF) of the trapped microprobes in the fluid follow power-law behaviors, whose exponents can be determined in the short-time/high-frequency regime over several decades. We obtain 7/8 subdiffusive power-law exponents for polystyrene depleted microtracers at low optical trapping forces. Microrheologically, the elastic modulus of these suspensions is observed to be constant up to the limit of high frequencies, confirming that the origin of this subdiffusive exponent is the local longitudinal fluctuations of the polymers. Deviations from this value are measured and discussed in relation to the characteristic length scales of these F-actin networks and probes' properties, and also in connection with the different power-law exponents detected in the VAFs. Finally, we observed that the thin filament, composed of tropomyosin (Tm) and troponin (Tn) coupled to F-actin in the presence of Ca2+, shows exponent values less dispersed than that of F-actin alone, which we interpret as a micro-measurement of the filament stabilization.
Collapse
Affiliation(s)
- Pablo Domínguez-García
- Dep. Física Interdisciplinar, Universidad Nacional de Educación a Distancia (UNED), Madrid 28040, Spain.
| | - Jose R Pinto
- Department of Biomedical Sciences, Florida State University College of Medicine, Florida, USA
| | - Ana Akrap
- Department of Physics, University of Fribourg, Fribourg, Switzerland
| | - Sylvia Jeney
- Department of Physics, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
2
|
Cherayil BJ. Effects of Hydrodynamic Backflow on the Transmission Coefficient of a Barrier-Crossing Brownian Particle. J Phys Chem B 2022; 126:5629-5636. [PMID: 35894587 DOI: 10.1021/acs.jpcb.2c03273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The slow power law decay of the velocity autocorrelation function of a particle moving stochastically in a condensed-phase fluid is widely attributed to the momentum that fluid molecules displaced by the particle transfer back to it during the course of its motion. The forces created by this backflow effect are known as Basset forces, and they have been found in recent analytical work and numerical simulations to be implicated in a number of interesting dynamical phenomena, including boosted particle mobility in tilted washboard potentials. Motivated by these findings, the present paper is an investigation of the role of backflow in thermally activated barrier crossing, the governing process in essentially all condensed-phase chemical reactions. More specifically, it is an exact analytical calculation, carried out within the framework of the reactive-flux formalism, of the transmission coefficient κ(t) of a Brownian particle that crosses an inverted parabola under the influence of a colored noise process originating in the Basset force and a Markovian time-local friction. The calculation establishes that κ(t) is significantly enhanced over its backflow-free limit.
Collapse
Affiliation(s)
- Binny J Cherayil
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, Karnataka, India
| |
Collapse
|
3
|
Janczura J, Kowalek P, Loch-Olszewska H, Szwabiński J, Weron A. Classification of particle trajectories in living cells: Machine learning versus statistical testing hypothesis for fractional anomalous diffusion. Phys Rev E 2021; 102:032402. [PMID: 33076015 DOI: 10.1103/physreve.102.032402] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 07/27/2020] [Indexed: 12/20/2022]
Abstract
Single-particle tracking (SPT) has become a popular tool to study the intracellular transport of molecules in living cells. Inferring the character of their dynamics is important, because it determines the organization and functions of the cells. For this reason, one of the first steps in the analysis of SPT data is the identification of the diffusion type of the observed particles. The most popular method to identify the class of a trajectory is based on the mean-square displacement (MSD). However, due to its known limitations, several other approaches have been already proposed. With the recent advances in algorithms and the developments of modern hardware, the classification attempts rooted in machine learning (ML) are of particular interest. In this work, we adopt two ML ensemble algorithms, i.e., random forest and gradient boosting, to the problem of trajectory classification. We present a new set of features used to transform the raw trajectories data into input vectors required by the classifiers. The resulting models are then applied to real data for G protein-coupled receptors and G proteins. The classification results are compared to recent statistical methods going beyond MSD.
