1
|
Halpin-Healy T. Kardar-Parisi-Zhang growth in ɛ dimensions and beyond. Phys Rev E 2025; 111:014147. [PMID: 39972795 DOI: 10.1103/physreve.111.014147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 12/19/2024] [Indexed: 02/21/2025]
Abstract
We examine anew the relationship of directed polymers in random media on traditional hypercubic versus hierarchical lattices, with the goal of understanding the dimensionality dependence of the essential scaling index β at the heart of the Kardar-Parisi-Zhang universality class. A seemingly accurate, but entirely empirical, ansatz due to Perlsman and Schwartz, proposed many years ago, can be put in proper context by anchoring the connection between these distinct lattice types at vanishing dimensionality. We graft together complementary perturbative field-theoretic and nonperturbative real-space renormalization group tools to establish the necessary connection, thereby elucidating the central mystery underlying the ansatz's uncanny apparent success, but also revealing its intrinsic limitations. Furthermore, we perform an extensive Euler integration of the KPZ equation in 3+1 dimensions which, bolstered by a separate directed polymer simulation, allows us an estimate for the critical exponent β_{3+1}^{KPZ}=0.1845(4) that greatly improves upon all previous Monte Carlo calculations in this regard and rules out the Perlsman-Schwartz value, 0.1882^{+}, in that dimension. Finally, leveraging this hybrid RG partnership permits us a versatile, more potent, tool to explore the general KPZ problem across dimensions, as well as a conjecture for its key critical exponent, β=1/2-0.22967ɛ, as ɛ→0, testable in a three-loop calculation.
Collapse
Affiliation(s)
- Timothy Halpin-Healy
- Columbia University, Physics Department, Barnard College, New York, New York 10027, USA
| |
Collapse
|
2
|
Carrasco ISS, Oliveira TJ. Dimensional crossover in Kardar-Parisi-Zhang growth. Phys Rev E 2024; 109:L042102. [PMID: 38755819 DOI: 10.1103/physreve.109.l042102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 04/08/2024] [Indexed: 05/18/2024]
Abstract
Two-dimensional (2D) Kardar-Parisi-Zhang (KPZ) growth is usually investigated on substrates of lateral sizes L_{x}=L_{y}, so that L_{x} and the correlation length (ξ) are the only relevant lengths determining the scaling behavior. However, in cylindrical geometry, as well as in flat rectangular substrates L_{x}≠L_{y} and, thus, the surfaces can become correlated in a single direction, when ξ∼L_{x}≪L_{y}. From extensive simulations of several KPZ models, we demonstrate that this yields a dimensional crossover in their dynamics, with the roughness scaling as W∼t^{β_{2D}} for t≪t_{c} and W∼t^{β_{1D}} for t≫t_{c}, where t_{c}∼L_{x}^{1/z_{2D}}. The height distributions (HDs) also cross over from the 2D flat (cylindrical) HD to the asymptotic Tracy-Widom Gaussian orthogonal ensemble (Gaussian unitary ensemble) distribution. Moreover, 2D to one-dimensional (1D) crossovers are found also in the asymptotic growth velocity and in the steady-state regime of flat systems, where a family of universal HDs exists, interpolating between the 2D and 1D ones as L_{y}/L_{x} increases. Importantly, the crossover scalings are fully determined and indicate a possible way to solve 2D KPZ models.
Collapse
Affiliation(s)
- Ismael S S Carrasco
- International Center of Physics, Institute of Physics, University of Brasilia, 70910-900 Brasilia, Federal District, Brazil
| | - Tiago J Oliveira
- Departamento de Física, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| |
Collapse
|
3
|
Amelio I, Chiocchetta A, Carusotto I. Kardar-Parisi-Zhang universality in the coherence time of nonequilibrium one-dimensional quasicondensates. Phys Rev E 2024; 109:014104. [PMID: 38366467 DOI: 10.1103/physreve.109.014104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 12/11/2023] [Indexed: 02/18/2024]
Abstract
We investigate the finite-size origin of the coherence time (or equivalently of its inverse, the emission linewidth) of a spatially extended, one-dimensional nonequilibrium condensate. We show that the well-known Schawlow-Townes scaling of laser theory, possibly including the Henry broadening factor, only holds for small system sizes, while in larger systems the linewidth displays a novel scaling determined by Kardar-Parisi-Zhang physics. This is shown to lead to an opposite dependence of the coherence time on the optical nonlinearity in the two cases. We then study how subuniversal properties of the phase dynamics such as the higher moments of the phase-phase correlator are affected by the finite size and discuss the relation between the field coherence and the exponential of the phase-phase correlator. We finally identify a configuration with enhanced open boundary conditions, which supports a spatially uniform steady state and facilitates experimental studies of the coherence time scaling.
