1
|
Zhang X, Tian Y, Ni R, Zhu Y, Ning L, Liu P, Yang M, Zheng N. Obstacle-enhanced spontaneous oscillation of confined active granules. SOFT MATTER 2025; 21:819-825. [PMID: 39523912 DOI: 10.1039/d4sm01027b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Spontaneous oscillation in particle numbers has been reported recently, in which two chambers connected by a narrow channel are alternately filled and emptied by self-propelled particles. The challenge in realizing the application of this oscillation lies in promotion of the oscillatory periodicity. By placing an asymmetric obstacle at an appropriate position near a channel opening, we can significantly improve the oscillation quality, which approaches the quality of an ideal oscillation. Additionally, we experimentally explore the relationship between the oscillation quality and various system parameters such as the obstacle position. Based on experimental observations, we incorporate a random noise into our previous model and properly reproduce the experimental results. The agreement between theory and experiment uncovers the mechanism of delicate competition between noise and unidirectional particle flow in influencing the oscillation quality. Our findings provide new insights for the optimization of the oscillation quality, expand the conventional rectification capability of the ratchet effect due to the obstacle, and make it possible for spontaneous oscillation to serve as a reliable source for rhythmic signals.
Collapse
Affiliation(s)
- Xue Zhang
- School of Physics, Beijing Institute of Technology, Beijing 100081, China.
| | - Yuxin Tian
- School of Physics, Beijing Institute of Technology, Beijing 100081, China.
| | - Ran Ni
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, 637459, Singapore
| | - Yong Zhu
- Science and Technology on Electromagnetic Scattering Laboratory, Beijing 100854, China
| | - Luhui Ning
- Beijing Key Laboratory of Optical Detection Technology for Oil and Gas, China University of Petroleum-Beijing, Beijing 102249, China.
- Basic Research Center for Energy Interdisciplinary, College of Science, China University of Petroleum-Beijing, Beijing 102249, China
| | - Peng Liu
- School of Physics, Beijing Institute of Technology, Beijing 100081, China.
| | - Mingcheng Yang
- Beijing National Laboratory for Condensed Matter Physics and Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | - Ning Zheng
- School of Physics, Beijing Institute of Technology, Beijing 100081, China.
| |
Collapse
|
2
|
Nestler M, Praetorius S, Huang ZF, Löwen H, Voigt A. Active smectics on a sphere. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2024; 36:185001. [PMID: 38262063 DOI: 10.1088/1361-648x/ad21a7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/23/2024] [Indexed: 01/25/2024]
Abstract
The dynamics of active smectic liquid crystals confined on a spherical surface is explored through an active phase field crystal model. Starting from an initially randomly perturbed isotropic phase, several types of topological defects are spontaneously formed, and then annihilate during a coarsening process until a steady state is achieved. The coarsening process is highly complex involving several scaling laws of defect densities as a function of time where different dynamical exponents can be identified. In general the exponent for the final stage towards the steady state is significantly larger than that in the passive and in the planar case, i.e. the coarsening is getting accelerated both by activity and by the topological and geometrical properties of the sphere. A defect type characteristic for this active system is a rotating spiral of evolving smectic layering lines. On a sphere this defect type also determines the steady state. Our results can in principle be confirmed by dense systems of synthetic or biological active particles.
Collapse
Affiliation(s)
- Michael Nestler
- Institute of Scientific Computing, Technische Universität Dresden, 01062 Dresden, Germany
| | - Simon Praetorius
- Institute of Scientific Computing, Technische Universität Dresden, 01062 Dresden, Germany
| | - Zhi-Feng Huang
- Department of Physics and Astronomy, Wayne State University, Detroit, MI 48201, United States of America
| | - Hartmut Löwen
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Axel Voigt
- Institute of Scientific Computing, Technische Universität Dresden, 01062 Dresden, Germany
- Center for Systems Biology Dresden, Pfotenhauerstr. 108, 01307 Dresden, Germany
| |
Collapse
|
3
|
Farutin A, Rizvi SM, Hu WF, Lin TS, Rafai S, Misbah C. Motility and swimming: universal description and generic trajectories. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2023; 46:135. [PMID: 38146033 DOI: 10.1140/epje/s10189-023-00395-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 12/11/2023] [Indexed: 12/27/2023]
Abstract
Autonomous locomotion is a ubiquitous phenomenon in biology and in physics of active systems at microscopic scale. This includes prokaryotic, eukaryotic cells (crawling and swimming) and artificial swimmers. An outstanding feature is the ability of these entities to follow complex trajectories, ranging from straight, curved (circular, helical...), to random-like ones. The non-straight nature of these trajectories is often explained as a consequence of the asymmetry of the particle or the medium in which it moves, or due to the presence of bounding walls, etc... Here, we show that for a particle driven by a concentration field of an active species, straight, circular and helical trajectories emerge naturally in the absence of asymmetry of the particle or that of suspending medium. Our proof is based on general considerations, without referring to an explicit form of a model. We show that these three trajectories correspond to self-congruent solutions. Self-congruency means that the states of the system at different moments of time can be made identical by an appropriate combination of rotation and translation of the coordinate space. We show that these solutions are exhibited by spherically symmetric particles as a result of a series of pitchfork bifurcations, leading to spontaneous symmetry breaking in the concentration field driving the particle motility. Self-congruent dynamics in one and two dimensions are analyzed as well. Finally, we present a simple explicit nonlinear exactly solvable model of fully isotropic phoretic particle that shows the transitions from a non-motile state to straight motion to circular motion to helical motion as a series of spontaneous symmetry-breaking bifurcations. Whether a system exhibits or not a given trajectory only depends on the numerical values of parameters entering the model, while asymmetry of swimmer shape, or anisotropy of the suspending medium, or influence of bounding walls are not necessary.
Collapse
Affiliation(s)
| | - Suhail M Rizvi
- Univ. Grenoble Alpes, CNRS, LIPhy, F-38000, Grenoble, France
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Sangareddy, Telangana, 502285, India
| | - Wei-Fan Hu
- Department of Mathematics, National Central University, 300 Zhongda Road, Taoyuan, 320, Taiwan
| | - Te-Sheng Lin
- Department of Applied Mathematics, National Yang Ming Chiao Tung University, 1001 Ta Hsueh Road, Hsinchu, 300, Taiwan
| | - Salima Rafai
- Univ. Grenoble Alpes, CNRS, LIPhy, F-38000, Grenoble, France
| | - Chaouqi Misbah
- Univ. Grenoble Alpes, CNRS, LIPhy, F-38000, Grenoble, France.
| |
Collapse
|
4
|
Caprini L, Marini Bettolo Marconi U, Löwen H. Entropy production and collective excitations of crystals out of equilibrium: The concept of entropons. Phys Rev E 2023; 108:044603. [PMID: 37978682 DOI: 10.1103/physreve.108.044603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 09/21/2023] [Indexed: 11/19/2023]
Abstract
We study the collective vibrational excitations of crystals under out-of-equilibrium steady conditions that give rise to entropy production. Their excitation spectrum comprises equilibriumlike phonons of thermal origin and additional collective excitations called entropons because each of them represents a mode of spectral entropy production. Entropons coexist with phonons and dominate them when the system is far from equilibrium while they are negligible in near-equilibrium regimes. The concept of entropons has been recently introduced and verified in a special case of crystals formed by self-propelled particles. Here we show that entropons exist in a broader class of active crystals that are intrinsically out of equilibrium and characterized by the lack of detailed balance. After a general derivation, several explicit examples are discussed, including crystals consisting of particles with alignment interactions and frictional contact forces.