Collapse
Affiliation(s)
- Joanna Janczura
- Faculty of Pure and Applied Mathematics, Hugo Steinhaus Center, Wrocław University of Science and Technology, 50-370 Wrocław, Poland
| | - Patrycja Kowalek
- Faculty of Pure and Applied Mathematics, Hugo Steinhaus Center, Wrocław University of Science and Technology, 50-370 Wrocław, Poland
| | - Hanna Loch-Olszewska
- Faculty of Pure and Applied Mathematics, Hugo Steinhaus Center, Wrocław University of Science and Technology, 50-370 Wrocław, Poland
| | - Janusz Szwabiński
- Faculty of Pure and Applied Mathematics, Hugo Steinhaus Center, Wrocław University of Science and Technology, 50-370 Wrocław, Poland
| | - Aleksander Weron
- Faculty of Pure and Applied Mathematics, Hugo Steinhaus Center, Wrocław University of Science and Technology, 50-370 Wrocław, Poland
| |
Collapse
|
4
|
Lehmann K, Shayegan M, Blab GA, Forde NR. Optical Tweezers Approaches for Probing Multiscale Protein Mechanics and Assembly. Front Mol Biosci 2020; 7:577314. [PMID: 33134316 PMCID: PMC7573139 DOI: 10.3389/fmolb.2020.577314] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 08/27/2020] [Indexed: 01/09/2023] Open
Abstract
Multi-step assembly of individual protein building blocks is key to the formation of essential higher-order structures inside and outside of cells. Optical tweezers is a technique well suited to investigate the mechanics and dynamics of these structures at a variety of size scales. In this mini-review, we highlight experiments that have used optical tweezers to investigate protein assembly and mechanics, with a focus on the extracellular matrix protein collagen. These examples demonstrate how optical tweezers can be used to study mechanics across length scales, ranging from the single-molecule level to fibrils to protein networks. We discuss challenges in experimental design and interpretation, opportunities for integration with other experimental modalities, and applications of optical tweezers to current questions in protein mechanics and assembly.
Collapse
Affiliation(s)
- Kathrin Lehmann
- Department of Physics, Simon Fraser University, Burnaby, BC, Canada.,Soft Condensed Matter and Biophysics, Utrecht University, Utrecht, Netherlands
| | - Marjan Shayegan
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, United States
| | - Gerhard A Blab
- Soft Condensed Matter and Biophysics, Utrecht University, Utrecht, Netherlands
| | - Nancy R Forde
- Department of Physics, Simon Fraser University, Burnaby, BC, Canada.,Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada.,Department of Chemistry, Simon Fraser University, Burnaby, BC, Canada.,Centre for Cell Biology, Development and Disease (C2D2), Simon Fraser University, Burnaby, BC, Canada
| |
Collapse
|
5
|
Viñales AD, Camuyrano M, Paissan GH. Oscillations and negative velocity autocorrelation emerging from a Brownian particle model with hydrodynamic interactions. Phys Rev E 2020; 101:052140. [PMID: 32575187 DOI: 10.1103/physreve.101.052140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 05/06/2020] [Indexed: 11/07/2022]
Abstract
We study the dynamics of a particle in a fluid from a generalized Langevin equation (GLE) with a frictional exponential memory kernel and hydrodynamic interactions. By using Laplace analysis we obtain the analytical expressions for the velocity autocorrelation function (VACF) and mean square displacement (MSD) of the particle. Our results show that, in the strictly asymptotic time limit, the dynamics of the particle correspond to a particle ruled by a GLE with a Dirac delta friction memory kernel and hydrodynamic interactions. However, at intermediate times the dynamical behavior is qualitatively different due to the presence of a characteristic time in the frictional exponential memory kernel. Remarkably, the VACF exhibits oscillations and negative correlation regimes which are reminiscent of features already observed in pioneering works of molecular dynamics simulations. Moreover, ripples in the MSD appear as an emerging behavior associated with the mentioned regimes.