Collapse
Affiliation(s)
- Ivan Amelio
- Center for Nonlinear Phenomena and Complex Systems, Université Libre de Bruxelles, CP 231, Campus Plaine, B-1050 Brussels, Belgium
- Institute of Quantum Electronics, ETH Zurich, CH-8093 Zurich, Switzerland
- Pitaevskii BEC Center, INO-CNR and Dipartimento di Fisica, Università di Trento I-38123 Trento, Italy
| | - Alessio Chiocchetta
- Institute for Theoretical Physics, University of Cologne, Zülpicher Strasse 77, 50937 Cologne, Germany
| | - Iacopo Carusotto
- Pitaevskii BEC Center, INO-CNR and Dipartimento di Fisica, Università di Trento I-38123 Trento, Italy
| |
Collapse
|
4
|
Mozo Luis EE, Oliveira FA, de Assis TA. Accessibility of the surface fractal dimension during film growth. Phys Rev E 2023; 107:034802. [PMID: 37073068 DOI: 10.1103/physreve.107.034802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 03/06/2023] [Indexed: 04/20/2023]
Abstract
Fractal properties on self-affine surfaces of films growing under nonequilibrium conditions are important in understanding the corresponding universality class. However, measurement of the surface fractal dimension has been intensively investigated and is still very problematic. In this work, we report the behavior of the effective fractal dimension in the context of film growth involving lattice models believed to belong to the Kardar-Parisi-Zhang (KPZ) universality class. Our results, which are presented for growth in a d-dimensional substrate (d=1,2) and use the three-point sinuosity (TPS) method, show universal scaling of the measure M, which is defined in terms of discretization of the Laplacian operator applied to the height of the film surface, M=t^{δ}g[Θ], where t is the time, g[Θ] is a scale function, δ=2β, Θ≡τt^{-1/z}, β, and z are the KPZ growth and dynamical exponents, respectively, and τ is a spatial scale length used to compute M. Importantly, we show that the effective fractal dimensions are consistent with the expected KPZ dimensions for d=1,2, if Θ≲0.3, which include a thin film regime for the extraction of the fractal dimension. This establishes the scale limits in which the TPS method can be used to accurately extract effective fractal dimensions that are consistent with those expected for the corresponding universality class. As a consequence, for the steady state, which is inaccessible to experimentalists studying film growth, the TPS method provided effective fractal dimension consistent with the KPZ ones for almost all possible τ, i.e., 1≲τ<L/2, where L is the lateral size of the substrate on which the deposit is grown. In the growth of thin films, the true fractal dimension can be observed in a narrow range of τ, the upper limit of which is of the same order of magnitude as the correlation length of the surface, indicating the limits of self-affinity of a surface in an experimentally accessible regime. This upper limit was comparatively lower for the Higuchi method or the height-difference correlation function. Scaling corrections for the measure M and the height-difference correlation function are studied analytically and compared for the Edwards-Wilkinson class at d=1, yielding similar accuracy for both methods. Importantly, we extend our discussion to a model representing diffusion-dominated growth of films and find that the TPS method achieves the corresponding fractal dimension only at steady state and in a narrow range of the scale length, compared to that found for the KPZ class.