Collapse
Affiliation(s)
- L Caprini
- Heinrich-Heine-Universität Düsseldorf, Institut für Theoretische Physik II: Weiche Materie, Universitätsstrasse, 40225 Düsseldorf, Germany
| | - U Marini Bettolo Marconi
- Physics Department, Scuola di Scienze e Tecnologie, Università di Camerino - via Madonna delle Carceri, 62032 Camerino, Italy
- Istituto Nazionale di Fisica Nucleare, Sezione di Perugia, Via A. Pascoli, 06123 Perugia, Italy
| | - H Löwen
- Heinrich-Heine-Universität Düsseldorf, Institut für Theoretische Physik II: Weiche Materie, Universitätsstrasse, 40225 Düsseldorf, Germany
| |
Collapse
|
5
|
Sandoval M. Stiffening and dynamics of a two-dimensional active elastic solid. SOFT MATTER 2023; 19:6885-6895. [PMID: 37671426 DOI: 10.1039/d3sm00529a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
This work deals with the mechanical properties and dynamics of an active elastic solid defined as a two-dimensional network of active stochastic particles interacting by nonlinear hard springs. By proposing a discrete model, it is numerically found that when activity in the system is turned on, the active solid stiffens as a function of propulsion forces, thus deviating from equilibrium mechanics. To understand this effect a minimal stochastic model is offered, and a physical explanation based on spatial symmetry-breaking is put forward. In addition, the dynamics of the active solid in the absence of an external stress is also studied. From this, three main features are observed to emerge, namely, a collective behavior within the active solid, a time-density fluctuation, and oscillating dynamics of the internal stresses towards a steady state.
Collapse
Affiliation(s)
- Mario Sandoval
- Department of Physics, Complex Systems, Universidad Autonoma Metropolitana-Iztapalapa, Mexico City 09340, Mexico.
| |
Collapse
|
6
|
Shi XQ, Cheng F, Chaté H. Extreme Spontaneous Deformations of Active Crystals. PHYSICAL REVIEW LETTERS 2023; 131:108301. [PMID: 37739375 DOI: 10.1103/physrevlett.131.108301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 06/16/2023] [Indexed: 09/24/2023]
Abstract
We demonstrate that two-dimensional crystals made of active particles can experience extremely large spontaneous deformations without melting. Using particles mostly interacting via pairwise repulsive forces, we show that such active crystals maintain long-range bond order and algebraically decaying positional order, but with an exponent η not limited by the 1/3 bound given by the (equilibrium) KTHNY theory. We rationalize our findings using linear elastic theory and show the existence of two well-defined effective temperatures quantifying respectively large-scale deformations and bond-order fluctuations. The root of these phenomena lies in the sole time-persistence of the intrinsic axes of particles, and they should thus be observed in many different situations.
Collapse
Affiliation(s)
- Xia-Qing Shi
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, Soochow University, Suzhou 215006, China
| | - Fu Cheng
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, Soochow University, Suzhou 215006, China
| | - Hugues Chaté
- Service de Physique de l'Etat Condensé, CEA, CNRS Université Paris-Saclay, CEA-Saclay, 91191 Gif-sur-Yvette, France
- Computational Science Research Center, Beijing 100094, China
| |
Collapse
|
7
|
Frohoff-Hülsmann T, Holl MP, Knobloch E, Gurevich SV, Thiele U. Stationary broken parity states in active matter models. Phys Rev E 2023; 107:064210. [PMID: 37464596 DOI: 10.1103/physreve.107.064210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 05/15/2023] [Indexed: 07/20/2023]
Abstract
We demonstrate that several nonvariational continuum models commonly used to describe active matter as well as other active systems exhibit nongeneric behavior: each model supports asymmetric but stationary localized states even in the absence of pinning at heterogeneities. Moreover, such states only begin to drift following a drift-transcritical bifurcation as the activity increases. Asymmetric stationary states should only exist in variational systems, i.e., in models with gradient structure. In other words, such states are expected in passive systems, but not in active systems where the gradient structure of the model is broken by activity. We identify a "spurious" gradient dynamics structure of these models that is responsible for this nongeneric behavior, and determine the types of additional terms that render the models generic, i.e., with asymmetric states that appear via drift-pitchfork bifurcations and are generically moving. We provide detailed illustrations of our results using numerical continuation of resting and steadily drifting states in both generic and nongeneric cases.
Collapse
Affiliation(s)
- Tobias Frohoff-Hülsmann
- Institut für Theoretische Physik, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Strasse 9, 48149 Münster, Germany
| | - Max Philipp Holl
- Institut für Theoretische Physik, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Strasse 9, 48149 Münster, Germany
| | - Edgar Knobloch
- Department of Physics, University of California at Berkeley, Berkeley, California 94720, USA
| | - Svetlana V Gurevich
- Institut für Theoretische Physik, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Strasse 9, 48149 Münster, Germany
- Center for Nonlinear Science (CeNoS), Westfälische Wilhelms-Universität Münster, Corrensstrasse 2, 48149 Münster, Germany
| | - Uwe Thiele
- Institut für Theoretische Physik, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Strasse 9, 48149 Münster, Germany
- Center for Nonlinear Science (CeNoS), Westfälische Wilhelms-Universität Münster, Corrensstrasse 2, 48149 Münster, Germany
- Center for Multiscale Theory and Computation (CMTC), Westfälische Wilhelms-Universität, Corrensstrasse 40, 48149 Münster, Germany
| |
Collapse
|
8
|
Te Vrugt M, Frohoff-Hülsmann T, Heifetz E, Thiele U, Wittkowski R. From a microscopic inertial active matter model to the Schrödinger equation. Nat Commun 2023; 14:1302. [PMID: 36894573 PMCID: PMC9998892 DOI: 10.1038/s41467-022-35635-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 12/14/2022] [Indexed: 03/11/2023] Open
Abstract
Active field theories, such as the paradigmatic model known as 'active model B+', are simple yet very powerful tools for describing phenomena such as motility-induced phase separation. No comparable theory has been derived yet for the underdamped case. In this work, we introduce active model I+, an extension of active model B+ to particles with inertia. The governing equations of active model I+ are systematically derived from the microscopic Langevin equations. We show that, for underdamped active particles, thermodynamic and mechanical definitions of the velocity field no longer coincide and that the density-dependent swimming speed plays the role of an effective viscosity. Moreover, active model I+ contains an analog of the Schrödinger equation in Madelung form as a limiting case, allowing one to find analoga of the quantum-mechanical tunnel effect and of fuzzy dark matter in active fluids. We investigate the active tunnel effect analytically and via numerical continuation.