Collapse
Affiliation(s)
- A D Viñales
- Departamento de Física, Facultad de Ingeniería, Universidad de Buenos Aires, Avenida Paseo Colón 850, C1063ACV Buenos Aires, Argentina
| | - M Camuyrano
- Departamento de Física, Facultad de Ingeniería, Universidad de Buenos Aires, Avenida Paseo Colón 850, C1063ACV Buenos Aires, Argentina.,Comisión Nacional de Actividades Espaciales, Avenida Paseo Colón 751, C1063ACH Buenos Aires, Argentina
| | - G H Paissan
- CRUB, Universidad Nacional del Comahue, Quintral 1250, 8400 Bariloche, Río Negro, Argentina.,Centro Atómico Bariloche, CNEA/CONICET, Avenida Bustillo Km 9.5, 8400 Bariloche, Río Negro, Argentina
| |
Collapse
|
6
|
Zhang K, Crizer KPR, Schoenfisch MH, Hill DB, Didier G. Fluid heterogeneity detection based on the asymptotic distribution of the time-averaged mean squared displacement in single particle tracking experiments. JOURNAL OF PHYSICS. A, MATHEMATICAL AND THEORETICAL 2018; 51:445601. [PMID: 31037119 PMCID: PMC6486181 DOI: 10.1088/1751-8121/aae0af] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A tracer particle is called anomalously diffusive if its mean squared displacement grows approximately as σ 2 t α as a function of time t for some constant σ 2, where the diffusion exponent satisfies α ≠ 1. In this article, we use recent results on the asymptotic distribution of the time-averaged mean squared displacement [20] to construct statistical tests for detecting physical heterogeneity in viscoelastic fluid samples starting from one or multiple observed anomalously diffusive paths. The methods are asymptotically valid for the range 0 < α < 3/2 and involve a mathematical characterization of time-averaged mean squared displacement bias and the effect of correlated disturbance errors. The assumptions on particle motion cover a broad family of fractional Gaussian processes, including fractional Brownian motion and many fractional instances of the generalized Langevin equation framework. We apply the proposed methods in experimental data from treated P. aeruginosa biofilms generated by the collaboration of the Hill and Schoenfisch Labs at UNC-Chapel Hill.
Collapse
Affiliation(s)
- Kui Zhang
- Department of Mathematics, Tulane University
| | | | | | - David B Hill
- The Marsico Lung Institute and Department of Physics and Astronomy, University of North Carolina at Chapel Hill
| | | |
Collapse
|
7
|
Cherstvy AG, Thapa S, Mardoukhi Y, Chechkin AV, Metzler R. Time averages and their statistical variation for the Ornstein-Uhlenbeck process: Role of initial particle distributions and relaxation to stationarity. Phys Rev E 2018; 98:022134. [PMID: 30253569 DOI: 10.1103/physreve.98.022134] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Indexed: 06/08/2023]
Abstract
How ergodic is diffusion under harmonic confinements? How strongly do ensemble- and time-averaged displacements differ for a thermally-agitated particle performing confined motion for different initial conditions? We here study these questions for the generic Ornstein-Uhlenbeck (OU) process and derive the analytical expressions for the second and fourth moment. These quantifiers are particularly relevant for the increasing number of single-particle tracking experiments using optical traps. For a fixed starting position, we discuss the definitions underlying the ensemble averages. We also quantify effects of equilibrium and nonequilibrium initial particle distributions onto the relaxation properties and emerging nonequivalence of the ensemble- and time-averaged displacements (even in the limit of long trajectories). We derive analytical expressions for the ergodicity breaking parameter quantifying the amplitude scatter of individual time-averaged trajectories, both for equilibrium and out-of-equilibrium initial particle positions, in the entire range of lag times. Our analytical predictions are in excellent agreement with results of computer simulations of the Langevin equation in a parabolic potential. We also examine the validity of the Einstein relation for the ensemble- and time-averaged moments of the OU-particle. Some physical systems, in which the relaxation and nonergodic features we unveiled may be observable, are discussed.
Collapse
Affiliation(s)
- Andrey G Cherstvy
- Institute for Physics & Astronomy, University of Potsdam, 14476 Potsdam-Golm, Germany
| | - Samudrajit Thapa
- Institute for Physics & Astronomy, University of Potsdam, 14476 Potsdam-Golm, Germany
| | - Yousof Mardoukhi
- Institute for Physics & Astronomy, University of Potsdam, 14476 Potsdam-Golm, Germany
| | - Aleksei V Chechkin
- Institute for Physics & Astronomy, University of Potsdam, 14476 Potsdam-Golm, Germany
- Institute for Theoretical Physics, Kharkov Institute of Physics and Technology, 61108 Kharkov, Ukraine
| | - Ralf Metzler
- Institute for Physics & Astronomy, University of Potsdam, 14476 Potsdam-Golm, Germany
| |
Collapse
|
8
|
Lanoiselée Y, Grebenkov DS. Unraveling intermittent features in single-particle trajectories by a local convex hull method. Phys Rev E 2017; 96:022144. [PMID: 28950648 DOI: 10.1103/physreve.96.022144] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Indexed: 01/01/2023]
Abstract
We propose a model-free method to detect change points between distinct phases in a single random trajectory of an intermittent stochastic process. The local convex hull (LCH) is constructed for each trajectory point, while its geometric properties (e.g., the diameter or the volume) are used as discriminators between phases. The efficiency of the LCH method is validated for six models of intermittent motion, including Brownian motion with different diffusivities or drifts, fractional Brownian motion with different Hurst exponents, and surface-mediated diffusion. We discuss potential applications of the method for detection of active and passive phases in the intracellular transport, temporal trapping or binding of diffusing molecules, alternating bulk and surface diffusion, run and tumble (or search) phases in the motion of bacteria and foraging animals, and instantaneous firing rates in neurons.