Collapse
Affiliation(s)
- Edwin E Mozo Luis
- Instituto de Física, Universidade Federal da Bahia, Campus Universitário da Federação, Rua Barão de Jeremoabo s/n, 40170-115, Salvador, BA, Brazil
| | - Fernando A Oliveira
- Instituto de Física, Universidade Federal da Bahia, Campus Universitário da Federação, Rua Barão de Jeremoabo s/n, 40170-115, Salvador, BA, Brazil
- Instituto de Física, Universidade de Brasília, 70910-900, Brasília, DF, Brazil
- Instituto de Física, Universidade Federal Fluminense, Avenida Litorânea s/n, 24210-340, Niterói, RJ, Brazil
| | - Thiago A de Assis
- Instituto de Física, Universidade Federal da Bahia, Campus Universitário da Federação, Rua Barão de Jeremoabo s/n, 40170-115, Salvador, BA, Brazil
- Instituto de Física, Universidade Federal Fluminense, Avenida Litorânea s/n, 24210-340, Niterói, RJ, Brazil
| |
Collapse
|
5
|
Oliveira TJ. Kardar-Parisi-Zhang universality class in (d+1)-dimensions. Phys Rev E 2022; 106:L062103. [PMID: 36671175 DOI: 10.1103/physreve.106.l062103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
The determination of the exact exponents of the KPZ class in any substrate dimension d is one of the most important open issues in Statistical Physics. Based on the behavior of the dimensional variation of some exact exponent differences for other growth equations, I find here that the KPZ growth exponents (related to the temporal scaling of the fluctuations) are given by β_{d}=7/8d+13. These exponents present an excellent agreement with the most accurate estimates for them in the literature. Moreover, they are confirmed here through extensive Monte Carlo simulations of discrete growth models and real-space renormalization group (RG) calculations for directed polymers in random media (DPRM), up to d=15. The left-tail exponents of the probability density functions for the DPRM energy provide another striking verification of the analytical result above.
Collapse
Affiliation(s)
- Tiago J Oliveira
- Departamento de Física, Universidade Federal de Viçosa, 36570-900 Viçosa, MG, Brazil
| |
Collapse
|
6
|
Oliveira TJ. Height distributions in interface growth: The role of the averaging process. Phys Rev E 2022; 105:064803. [PMID: 35854512 DOI: 10.1103/physreve.105.064803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 06/03/2022] [Indexed: 06/15/2023]
Abstract
Height distributions (HDs) are key quantities to uncover universality and geometry-dependence in evolving interfaces. To quantitatively characterize HDs, one uses adimensional ratios of their first central moments (m_{n}) or cumulants (κ_{n}), especially the skewness S and kurtosis K, whose accurate estimate demands an averaging over all L^{d} points of the height profile at a given time, in translation-invariant interfaces, and over N independent samples. One way of doing this is by calculating m_{n}(t) [or κ_{n}(t)] for each sample and then carrying out an average of them for the N interfaces, with S and K being calculated only at the end. Another approach consists in directly calculating the ratios for each interface and, then, averaging the N values. It turns out, however, that S and K for the growth regime HDs display strong finite-size and -time effects when estimated from these "interface statistics," as already observed in some previous works and clearly shown here, through extensive simulations of several discrete growth models belonging to the EW and KPZ classes on one- and two-dimensional substrates of sizes L=const. and L∼t. Importantly, I demonstrate that with "1-point statistics," i.e., by calculating m_{n}(t) [or κ_{n}(t)] once for all NL^{d} heights together, these corrections become very weak, so that S and K attain values very close to the asymptotic ones already at short times and for small L's. However, I find that this "1-point" (1-pt) approach fails in uncovering the universality of the HDs in the steady-state regime (SSR) of systems whose average height, h[over ¯], is a fluctuating variable. In fact, as demonstrated here, in this regime the 1-pt height evolves as h(t)=h[over ¯](t)+s_{λ}A^{1/2}L^{α}ζ+⋯-where P(ζ) is the underlying SSR HD-and the fluctuations in h[over ¯] yield S_{1-pt}∼t^{-1/2} and K_{1-pt}∼t^{-1}. Nonetheless, by analyzing P(h-h[over ¯]), the cumulants of P(ζ) can be accurately determined. I also show that different, but universal, asymptotic values for S and K (related, so, to different HDs) can be found from the "interface statistics" in the SSR. This reveals the importance of employing the various complementary approaches to reliably determine the universality class of a given system through its different HDs.
Collapse
Affiliation(s)
- Tiago J Oliveira
- Departamento de Física, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| |
Collapse
|
7
|
Moilanen AJ, Daskalakis KS, Taskinen JM, Törmä P. Spatial and Temporal Coherence in Strongly Coupled Plasmonic Bose-Einstein Condensates. PHYSICAL REVIEW LETTERS 2021; 127:255301. [PMID: 35029458 DOI: 10.1103/physrevlett.127.255301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 11/22/2021] [Indexed: 06/14/2023]
Abstract
We report first-order spatial and temporal correlations in strongly coupled plasmonic Bose-Einstein condensates. The condensate is large, more than 20 times the spatial coherence length of the polaritons in the uncondensed system and 100 times the healing length, making plasmonic lattices an attractive platform for studying long-range spatial correlations in two dimensions. We find that both spatial and temporal coherence display nonexponential decay; the results suggest power-law or stretched exponential behavior with different exponents for spatial and temporal correlation decays.