Collapse
Affiliation(s)
- Michael Te Vrugt
- Institut für Theoretische Physik, Westfälische Wilhelms-Universität Münster, 48149, Münster, Germany
- Center for Soft Nanoscience (SoN), Westfälische Wilhelms-Universität Münster, 48149, Münster, Germany
| | - Tobias Frohoff-Hülsmann
- Institut für Theoretische Physik, Westfälische Wilhelms-Universität Münster, 48149, Münster, Germany
| | - Eyal Heifetz
- Porter School of the Environment and Earth Sciences, Tel Aviv University, 69978, Tel Aviv, Israel
| | - Uwe Thiele
- Institut für Theoretische Physik, Westfälische Wilhelms-Universität Münster, 48149, Münster, Germany.
- Center for Nonlinear Science (CeNoS), Westfälische Wilhelms-Universität Münster, 48149, Münster, Germany.
- Center for Multiscale Theory and Computation (CMTC), Westfälische Wilhelms-Universität Münster, 48149, Münster, Germany.
| | - Raphael Wittkowski
- Institut für Theoretische Physik, Westfälische Wilhelms-Universität Münster, 48149, Münster, Germany.
- Center for Soft Nanoscience (SoN), Westfälische Wilhelms-Universität Münster, 48149, Münster, Germany.
- Center for Nonlinear Science (CeNoS), Westfälische Wilhelms-Universität Münster, 48149, Münster, Germany.
| |
Collapse
|
9
|
Te Vrugt M, Wittkowski R. Perspective: New directions in dynamical density functional theory. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2022; 35:041501. [PMID: 35917827 DOI: 10.1088/1361-648x/ac8633] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
Classical dynamical density functional theory (DDFT) has become one of the central modeling approaches in nonequilibrium soft matter physics. Recent years have seen the emergence of novel and interesting fields of application for DDFT. In particular, there has been a remarkable growth in the amount of work related to chemistry. Moreover, DDFT has stimulated research on other theories such as phase field crystal models and power functional theory. In this perspective, we summarize the latest developments in the field of DDFT and discuss a variety of possible directions for future research.
Collapse
Affiliation(s)
- Michael Te Vrugt
- Institut für Theoretische Physik, Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| | - Raphael Wittkowski
- Institut für Theoretische Physik, Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| |
Collapse
|
10
|
Sandoval M. Minimal model of an active solid deviates from equilibrium mechanics. THE EUROPEAN PHYSICAL JOURNAL B 2022; 95:154. [DOI: 10.1140/epjb/s10051-022-00421-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 09/06/2022] [Indexed: 09/02/2023]
|
11
|
James M, Suchla DA, Dunkel J, Wilczek M. Emergence and melting of active vortex crystals. Nat Commun 2021; 12:5630. [PMID: 34561437 PMCID: PMC8463610 DOI: 10.1038/s41467-021-25545-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 08/18/2021] [Indexed: 11/09/2022] Open
Abstract
Melting of two-dimensional (2D) equilibrium crystals is a complex phenomenon characterized by the sequential loss of positional and orientational order. In contrast to passive systems, active crystals can self-assemble and melt into an active fluid by virtue of their intrinsic motility and inherent non-equilibrium stresses. Currently, the non-equilibrium physics of active crystallization and melting processes is not well understood. Here, we establish the emergence and investigate the melting of self-organized vortex crystals in 2D active fluids using a generalized Toner-Tu theory. Performing extensive hydrodynamic simulations, we find rich transition scenarios. On small domains, we identify a hysteretic transition as well as a transition featuring temporal coexistence of active vortex lattices and active turbulence, both of which can be controlled by self-propulsion and active stresses. On large domains, an active vortex crystal with solid order forms within the parameter range corresponding to active vortex lattices. The melting of this crystal proceeds through an intermediate hexatic phase. Generally, these results highlight the differences and similarities between crystalline phases in active fluids and their equilibrium counterparts.
Collapse
Affiliation(s)
- Martin James
- Max Planck Institute for Dynamics and Self-Organization (MPI DS), Göttingen, Germany
| | - Dominik Anton Suchla
- Max Planck Institute for Dynamics and Self-Organization (MPI DS), Göttingen, Germany.,Faculty of Physics, University of Göttingen, Göttingen, Germany
| | - Jörn Dunkel
- Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Michael Wilczek
- Max Planck Institute for Dynamics and Self-Organization (MPI DS), Göttingen, Germany. .,Faculty of Physics, University of Göttingen, Göttingen, Germany.
| |
Collapse
|
12
|
Caprini L, Marini Bettolo Marconi U. Spatial velocity correlations in inertial systems of active Brownian particles. SOFT MATTER 2021; 17:4109-4121. [PMID: 33734261 DOI: 10.1039/d0sm02273j] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Recently, it has been discovered that systems of active Brownian particles (APB) at high density organise their velocities into coherent domains showing large spatial structures in the velocity field. This collective behavior occurs spontaneously, i.e. is not caused by any specific interparticle force favoring the alignment of the velocities. This phenomenon was investigated in the absence of thermal noise and in the overdamped regime where inertial forces could be neglected. In this work, we demonstrate through numerical simulations and theoretical analysis that velocity alignment is a robust property of ABP and persists even in the presence of inertial forces and thermal fluctuations. We also show that a single dimensionless parameter, such as the Péclet number customarily employed in the description of self-propelled particles, is not sufficient to fully characterize this phenomenon either in the regimes of large viscosity or small mass. Indeed, the size of the velocity domains, measured through the correlation length of the spatial velocity correlation, remains constant when the swim velocity increases and decreases as the rotational diffusion becomes larger. We find that, contrary to the common belief, the spatial velocity correlation not only depends on inertia but is also non-symmetrically affected by mass and inverse viscosity variations. We conclude that in self-propelled systems, at variance with passive systems, variations in the inertial time (mass over solvent viscosity) and mass act as independent control parameters. Finally, we highlight the non-thermal nature of the spatial velocity correlations that are fairly insensitive both to solvent and active temperatures.
Collapse
Affiliation(s)
- Lorenzo Caprini
- School of Sciences and Technology, University of Camerino, Via Madonna delle Carceri, I-62032, Camerino, Italy.
| | | |
Collapse
|
13
|
Ophaus L, Knobloch E, Gurevich SV, Thiele U. Two-dimensional localized states in an active phase-field-crystal model. Phys Rev E 2021; 103:032601. [PMID: 33862772 DOI: 10.1103/physreve.103.032601] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 02/08/2021] [Indexed: 11/07/2022]
Abstract
The active phase-field-crystal (active PFC) model provides a simple microscopic mean field description of crystallization in active systems. It combines the PFC model (or conserved Swift-Hohenberg equation) of colloidal crystallization and aspects of the Toner-Tu theory for self-propelled particles. We employ the active PFC model to study the occurrence of localized and periodic active crystals in two spatial dimensions. Due to the activity, crystalline states can undergo a drift instability and start to travel while keeping their spatial structure. Based on linear stability analyses, time simulations, and numerical continuation of the fully nonlinear states, we present a detailed analysis of the bifurcation structure of resting and traveling states. We explore, for instance, how the slanted homoclinic snaking of steady localized states found for the passive PFC model is modified by activity. Morphological phase diagrams showing the regions of existence of various solution types are presented merging the results from all the analysis tools employed. We also study how activity influences the crystal structure with transitions from hexagons to rhombic and stripe patterns. This in-depth analysis of a simple PFC model for active crystals and swarm formation provides a clear general understanding of the observed multistability and associated hysteresis effects, and identifies thresholds for qualitative changes in behavior.