Collapse
Affiliation(s)
- Yann Lanoiselée
- Laboratoire de Physique de la Matière Condensée (UMR 7643), CNRS-Ecole Polytechnique, University Paris-Saclay, 91128 Palaiseau, France
| | - Denis S Grebenkov
- Laboratoire de Physique de la Matière Condensée (UMR 7643), CNRS-Ecole Polytechnique, University Paris-Saclay, 91128 Palaiseau, France and Interdisciplinary Scientific Center Poncelet (ISCP), Bolshoy Vlasyevskiy Pereulok 11, 119002 Moscow, Russia
| |
Collapse
|
9
|
Lanoiselée Y, Grebenkov DS. Revealing nonergodic dynamics in living cells from a single particle trajectory. Phys Rev E 2016; 93:052146. [PMID: 27300868 DOI: 10.1103/physreve.93.052146] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Indexed: 06/06/2023]
Abstract
We propose the improved ergodicity and mixing estimators to identify nonergodic dynamics from a single particle trajectory. The estimators are based on the time-averaged characteristic function of the increments and can thus capture additional information on the process as compared to the conventional time-averaged mean-square displacement. The estimators are first investigated and validated for several models of anomalous diffusion, such as ergodic fractional Brownian motion and diffusion on percolating clusters, and nonergodic continuous-time random walks and scaled Brownian motion. The estimators are then applied to two sets of earlier published trajectories of mRNA molecules inside live Escherichia coli cells and of Kv2.1 potassium channels in the plasma membrane. These statistical tests did not reveal nonergodic features in the former set, while some trajectories of the latter set could be classified as nonergodic. Time averages along such trajectories are thus not representative and may be strongly misleading. Since the estimators do not rely on ensemble averages, the nonergodic features can be revealed separately for each trajectory, providing a more flexible and reliable analysis of single-particle tracking experiments in microbiology.
Collapse
Affiliation(s)
- Yann Lanoiselée
- Laboratoire de Physique de la Matière Condensée (UMR 7643), CNRS-Ecole Polytechnique, 91128 Palaiseau, France
| | - Denis S Grebenkov
- Laboratoire de Physique de la Matière Condensée (UMR 7643), CNRS-Ecole Polytechnique, 91128 Palaiseau, France
| |
Collapse
|
10
|
Ingo C, Barrick TR, Webb AG, Ronen I. Accurate Padé Global Approximations for the Mittag-Leffler Function, Its Inverse, and Its Partial Derivatives to Efficiently Compute Convergent Power Series. ACTA ACUST UNITED AC 2016. [DOI: 10.1007/s40819-016-0158-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
11
|
Bouzat S. Models for microtubule cargo transport coupling the Langevin equation to stochastic stepping motor dynamics: Caring about fluctuations. Phys Rev E 2016; 93:012401. [PMID: 26871095 DOI: 10.1103/physreve.93.012401] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Indexed: 01/03/2023]
Abstract
One-dimensional models coupling a Langevin equation for the cargo position to stochastic stepping dynamics for the motors constitute a relevant framework for analyzing multiple-motor microtubule transport. In this work we explore the consistence of these models focusing on the effects of the thermal noise. We study how to define consistent stepping and detachment rates for the motors as functions of the local forces acting on them in such a way that the cargo velocity and run-time match previously specified functions of the external load, which are set on the base of experimental results. We show that due to the influence of the thermal fluctuations this is not a trivial problem, even for the single-motor case. As a solution, we propose a motor stepping dynamics which considers memory on the motor force. This model leads to better results for single-motor transport than the approaches previously considered in the literature. Moreover, it gives a much better prediction for the stall force of the two-motor case, highly compatible with the experimental findings. We also analyze the fast fluctuations of the cargo position and the influence of the viscosity, comparing the proposed model to the standard one, and we show how the differences on the single-motor dynamics propagate to the multiple motor situations. Finally, we find that the one-dimensional character of the models impede an appropriate description of the fast fluctuations of the cargo position at small loads. We show how this problem can be solved by considering two-dimensional models.