Collapse
Affiliation(s)
- Antti J Moilanen
- Department of Applied Physics, Aalto University School of Science, P.O. Box 15100, Aalto FI-00076, Finland
| | - Konstantinos S Daskalakis
- Department of Applied Physics, Aalto University School of Science, P.O. Box 15100, Aalto FI-00076, Finland
- Department of Mechanical and Materials Engineering, Turku University Faculty of Technology, Turku FI-20014, Finland
| | - Jani M Taskinen
- Department of Applied Physics, Aalto University School of Science, P.O. Box 15100, Aalto FI-00076, Finland
| | - Päivi Törmä
- Department of Applied Physics, Aalto University School of Science, P.O. Box 15100, Aalto FI-00076, Finland
| |
Collapse
|
8
|
Song T, Xia H. Extensive numerical simulations of surface growth with temporally correlated noise. Phys Rev E 2021; 103:012121. [PMID: 33601554 DOI: 10.1103/physreve.103.012121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 12/23/2020] [Indexed: 11/07/2022]
Abstract
Surface growth processes can be significantly affected by long-range temporal correlations. In this work, we perform extensive numerical simulations of a (1+1)- and (2+1)-dimensional ballistic deposition (BD) model driven by temporally correlated noise, which is regarded as the temporal correlated Kardar-Parisi-Zhang universality class. Our results are compared with the existing theoretical predictions and numerical simulations. When the temporal correlation exponent is above a certain threshold, BD surfaces develop gradually faceted patterns. We find that the temporal correlated BD system displays nontrivial dynamic properties, and the characteristic roughness exponents satisfy α≃α_{loc}<α_{s} in (1+1) dimensions, which is beyond the existing dynamic scaling classifications.
Collapse
Affiliation(s)
- Tianshu Song
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China.,School of Information and Control Engineering, China University of Mining and Technology, Xuzhou 221116, China
| | - Hui Xia
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China
| |
Collapse
|
9
|
Akutsu N. Faceted-rough surface with disassembling of macrosteps in nucleation-limited crystal growth. Sci Rep 2021; 11:3711. [PMID: 33580162 PMCID: PMC7881209 DOI: 10.1038/s41598-021-83227-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 02/01/2021] [Indexed: 01/30/2023] Open
Abstract
To clarify whether a surface can be rough with faceted macrosteps that maintain their shape on the surface, crystal surface roughness is studied by a Monte Carlo method for a nucleation-limited crystal-growth process. As a surface model, the restricted solid-on-solid (RSOS) model with point-contact-type step-step attraction (p-RSOS model) is adopted. At equilibrium and at sufficiently low temperatures, the vicinal surface of the p-RSOS model consists of faceted macrosteps with (111) side surfaces and smooth terraces with (001) surfaces (the step-faceting zone). We found that a surface with faceted macrosteps has an approximately self-affine-rough structure on a 'faceted-rough surface'; the surface width is strongly divergent at the step-disassembling point, which is a characteristic driving force for crystal growth. A 'faceted-rough surface' is realized in the region between the step-disassembling point and a crossover point where the single nucleation growth changes to poly-nucleation growth.
Collapse
Affiliation(s)
- Noriko Akutsu
- Faculty of Engineering, Osaka Electro-Communication University, Hatsu-cho, Neyagawa, Osaka, 572-8530, Japan.
| |
Collapse
|
10
|
Daryaei E. Universality and crossover behavior of single-step growth models in 1+1 and 2+1 dimensions. Phys Rev E 2020; 101:062108. [PMID: 32688564 DOI: 10.1103/physreve.101.062108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 05/15/2020] [Indexed: 06/11/2023]
Abstract
We study the kinetic roughening of the single-step (SS) growth model with a tunable parameter p in 1+1 and 2+1 dimensions by performing extensive numerical simulations. We show that there exists a very slow crossover from an intermediate regime dominated by the Edwards-Wilkinson class to an asymptotic regime dominated by the Kardar-Parisi-Zhang (KPZ) class for any p<1/2. We also identify the crossover time, the nonlinear coupling constant, and some nonuniversal parameters in the KPZ equation as a function p. The effective nonuniversal parameters are continuously decreasing with p but not in a linear fashion. Our results provide complete and conclusive evidence that the SS model for p≠1/2 belongs to the KPZ universality class in 2+1 dimensions.