Collapse
Affiliation(s)
- Lukas Ophaus
- Institut für Theoretische Physik, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Strasse 9, 48149 Münster, Germany.,Center of Nonlinear Science (CeNoS), Westfälische Wilhelms-Universität Münster, Corrensstrasse 2, 48149 Münster, Germany
| | - Edgar Knobloch
- Department of Physics, University of California, Berkeley, California 94720, USA
| | - Svetlana V Gurevich
- Institut für Theoretische Physik, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Strasse 9, 48149 Münster, Germany.,Center of Nonlinear Science (CeNoS), Westfälische Wilhelms-Universität Münster, Corrensstrasse 2, 48149 Münster, Germany
| | - Uwe Thiele
- Institut für Theoretische Physik, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Strasse 9, 48149 Münster, Germany.,Center of Nonlinear Science (CeNoS), Westfälische Wilhelms-Universität Münster, Corrensstrasse 2, 48149 Münster, Germany
| |
Collapse
|
14
|
Chatterjee P, Goldenfeld N. Field-theoretic model for chemotaxis in run and tumble particles. Phys Rev E 2021; 103:032603. [PMID: 33862765 DOI: 10.1103/physreve.103.032603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 02/12/2021] [Indexed: 11/07/2022]
Abstract
In this paper, we develop a field-theoretic description for run and tumble chemotaxis, based on a density-functional description of crystalline materials modified to capture orientational ordering. We show that this framework, with its in-built multiparticle interactions, soft-core repulsion, and elasticity, is ideal for describing continuum collective phases with particle resolution, but on diffusive timescales. We show that our model exhibits particle aggregation in an externally imposed constant attractant field, as is observed for phototactic or thermotactic agents. We also show that this model captures particle aggregation through self-chemotaxis, an important mechanism that aids quorum-dependent cellular interactions.
Collapse
Affiliation(s)
- Purba Chatterjee
- Department of Physics, University of Illinois at Urbana-Champaign, Loomis Laboratory of Physics, 1110 West Green Street, Urbana, Illinois, 61801-3080, USA
| | - Nigel Goldenfeld
- Department of Physics, University of Illinois at Urbana-Champaign, Loomis Laboratory of Physics, 1110 West Green Street, Urbana, Illinois, 61801-3080, USA
| |
Collapse
|
15
|
Maitra A, Lenz M, Voituriez R. Chiral Active Hexatics: Giant Number Fluctuations, Waves, and Destruction of Order. PHYSICAL REVIEW LETTERS 2020; 125:238005. [PMID: 33337208 DOI: 10.1103/physrevlett.125.238005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 11/06/2020] [Indexed: 06/12/2023]
Abstract
Active materials, composed of internally driven particles, have properties that are qualitatively distinct from matter at thermal equilibrium. However, the most spectacular departures from equilibrium phase behavior are thought to be confined to systems with polar or nematic asymmetry. In this Letter, we show that such departures are also displayed by more symmetric phases such as hexatics if, in addition, the constituent particles have chiral asymmetry. We show that chiral active hexatics whose rotation rate does not depend on density have giant number fluctuations. If the rotation rate depends on density, the giant number fluctuations are suppressed due to a novel orientation-density sound mode with a linear dispersion which propagates even in the overdamped limit. However, we demonstrate that beyond a finite but large length scale, a chirality and activity-induced relevant nonlinearity invalidates the predictions of the linear theory and destroys the hexatic order. In addition, we show that activity modifies the interactions between defects in the active chiral hexatic phase, making them nonmutual. Finally, to demonstrate the generality of a chiral active hexatic phase we show that it results from the melting of chiral active crystals in finite systems.
Collapse
Affiliation(s)
- Ananyo Maitra
- Sorbonne Université and CNRS, Laboratoire Jean Perrin, F-75005, Paris, France
| | - Martin Lenz
- LPTMS, CNRS, Université Paris-Sud, Université Paris-Saclay, 91405 Orsay, France
- PMMH, CNRS, ESPCI Paris, PSL University, Sorbonne Université, Université de Paris, F-75005, Paris, France
| | - Raphael Voituriez
- Sorbonne Université and CNRS, Laboratoire Jean Perrin, F-75005, Paris, France
- Sorbonne Université and CNRS, Laboratoire de Physique Théorique de la Matière Condensée, F-75005, Paris, France
| |
Collapse
|
16
|
Ophaus L, Kirchner J, Gurevich SV, Thiele U. Phase-field-crystal description of active crystallites: Elastic and inelastic collisions. CHAOS (WOODBURY, N.Y.) 2020; 30:123149. [PMID: 33380045 DOI: 10.1063/5.0019426] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 12/07/2020] [Indexed: 06/12/2023]
Abstract
The active Phase-Field-Crystal (aPFC) model combines elements of the Toner-Tu theory for self-propelled particles and the classical Phase-Field-Crystal (PFC) model that describes the transition between liquid and crystalline phases. In the liquid-crystal coexistence region of the PFC model, crystalline clusters exist in the form of localized states that coexist with a homogeneous background. At sufficiently strong activity (related to self-propulsion strength), they start to travel. We employ numerical path continuation and direct time simulations to first investigate the existence regions of different types of localized states in one spatial dimension. The results are summarized in morphological phase diagrams in the parameter plane spanned by activity and mean density. Then we focus on the interaction of traveling localized states, studying their collision behavior. As a result, we distinguish "elastic" and "inelastic" collisions. In the former, localized states recover their properties after a collision, while in the latter, they may completely or partially annihilate, forming resting bound states or various traveling states.
Collapse
Affiliation(s)
- Lukas Ophaus
- Institut für Theoretische Physik, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Strasse 9, 48149 Münster, Germany
| | - Johannes Kirchner
- Institut für Theoretische Physik, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Strasse 9, 48149 Münster, Germany
| | - Svetlana V Gurevich
- Institut für Theoretische Physik, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Strasse 9, 48149 Münster, Germany
| | - Uwe Thiele
- Institut für Theoretische Physik, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Strasse 9, 48149 Münster, Germany
| |
Collapse
|
17
|
Huang ZF, Menzel AM, Löwen H. Dynamical Crystallites of Active Chiral Particles. PHYSICAL REVIEW LETTERS 2020; 125:218002. [PMID: 33274968 DOI: 10.1103/physrevlett.125.218002] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 10/02/2020] [Indexed: 06/12/2023]
Abstract
One of the intrinsic characteristics of far-from-equilibrium systems is the nonrelaxational nature of the system dynamics, which leads to novel properties that cannot be understood and described by conventional pathways based on thermodynamic potentials. Of particular interest are the formation and evolution of ordered patterns composed of active particles that exhibit collective behavior. Here we examine such a type of nonpotential active system, focusing on effects of coupling and competition between chiral particle self-propulsion and self-spinning. It leads to the transition between three bulk dynamical regimes dominated by collective translative motion, spinning-induced structural arrest, and dynamical frustration. In addition, a persistently dynamical state of self-rotating crystallites is identified as a result of a localized-delocalized transition induced by the crystal-melt interface. The mechanism for the breaking of localized bulk states can also be utilized to achieve self-shearing or self-flow of active crystalline layers.