Collapse
Affiliation(s)
- Sebastián Bouzat
- Consejo Nacional de Investigaciones Científicas y Técnicas, Centro Atómico Bariloche (CNEA), (8400) Bariloche, Río Negro, Argentina
| |
Collapse
|
12
|
Villadsen N, Andreasen DØ, Hagelskjær J, Thøgersen J, Imparato A, Keiding SR. Pushing the limit: investigation of hydrodynamic forces on a trapped particle kicked by a laser pulse. OPTICS EXPRESS 2015; 23:13141-13152. [PMID: 26074567 DOI: 10.1364/oe.23.013141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We introduce a new optical technique where a train of short optical pulses is utilized to disturb a trapped microscopic particle. Using fast (250 kHz) and accurate (nm) detection of the position of the particle, accurately synchronized to the repetition rate of the laser pulses, we can coherently superimpose the displacement caused by each individual laser pulse. Thereby we are able to both bypass the influence from the Brownian motion of the trapped particle and to simultaneously increase the ability to localize its average trajectory by √n, where n is the number of repetitive pulses. In the results presented here we utilize a train of 1200 pulses to kick a 5 μm polystyrene sphere and obtain a spatial resolution corresponding to 0.09 nm and a time resolution of 4 μs. The magnitude of the optical force pushing the particle corresponds to ∼ 10(4)g and enables an investigation of both the hydrodynamical drag and the inertial effects caused by the particle and the surrounding liquid. Our results enables a more accurate testing of the existing extended models for the hydrodynamic drag and we discuss the observed agreement between experiments and theory.
Collapse
|
13
|
Ghosh SK, Cherstvy AG, Metzler R. Non-universal tracer diffusion in crowded media of non-inert obstacles. Phys Chem Chem Phys 2015; 17:1847-58. [DOI: 10.1039/c4cp03599b] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
For tracer motion in an array of attractive obstacles we observe transient, non-ergodic anomalous diffusion depending on the obstacle density.
Collapse
Affiliation(s)
- Surya K. Ghosh
- Institute for Physics & Astronomy
- University of Potsdam
- 14476 Potsdam-Golm
- Germany
| | - Andrey G. Cherstvy
- Institute for Physics & Astronomy
- University of Potsdam
- 14476 Potsdam-Golm
- Germany
| | - Ralf Metzler
- Institute for Physics & Astronomy
- University of Potsdam
- 14476 Potsdam-Golm
- Germany
- Department of Physics
| |
Collapse
|
14
|
Puertas AM, Voigtmann T. Microrheology of colloidal systems. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2014; 26:243101. [PMID: 24848328 DOI: 10.1088/0953-8984/26/24/243101] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Microrheology was proposed almost twenty years ago as a technique to obtain rheological properties in soft matter from the microscopic motion of colloidal tracers used as probes, either freely diffusing in the host medium, or subjected to external forces. The former case is known as passive microrheology, and is based on generalizations of the Stokes-Einstein relation between the friction experienced by the probe and the host-fluid viscosity. The latter is termed active microrheology, and extends the measurement of the friction coefficient to the nonlinear-response regime of strongly driven probes. In this review article, we discuss theoretical models available in the literature for both passive and active microrheology, focusing on the case of single-probe motion in model colloidal host media. A brief overview of the theory of passive microrheology is given, starting from the work of Mason and Weitz. Further developments include refined models of the host suspension beyond that of a Newtonian-fluid continuum, and the investigation of probe-size effects. Active microrheology is described starting from microscopic equations of motion for the whole system including both the host-fluid particles and the tracer; the many-body Smoluchowski equation for the case of colloidal suspensions. At low fluid densities, this can be simplified to a two-particle equation that allows the calculation of the friction coefficient with the input of the density distribution around the tracer, as shown by Brady and coworkers. The results need to be upscaled to agree with simulations at moderate density, in both the case of pulling the tracer with a constant force or dragging it at a constant velocity. The full many-particle equation has been tackled by Fuchs and coworkers, using a mode-coupling approximation and the scheme of integration through transients, valid at high densities. A localization transition is predicted for a probe embedded in a glass-forming host suspension. The nonlinear probe-friction coefficient is calculated from the tracer's position correlation function. Computer simulations show qualitative agreement with the theory, but also some unexpected features, such as superdiffusive motion of the probe related to the breaking of nearest-neighbor cages. We conclude with some perspectives and future directions of theoretical models of microrheology.