Collapse
Affiliation(s)
- E Daryaei
- Department of Physics, Faculty of Basic Sciences, University of Neyshabur, P.O. Box 91136-899, Neyshabur, Iran
| |
Collapse
|
11
|
Squizzato D, Canet L. Kardar-Parisi-Zhang equation with temporally correlated noise: A nonperturbative renormalization group approach. Phys Rev E 2020; 100:062143. [PMID: 31962447 DOI: 10.1103/physreve.100.062143] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Indexed: 11/07/2022]
Abstract
We investigate the universal behavior of the Kardar-Parisi-Zhang (KPZ) equation with temporally correlated noise. The presence of time correlations in the microscopic noise breaks the statistical tilt symmetry, or Galilean invariance, of the original KPZ equation with δ-correlated noise (denoted SR-KPZ). Thus, it is not clear whether the KPZ universality class is preserved in this case. Conflicting results exist in the literature, some advocating that it is destroyed even in the limit of infinitesimal temporal correlations, while others find that it persists up to a critical range of such correlations. Using nonperturbative and functional renormalization group techniques, we study the influence of two types of temporal correlators of the noise: a short-range one with a typical timescale τ, and a power-law one with a varying exponent θ. We show that for the short-range noise with any finite τ, the symmetries (the Galilean symmetry, and the time-reversal one in 1+1 dimension) are dynamically restored at large scales, such that the long-distance and long-time properties are governed by the SR-KPZ fixed point. In the presence of a power-law noise, we find that the SR-KPZ fixed point is still stable for θ below a critical value θ_{th}, in accordance with previous renormalization group results, while a long-range fixed point controls the critical scaling for θ>θ_{th}, and we evaluate the θ-dependent critical exponents at this long-range fixed point, in both 1+1 and 2+1 dimensions. While the results in 1+1 dimension can be compared with previous studies, no other prediction was available in 2+1 dimension. We finally report in 1+1 dimension the emergence of anomalous scaling in the long-range phase.
Collapse
Affiliation(s)
| | - Léonie Canet
- University Grenoble Alpes, CNRS, LPMMC, 38000 Grenoble, France
| |
Collapse
|
12
|
Comaron P, Dagvadorj G, Zamora A, Carusotto I, Proukakis NP, Szymańska MH. Dynamical Critical Exponents in Driven-Dissipative Quantum Systems. PHYSICAL REVIEW LETTERS 2018; 121:095302. [PMID: 30230863 DOI: 10.1103/physrevlett.121.095302] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Indexed: 06/08/2023]
Abstract
We study the phase ordering of parametrically and incoherently driven microcavity polaritons after an infinitely rapid quench across the critical region. We confirm that the system, despite its driven-dissipative nature, satisfies the dynamical scaling hypothesis for both driving schemes by exhibiting self-similar patterns for the two-point correlator at late times of the phase ordering. We show that polaritons are characterized by the dynamical critical exponent z≈2 with topological defects playing a fundamental role in the dynamics, giving logarithmic corrections both to the power-law decay of the number of vortices and to the associated growth of the characteristic length scale.