Collapse
Affiliation(s)
- Zhi-Feng Huang
- Department of Physics and Astronomy, Wayne State University, Detroit, Michigan 48201, USA
| | - Andreas M Menzel
- Institut für Theoretische Physik II, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, D-40225 Düsseldorf, Germany
- Institut für Physik, Otto-von-Guericke-Universität Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany
| | - Hartmut Löwen
- Institut für Theoretische Physik II, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, D-40225 Düsseldorf, Germany
| |
Collapse
|
18
|
Arold D, Schmiedeberg M. Active phase field crystal systems with inertial delay and underdamped dynamics. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2020; 43:47. [PMID: 32642832 DOI: 10.1140/epje/i2020-11971-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 06/23/2020] [Indexed: 06/11/2023]
Abstract
Active matter systems often are well approximated as overdamped, meaning that any inertial momentum is immediately dissipated by the environment. On the other hand, especially for macroscopic systems but also for many mesoscopic ones particle mass can become relevant for the dynamics. For such systems we recently proposed an underdamped continuum model which captures translationally inertial dynamics via two contributions. First, convection and second a damping time scale of inertial motion. In this paper, we ask how both of these features influence the collective behavior compared to overdamped dynamics by studying the example of the active phase field crystal model. We first focus on the case of suppressed convection to study the role of the damping time. We quantify that the relaxation process to the steady collective motion state is considerably prolonged with damping time due to the increasing occurrence of transient groups of circularly moving density peaks. Finally, we illustrate the fully underdamped case with convection. Instead of collective motion of density peaks we then find a coexistence of constant high and low density phases reminiscent of motility-induced phase separation.
Collapse
Affiliation(s)
- Dominic Arold
- Institut für Theoretische Physik I, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstraße 7, 91058, Erlangen, Germany
| | - Michael Schmiedeberg
- Institut für Theoretische Physik I, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstraße 7, 91058, Erlangen, Germany.
| |
Collapse
|
19
|
Bickmann J, Wittkowski R. Predictive local field theory for interacting active Brownian spheres in two spatial dimensions. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2020; 32:214001. [PMID: 31791019 DOI: 10.1088/1361-648x/ab5e0e] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
We present a predictive local field theory for the nonequilibrium dynamics of interacting active Brownian particles with a spherical shape in two spatial dimensions. The theory is derived by a rigorous coarse-graining starting from the Langevin equations that describe the trajectories of the individual particles. For high accuracy and generality of the theory, it includes configurational order parameters and derivatives up to infinite order. In addition, we discuss possible approximations of the theory and present reduced models that are easier to apply. We show that our theory contains popular models such as Active Model B+ as special cases and that it provides explicit expressions for the coefficients occurring in these and other, often phenomenological, models. As a further outcome, the theory yields an analytical expression for the density-dependent mean swimming speed of the particles. To demonstrate an application of the new theory, we analyze a simple reduced model of the lowest nontrivial order in derivatives, which is able to predict the onset of motility-induced phase separation of the particles. By a linear stability analysis, an analytical expression for the spinodal corresponding to motility-induced phase separation is obtained. This expression is evaluated for the case of particles interacting repulsively by a Weeks-Chandler-Andersen potential. The analytical predictions for the spinodal associated with these particles are found to be in very good agreement with the results of Brownian dynamics simulations that are based on the same Langevin equations as our theory. Furthermore, the critical point predicted by our analytical results agrees excellently with recent computational results from the literature.
Collapse
Affiliation(s)
- Jens Bickmann
- Institut für Theoretische Physik, Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster, D-48149 Münster, Germany
| | | |
Collapse
|
20
|
Stegemerten F, Gurevich SV, Thiele U. Bifurcations of front motion in passive and active Allen-Cahn-type equations. CHAOS (WOODBURY, N.Y.) 2020; 30:053136. [PMID: 32491885 DOI: 10.1063/5.0003271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 04/23/2020] [Indexed: 06/11/2023]
Abstract
The well-known cubic Allen-Cahn (AC) equation is a simple gradient dynamics (or variational) model for a nonconserved order parameter field. After revising main literature results for the occurrence of different types of moving fronts, we employ path continuation to determine their bifurcation diagram in dependence of the external field strength or chemical potential. We then employ the same methodology to systematically analyze fronts for more involved AC-type models. In particular, we consider a cubic-quintic variational AC model and two different nonvariational generalizations. We determine and compare the bifurcation diagrams of front solutions in the four considered models.
Collapse
Affiliation(s)
- Fenna Stegemerten
- Institut für Theoretische Physik, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Str. 9, 48149 Münster, Germany
| | - Svetlana V Gurevich
- Institut für Theoretische Physik, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Str. 9, 48149 Münster, Germany
| | - Uwe Thiele
- Institut für Theoretische Physik, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Str. 9, 48149 Münster, Germany
| |
Collapse
|
21
|
Maitra A, Ramaswamy S. Oriented Active Solids. PHYSICAL REVIEW LETTERS 2019; 123:238001. [PMID: 31868448 DOI: 10.1103/physrevlett.123.238001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 09/08/2019] [Indexed: 06/10/2023]
Abstract
We present a complete analysis of the linearized dynamics of active solids with uniaxial orientational order, taking into account a hitherto overlooked consequence of rotation invariance. Our predictions include a purely active response of two-dimensional orientationally ordered solids to shear, the possibility of stable active solids with quasi-long-range order in two dimensions and long-range order in three dimensions, generic instability of the solid for one sign of active forcing, and the instability of the uniaxially ordered phase in momentum-conserved systems for large active forcing irrespective of its sign.
Collapse
Affiliation(s)
- Ananyo Maitra
- Sorbonne Université and CNRS, Laboratoire Jean Perrin, F-75005 Paris, France
| | - Sriram Ramaswamy
- Centre for Condensed Matter Theory, Department of Physics, Indian Institute of Science, 560 012 Bangalore, India
| |
Collapse
|
22
|
Caprini L, Hernández-García E, López C, Marini Bettolo Marconi U. A comparative study between two models of active cluster crystals. Sci Rep 2019; 9:16687. [PMID: 31723160 PMCID: PMC6853940 DOI: 10.1038/s41598-019-52420-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 08/19/2019] [Indexed: 12/28/2022] Open
Abstract
We study a system of active particles with soft repulsive interactions that lead to an active cluster-crystal phase in two dimensions. We use two different modelizations of the active force - Active Brownian particles (ABP) and Ornstein-Uhlenbeck particles (AOUP) - and focus on analogies and differences between them. We study the different phases appearing in the system, in particular, the formation of ordered patterns drifting in space without being altered. We develop an effective description which captures some properties of the stable clusters for both ABP and AOUP. As an additional point, we confine such a system in a large channel, in order to study the interplay between the cluster crystal phase and the well-known accumulation near the walls, a phenomenology typical of active particles. For small activities, we find clusters attached to the walls and deformed, while for large values of the active force they collapse in stripes parallel to the walls.