Collapse
Affiliation(s)
- A M Puertas
- Group of Complex Fluids Physics, Department of Applied Physics, University of Almeria, 04120 Almeria, Spain
| | | |
Collapse
|
15
|
Bouzat S. Influence of molecular motors on the motion of particles in viscoelastic media. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 89:062707. [PMID: 25019814 DOI: 10.1103/physreve.89.062707] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Indexed: 06/03/2023]
Abstract
We study theoretically and by numerical simulations the motion of particles driven by molecular motors in a viscoelastic medium representing the cell cytoplasm. For this, we consider a generalized Langevin equation coupled to a stochastic stepping dynamics for the motors that takes into account the action of each motor separately. In the absence of motors, the model produces subdiffusive motion of particles characterized by a power-law scaling of the mean square displacement versus the lag time as t^{α}, with 0<α<1, similar to that observed in cells. Our results show how the action of the motors can induce a transition to a superdiffusive regime at large lag times with the characteristics of those found in experiments reported in the literature. We also show that at small lag times, the motors can act as static crosslinkers that slow down the natural subdiffusive transport. An analysis of previously reported experimental data in the relevant time scales provides evidence of this phenomenon. Finally, we study the effect of a harmonic potential representing an optical trap, and we show a way to approach to a macroscopic description of the active transport in cells. This last point stresses the relevance of the molecular motors for generating not only directed motion to specific targets, but also fast diffusivelike random motion.
Collapse
Affiliation(s)
- Sebastián Bouzat
- Consejo Nacional de Investigaciones Científicas y Técnicas, Centro Atómico Bariloche (CNEA), (8400) Bariloche, Río Negro, Argentina
| |
Collapse
|
16
|
Metzler R, Jeon JH, Cherstvy AG, Barkai E. Anomalous diffusion models and their properties: non-stationarity, non-ergodicity, and ageing at the centenary of single particle tracking. Phys Chem Chem Phys 2014; 16:24128-64. [DOI: 10.1039/c4cp03465a] [Citation(s) in RCA: 1046] [Impact Index Per Article: 104.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
This Perspective summarises the properties of a variety of anomalous diffusion processes and provides the necessary tools to analyse and interpret recorded anomalous diffusion data.
Collapse
Affiliation(s)
- Ralf Metzler
- Institute of Physics and Astronomy
- University of Potsdam
- Potsdam-Golm, Germany
- Physics Department
- Tampere University of Technology
| | - Jae-Hyung Jeon
- Physics Department
- Tampere University of Technology
- Tampere, Finland
- Korean Institute for Advanced Study (KIAS)
- Seoul, Republic of Korea
| | - Andrey G. Cherstvy
- Institute of Physics and Astronomy
- University of Potsdam
- Potsdam-Golm, Germany
| | - Eli Barkai
- Physics Department and Institute of Nanotechnology and Advanced Materials
- Bar-Ilan University
- Ramat Gan, Israel
| |
Collapse
|
17
|
Grebenkov DS, Vahabi M. Analytical solution of the generalized Langevin equation with hydrodynamic interactions: subdiffusion of heavy tracers. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 89:012130. [PMID: 24580195 DOI: 10.1103/physreve.89.012130] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Indexed: 06/03/2023]
Abstract
We consider a generalized Langevin equation that can be used to describe thermal motion of a tracer in a viscoelastic medium by accounting for inertial and hydrodynamic effects at short times, subdiffusive scaling at intermediate times, and eventual optical trapping at long times. We derive a Laplace-type integral representation for the linear response function that governs the diffusive dynamics. This representation is particularly well suited for rapid numerical computation and theoretical analysis. In particular, we deduce explicit formulas for the mean and variance of the time averaged (TA) mean square displacement (MSD) and velocity autocorrelation function (VACF). The asymptotic behavior of the TA MSD and TA VACF is investigated at different time scales. Some biophysical and microrheological applications are discussed, with an emphasis on the statistical analysis of optical tweezers' single-particle tracking experiments in polymer networks and living cells.
Collapse
Affiliation(s)
- Denis S Grebenkov
- Laboratoire de Physique de la Matière Condensée (UMR 7643), CNRS-Ecole Polytechnique, 91128 Palaiseau, France
| | - Mahsa Vahabi
- Laboratoire de Physique de la Matière Condensée (UMR 7643), CNRS-Ecole Polytechnique, 91128 Palaiseau, France
| |
Collapse
|