Collapse
Affiliation(s)
- Lorenzo Caprini
- Gran Sasso Science Institute (GSSI), Via. F. Crispi 7, 67100, L'Aquila, Italy.
| | - Emilio Hernández-García
- IFISC (CSIC-UIB), Instituto de Física Interdisciplinar y Sistemas Complejos, Campus Universitat de les Illes Balears, E-07122, Palma de Mallorca, Spain
| | - Cristóbal López
- IFISC (CSIC-UIB), Instituto de Física Interdisciplinar y Sistemas Complejos, Campus Universitat de les Illes Balears, E-07122, Palma de Mallorca, Spain
| | | |
Collapse
|
23
|
Hoell C, Löwen H, Menzel AM. Multi-species dynamical density functional theory for microswimmers: Derivation, orientational ordering, trapping potentials, and shear cells. J Chem Phys 2019. [DOI: 10.1063/1.5099554] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Christian Hoell
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, D-40225 Düsseldorf, Germany
| | - Hartmut Löwen
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, D-40225 Düsseldorf, Germany
| | - Andreas M. Menzel
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, D-40225 Düsseldorf, Germany
| |
Collapse
|
24
|
Tunable self-healing of magnetically propelling colloidal carpets. Nat Commun 2019; 10:2444. [PMID: 31164640 PMCID: PMC6547653 DOI: 10.1038/s41467-019-10255-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Accepted: 04/26/2019] [Indexed: 11/18/2022] Open
Abstract
The process of crystallization is difficult to observe for transported, out-of-equilibrium systems, as the continuous energy injection increases activity and competes with ordering. In emerging fields such as microfluidics and active matter, the formation of long-range order is often frustrated by the presence of hydrodynamics. Here we show that a population of colloidal rollers assembled by magnetic fields into large-scale propelling carpets can form perfect crystalline materials upon suitable balance between magnetism and hydrodynamics. We demonstrate a field-tunable annealing protocol based on a controlled colloidal flow above the carpet that enables complete crystallization after a few seconds of propulsion. The structural transition from a disordered to a crystalline carpet phase is captured via spatial and temporal correlation functions. Our findings unveil a novel pathway to magnetically anneal clusters of propelling particles, bridging driven systems with crystallization and freezing in material science. Activity often suppresses equilibrium ordering and crystallization in a group of driven or self-propelling colloids. Massana-Cid et al. show tunable self-healing process, where magnetic colloidal rollers are assembled to crystalline carpets upon a balance between magnetism and hydrodynamic interactions.
Collapse
|
25
|
Krinninger P, Schmidt M. Power functional theory for active Brownian particles: General formulation and power sum rules. J Chem Phys 2019; 150:074112. [DOI: 10.1063/1.5061764] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Philip Krinninger
- Theoretische Physik II, Physikalisches Institut, Universität Bayreuth, D-95440 Bayreuth, Germany
| | - Matthias Schmidt
- Theoretische Physik II, Physikalisches Institut, Universität Bayreuth, D-95440 Bayreuth, Germany
| |
Collapse
|
26
|
Hiraiwa T. Two types of exclusion interactions for self-propelled objects and collective motion induced by their combination. Phys Rev E 2019; 99:012614. [PMID: 30780270 DOI: 10.1103/physreve.99.012614] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Indexed: 06/09/2023]
Abstract
Exclusive interactions between self-driven objects may play crucial roles in their collective behavior, e.g., in collective migration of living cells. Here, such collective behavior is studied based on a simple but sufficient model taking account the exclusion effects, which incorporate the following two distinct kinds of exclusion interactions in two dimensions: The first is the mechanical exclusion wherein two objects mechanically repel each other when they overlap. The second is the scattering exclusion, wherein the directions along which each object tries to move are modulated to avoid overlapping. We propose a theoretical model based on two principles: (1) Each object maintains its own polarity with a fixed strength and attempts to move into the polarity direction and (2) objects interact with each other through the abovementioned exclusions. Based on this model, we look at the difference of consequences and combinatory effects of these two kinds of exclusions. Furthermore, we calculate the polar order of polarity directions without an external directional bias. Our results suggest that the combination of these two kinds of exclusions leads to effectively inelastic scattering of two objects, which eventually gives rise to global polar ordering. We also find that the traveling band can arise by this mechanism of alignment at the intermediate density, as generally seen in collective motion with polar alignment and investigated in various earlier works. Characteristics of transitions among disordered, traveling band, and homogeneously ordered states of the presented model are investigated, and their similarities and differences with those given by the explicit alignment interaction are discussed.
Collapse
Affiliation(s)
- Tetsuya Hiraiwa
- Department of Physics, Graduate School of Science, University of Tokyo, Hongo, Tokyo 113-0033, Japan
| |
Collapse
|
27
|
Ophaus L, Gurevich SV, Thiele U. Resting and traveling localized states in an active phase-field-crystal model. Phys Rev E 2018; 98:022608. [PMID: 30253633 DOI: 10.1103/physreve.98.022608] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Indexed: 06/08/2023]
Abstract
The conserved Swift-Hohenberg equation (or phase-field-crystal [PFC] model) provides a simple microscopic description of the thermodynamic transition between fluid and crystalline states. Combining it with elements of the Toner-Tu theory for self-propelled particles, Menzel and Löwen [Phys. Rev. Lett. 110, 055702 (2013)PRLTAO0031-900710.1103/PhysRevLett.110.055702] obtained a model for crystallization (swarm formation) in active systems. Here, we study the occurrence of resting and traveling localized states, i.e., crystalline clusters, within the resulting active PFC model. Based on linear stability analyses and numerical continuation of the fully nonlinear states, we present a detailed analysis of the bifurcation structure of periodic and localized, resting and traveling states in a one-dimensional active PFC model. This allows us, for instance, to explore how the slanted homoclinic snaking of steady localized states found for the passive PFC model is amended by activity. A particular focus lies on the onset of motion, where we show that it occurs either through a drift-pitchfork or a drift-transcritical bifurcation. A corresponding general analytical criterion is derived.
Collapse
Affiliation(s)
- Lukas Ophaus
- Institut für Theoretische Physik, Westfälische Wilhelms-Universität Münster Wilhelm-Klemm-Strasse 9, 48149 Münster, Germany, and Center of Nonlinear Science (CeNoS), Westfälische Wilhelms-Universität Münster Corrensstrasse 2, 48149 Münster, Germany
| | - Svetlana V Gurevich
- Institut für Theoretische Physik, Westfälische Wilhelms-Universität Münster Wilhelm-Klemm-Strasse 9, 48149 Münster, Germany, and Center of Nonlinear Science (CeNoS), Westfälische Wilhelms-Universität Münster Corrensstrasse 2, 48149 Münster, Germany
| | - Uwe Thiele
- Institut für Theoretische Physik, Westfälische Wilhelms-Universität Münster Wilhelm-Klemm-Strasse 9, 48149 Münster, Germany, and Center of Nonlinear Science (CeNoS), Westfälische Wilhelms-Universität Münster Corrensstrasse 2, 48149 Münster, Germany
| |
Collapse
|
28
|
Pessot G, Löwen H, Menzel AM. Binary pusher–puller mixtures of active microswimmers and their collective behaviour. Mol Phys 2018. [DOI: 10.1080/00268976.2018.1496291] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Giorgio Pessot
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Hartmut Löwen
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Andreas M. Menzel
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
29
|
Goddard BD, Nold A, Kalliadasis S. Dynamical density functional theory with hydrodynamic interactions in confined geometries. J Chem Phys 2018; 145:214106. [PMID: 28799384 DOI: 10.1063/1.4968565] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
We study the dynamics of colloidal fluids in both unconfined geometries and when confined by a hard wall. Under minimal assumptions, we derive a dynamical density functional theory (DDFT) which includes hydrodynamic interactions (HI; bath-mediated forces). By using an efficient numerical scheme based on pseudospectral methods for integro-differential equations, we demonstrate its excellent agreement with the full underlying Langevin equations for systems of hard disks in partial confinement. We further use the derived DDFT formalism to elucidate the crucial effects of HI in confined systems.
Collapse
Affiliation(s)
- B D Goddard
- School of Mathematics and Maxwell Institute for Mathematical Sciences, University of Edinburgh, Edinburgh EH9 3FD, United Kingdom
| | - A Nold
- Department of Chemical Engineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - S Kalliadasis
- Department of Chemical Engineering, Imperial College London, London SW7 2AZ, United Kingdom
| |
Collapse
|
30
|
Praetorius S, Voigt A, Wittkowski R, Löwen H. Active crystals on a sphere. Phys Rev E 2018; 97:052615. [PMID: 29906962 DOI: 10.1103/physreve.97.052615] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Indexed: 06/08/2023]
Abstract
Two-dimensional crystals on curved manifolds exhibit nontrivial defect structures. Here we consider "active crystals" on a sphere, which are composed of self-propelled colloidal particles. Our work is based on a phase-field-crystal-type model that involves a density and a polarization field on the sphere. Depending on the strength of the self-propulsion, three different types of crystals are found: a static crystal, a self-spinning "vortex-vortex" crystal containing two vortical poles of the local velocity, and a self-translating "source-sink" crystal with a source pole where crystallization occurs and a sink pole where the active crystal melts. These different crystalline states as well as their defects are studied theoretically here and can in principle be confirmed in experiments.
Collapse
Affiliation(s)
- Simon Praetorius
- Institute for Scientific Computing, Technische Universität Dresden, D-01062 Dresden, Germany
| | - Axel Voigt
- Institute for Scientific Computing, Technische Universität Dresden, D-01062 Dresden, Germany
- Dresden Center for Computational Materials Science (DCMS), D-01062 Dresden, Germany
- Center for Systems Biology Dresden (CSBD), D-01307 Dresden, Germany
| | - Raphael Wittkowski
- Institut für Theoretische Physik, Westfälische Wilhelms-Universität Münster, D-48149 Münster, Germany
- Center for Nonlinear Science (CeNoS), Westfälische Wilhelms-Universität Münster, D-48149 Münster, Germany
| | - Hartmut Löwen
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, D-40225 Düsseldorf, Germany
| |
Collapse
|
31
|
Husain K, Rao M. Emergent Structures in an Active Polar Fluid: Dynamics of Shape, Scattering, and Merger. PHYSICAL REVIEW LETTERS 2017; 118:078104. [PMID: 28256860 DOI: 10.1103/physrevlett.118.078104] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Indexed: 06/06/2023]
Abstract
Spatially localized defect structures emerge spontaneously in a hydrodynamic description of an active polar fluid comprising polar "actin" filaments and "myosin" motor proteins that (un)bind to filaments and exert active contractile stresses. These emergent defect structures are characterized by distinct textures and can be either static or mobile-we derive effective equations of motion for these "extended particles" and analyze their shape, kinetics, interactions, and scattering. Depending on the impact parameter and propulsion speed, these active defects undergo elastic scattering or merger. Our results are relevant for the dynamics of actomyosin-dense structures at the cell cortex, reconstituted actomyosin complexes, and 2D active colloidal gels.
Collapse
Affiliation(s)
- Kabir Husain
- Simons Centre for the Study of Living Machines, National Centre for Biological Sciences (TIFR), Bellary Road, Bangalore 560 065, India
| | - Madan Rao
- Simons Centre for the Study of Living Machines, National Centre for Biological Sciences (TIFR), Bellary Road, Bangalore 560 065, India
| |
Collapse
|
32
|
Krüger C, Bahr C, Herminghaus S, Maass CC. Dimensionality matters in the collective behaviour of active emulsions. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2016; 39:64. [PMID: 27342105 DOI: 10.1140/epje/i2016-16064-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 06/02/2016] [Indexed: 06/06/2023]
Abstract
The behaviour of artificial microswimmers consisting of droplets of a mesogenic oil immersed in an aqueous surfactant solution depends qualitatively on the conditions of dimensional confinement; ranging from only transient aggregates in Hele-Shaw geometries to hexagonally packed, convection-driven clusters when sedimenting in an unconfined reservoir. We study the effects of varying the swimmer velocity, the height of the reservoir, and the buoyancy of the droplet swimmers. Two simple adjustments of the experimental setting lead to a suppression of clustering: either a decrease of the reservoir height below a certain value, or a match of the densities of droplets and surrounding phase, showing that the convection is the key mechanism for the clustering behaviour.
Collapse
Affiliation(s)
- Carsten Krüger
- Max Planck Institute for Dynamics and Self-Organization (MPIDS), Am Faßberg 17, 37077, Göttingen, Germany.
| | - Christian Bahr
- Max Planck Institute for Dynamics and Self-Organization (MPIDS), Am Faßberg 17, 37077, Göttingen, Germany
| | - Stephan Herminghaus
- Max Planck Institute for Dynamics and Self-Organization (MPIDS), Am Faßberg 17, 37077, Göttingen, Germany
| | - Corinna C Maass
- Max Planck Institute for Dynamics and Self-Organization (MPIDS), Am Faßberg 17, 37077, Göttingen, Germany
| |
Collapse
|
33
|
Mkhonta SK, Elder KR, Huang ZF. Emergence of Chirality from Isotropic Interactions of Three Length Scales. PHYSICAL REVIEW LETTERS 2016; 116:205502. [PMID: 27258877 DOI: 10.1103/physrevlett.116.205502] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Indexed: 06/05/2023]
Abstract
Chirality is known to play a pivotal role in determining material properties and functionalities. However, it remains a great challenge to understand and control the emergence of chirality and the related enantioselective process particularly when the building components of the system are achiral. Here we explore the generic mechanisms driving the formation of two-dimensional chiral structures in systems characterized by isotropic interactions and three competing length scales. We demonstrate that starting from isotropic and rotationally invariant interactions, a variety of chiral ordered patterns and superlattices with anisotropic but achiral units can self-assemble. The mechanisms for selecting specific states are related to the length-scale coupling and the selection of resonant density wave vectors. Sample phase diagrams and chiral elastic properties are identified. These findings provide a viable route for predicting chiral phases and selecting the desired handedness.
Collapse
Affiliation(s)
- S K Mkhonta
- Department of Physics and Astronomy, Wayne State University, Detroit, Michigan 48201, USA
- Department of Physics, University of Swaziland, Private Bag 4, Kwaluseni M201, Swaziland
| | - K R Elder
- Department of Physics, Oakland University, Rochester, Michigan 48309, USA
| | - Zhi-Feng Huang
- Department of Physics and Astronomy, Wayne State University, Detroit, Michigan 48201, USA
| |
Collapse
|
34
|
Abstract
Networks of biofilaments are essential for the formation of cellular structures that support various biological functions. For the most part, previous studies have investigated the collective dynamics of rodlike biofilaments; however, the shapes of the actual subcellular components are often more elaborate. In this study, we considered an active object composed of two active filaments, which represents the progression from rodlike biofilaments to complex-shaped biofilaments. Specifically, we numerically assessed the collective behaviors of these active objects in two dimensions and observed several types of dynamics, depending on the density and the angle of the two filaments as shape parameters of the object. Among the observed collective dynamics, a moving density band that we named a "moving smectic" is introduced here for the first time. By analyzing the trajectories of individual objects and the interactions among them, this study demonstrated how interactions among active biofilaments with complex shapes could produce collective dynamics in a nontrivial manner.
Collapse
Affiliation(s)
- Hironobu Nogucci
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo, Japan
| | - Shuji Ishihara
- Department of Physics, School of Science and Technology, Meiji University, 1-1-1 Higashi-Mita, Tama, Kawasaki, Kanagawa, Japan
| |
Collapse
|
35
|
Minimal model of active colloids highlights the role of mechanical interactions in controlling the emergent behavior of active matter. Curr Opin Colloid Interface Sci 2016. [DOI: 10.1016/j.cocis.2016.01.003] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
36
|
Küchler N, Löwen H, Menzel AM. Getting drowned in a swirl: Deformable bead-spring model microswimmers in external flow fields. Phys Rev E 2016; 93:022610. [PMID: 26986380 DOI: 10.1103/physreve.93.022610] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Indexed: 06/05/2023]
Abstract
Deformability is a central feature of many types of microswimmers, e.g., for artificially generated self-propelled droplets. Here, we analyze deformable bead-spring microswimmers in an externally imposed solvent flow field as simple theoretical model systems. We focus on their behavior in a circular swirl flow in two spatial dimensions. Linear (straight) two-bead swimmers are found to circle around the swirl with a slight drift to the outside with increasing activity. In contrast to that, we observe for triangular three-bead or squarelike four-bead swimmers a tendency of being drawn into the swirl and finally getting drowned, although a radial inward component is absent in the flow field. During one cycle around the swirl, the self-propulsion direction of an active triangular or squarelike swimmer remains almost constant, while their orbits become deformed exhibiting an "egglike" shape. Over time, the swirl flow induces slight net rotations of these swimmer types, which leads to net rotations of the egg-shaped orbits. Interestingly, in certain cases, the orbital rotation changes sense when the swimmer approaches the flow singularity. Our predictions can be verified in real-space experiments on artificial microswimmers.
Collapse
Affiliation(s)
- Niklas Küchler
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, D-40225 Düsseldorf, Germany
| | - Hartmut Löwen
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, D-40225 Düsseldorf, Germany
| | - Andreas M Menzel
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, D-40225 Düsseldorf, Germany
| |
Collapse
|
37
|
Menzel AM, Saha A, Hoell C, Löwen H. Dynamical density functional theory for microswimmers. J Chem Phys 2016; 144:024115. [DOI: 10.1063/1.4939630] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Andreas M. Menzel
- Institut für Theoretische Physik II, Weiche Materie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Arnab Saha
- Institut für Theoretische Physik II, Weiche Materie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Christian Hoell
- Institut für Theoretische Physik II, Weiche Materie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Hartmut Löwen
- Institut für Theoretische Physik II, Weiche Materie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| |
Collapse
|
38
|
Speck T, Menzel AM, Bialké J, Löwen H. Dynamical mean-field theory and weakly non-linear analysis for the phase separation of active Brownian particles. J Chem Phys 2015; 142:224109. [DOI: 10.1063/1.4922324] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Thomas Speck
- Institut für Physik, Johannes Gutenberg-Universität Mainz, Staudingerweg 7-9, 55128 Mainz, Germany
| | - Andreas M. Menzel
- Institut für Theoretische Physik II, Heinrich-Heine-Universität, D-40225 Düsseldorf, Germany
| | - Julian Bialké
- Institut für Theoretische Physik II, Heinrich-Heine-Universität, D-40225 Düsseldorf, Germany
| | - Hartmut Löwen
- Institut für Theoretische Physik II, Heinrich-Heine-Universität, D-40225 Düsseldorf, Germany
| |
Collapse
|
39
|
Chou YL, Ihle T. Active matter beyond mean-field: ring-kinetic theory for self-propelled particles. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 91:022103. [PMID: 25768454 DOI: 10.1103/physreve.91.022103] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Indexed: 06/04/2023]
Abstract
Recently, Hanke et al. [Phys. Rev. E 88, 052309 (2013)] showed that mean-field kinetic theory fails to describe collective motion in soft active colloids and that correlations must not be neglected. Correlation effects are also expected to be essential in systems of biofilaments driven by molecular motors and in swarms of midges. To obtain correlations in an active matter system from first principles, we derive a ring-kinetic theory for Vicsek-style models of self-propelled agents from the exact N-particle evolution equation in phase space. The theory goes beyond mean-field and does not rely on Boltzmann's approximation of molecular chaos. It can handle precollisional correlations and cluster formation, which are both important to understand the phase transition to collective motion. We propose a diagrammatic technique to perform a small-density expansion of the collision operator and derive the first two equations of the Bogoliubov-Born-Green-Kirkwood-Yvon (BBGKY) hierarchy. An algorithm is presented that numerically solves the evolution equation for the two-particle correlations on a lattice. Agent-based simulations are performed and informative quantities such as orientational and density correlation functions are compared with those obtained by ring-kinetic theory. Excellent quantitative agreement between simulations and theory is found at not-too-small noises and mean free paths. This shows that there are parameter ranges in Vicsek-like models where the correlated closure of the BBGKY hierarchy gives correct and nontrivial results. We calculate the dependence of the orientational correlations on distance in the disordered phase and find that it seems to be consistent with a power law with an exponent around -1.8, followed by an exponential decay. General limitations of the kinetic theory and its numerical solution are discussed.
Collapse
Affiliation(s)
- Yen-Liang Chou
- Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Straße 38, 01187 Dresden, Germany
| | - Thomas Ihle
- Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Straße 38, 01187 Dresden, Germany
- Department of Physics, North Dakota State University, Fargo, North Dakota 58108-6050, USA
| |
Collapse
|
40
|
Herminghaus S, Maass CC, Krüger C, Thutupalli S, Goehring L, Bahr C. Interfacial mechanisms in active emulsions. SOFT MATTER 2014; 10:7008-22. [PMID: 24924906 DOI: 10.1039/c4sm00550c] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Active emulsions, i.e., emulsions whose droplets perform self-propelled motion, are of tremendous interest for mimicking collective phenomena in biological populations such as phytoplankton and bacterial colonies, but also for experimentally studying rheology, pattern formation, and phase transitions in systems far from thermal equilibrium. For fuelling such systems, molecular processes involving the surfactants which stabilize the emulsions are a straightforward concept. We outline and compare two different types of reactions, one which chemically modifies the surfactant molecules, the other which transfers them into a different colloidal state. While in the first case symmetry breaking follows a standard linear instability, the second case turns out to be more complex. Depending on the dissolution pathway, there is either an intrinsically nonlinear instability, or no symmetry breaking at all (and hence no locomotion).
Collapse
Affiliation(s)
- Stephan Herminghaus
- Max-Planck Institute for Dynamics and Self-Organization, Göttingen, Germany.
| | | | | | | | | | | |
Collapse
|