Collapse
Affiliation(s)
- P Comaron
- Joint Quantum Centre (JQC) Durham-Newcastle, School of Mathematics, Statistics and Physics, Newcastle University, Newcastle upon Tyne, NE1 7RU, United Kingdom
| | - G Dagvadorj
- Department of Physics and Astronomy, University College London, Gower Street, London, WC1E 6BT, United Kingdom
- Department of Physics, University of Warwick, Coventry, CV4 7AL, United Kingdom
| | - A Zamora
- Department of Physics and Astronomy, University College London, Gower Street, London, WC1E 6BT, United Kingdom
| | - I Carusotto
- INO-CNR BEC Center and Dipartimento di Fisica, Università di Trento, 38123 Povo, Italy
| | - N P Proukakis
- Joint Quantum Centre (JQC) Durham-Newcastle, School of Mathematics, Statistics and Physics, Newcastle University, Newcastle upon Tyne, NE1 7RU, United Kingdom
| | - M H Szymańska
- Department of Physics and Astronomy, University College London, Gower Street, London, WC1E 6BT, United Kingdom
| |
Collapse
|
13
|
Xiong D. Observing golden-mean universality class in the scaling of thermal transport. Phys Rev E 2018; 97:022116. [PMID: 29548205 DOI: 10.1103/physreve.97.022116] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Indexed: 11/07/2022]
Abstract
We address the issue of whether the golden-mean [ψ=(sqrt[5]+1)/2≃1.618] universality class, as predicted by several theoretical models, can be observed in the dynamical scaling of thermal transport. Remarkably, we show strong evidence that ψ appears to be the scaling exponent of heat mode correlation in a purely quartic anharmonic chain. This observation seems to somewhat deviate from the previous expectation and we explain it by the unusual slow decay of the cross correlation between heat and sound modes. Whenever the cubic anharmonicity is included, this cross correlation gradually dies out and another universality class with scaling exponent γ=5/3, as commonly predicted by theories, seems recovered. However, this recovery is accompanied by two interesting phase transition processes characterized by a change of symmetry of the potential and a clear variation of the dynamic structure factor, respectively. Due to these transitions, an additional exponent close to γ≃1.580 emerges. All this evidence suggests that, to gain a full prediction of the scaling of thermal transport, more ingredients should be taken into account.
Collapse
Affiliation(s)
- Daxing Xiong
- Department of Physics, Fuzhou University, Fuzhou 350108, Fujian, China
| |
Collapse
|
14
|
Schütz GM, Wehefritz-Kaufmann B. Kardar-Parisi-Zhang modes in d-dimensional directed polymers. Phys Rev E 2018; 96:032119. [PMID: 29346934 DOI: 10.1103/physreve.96.032119] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Indexed: 11/07/2022]
Abstract
We define a stochastic lattice model for a fluctuating directed polymer in d≥2 dimensions. This model can be alternatively interpreted as a fluctuating random path in two dimensions, or a one-dimensional asymmetric simple exclusion process with d-1 conserved species of particles. The deterministic large dynamics of the directed polymer are shown to be given by a system of coupled Kardar-Parisi-Zhang (KPZ) equations and diffusion equations. Using nonlinear fluctuating hydrodynamics and mode coupling theory we argue that stationary fluctuations in any dimension d can only be of KPZ type or diffusive. The modes are pure in the sense that there are only subleading couplings to other modes, thus excluding the occurrence of modified KPZ-fluctuations or Lévy-type fluctuations, which are common for more than one conservation law. The mode-coupling matrices are shown to satisfy the so-called trilinear condition.
Collapse
Affiliation(s)
- G M Schütz
- Institute of Complex Systems II, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - B Wehefritz-Kaufmann
- Department of Mathematics and Department of Physics and Astronomy, Purdue University, 150 North University Street, West Lafayette, Indiana 47906, USA
| |
Collapse
|
15
|
Le Doussal P, Thiery T. Diffusion in time-dependent random media and the Kardar-Parisi-Zhang equation. Phys Rev E 2018; 96:010102. [PMID: 29347226 DOI: 10.1103/physreve.96.010102] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Indexed: 11/07/2022]
Abstract
Although time-dependent random media with short-range correlations lead to (possibly biased) normal tracer diffusion, anomalous fluctuations occur away from the most probable direction. This was pointed out recently in one-dimensional (1D) lattice random walks, where statistics related to the 1D Kardar-Parisi-Zhang (KPZ) universality class, i.e., the Gaussian unitary ensemble Tracy-Widom distribution, were shown to arise. Here, we provide a simple picture for this correspondence, directly in the continuum, which allows one to study arbitrary space dimensions and to predict a variety of universal distributions. In d=1, we predict and verify numerically the emergence of the Gaussian orthogonal ensemble Tracy-Widom distribution for fluctuations of the transition probability. In d=3, we predict a phase transition from Gaussian fluctuations to three-dimensional KPZ-type fluctuations as the bias is increased. We predict KPZ universal distributions for the arrival time of a first particle from a cloud diffusing in such media.
Collapse
Affiliation(s)
- Pierre Le Doussal
- CNRS-Laboratoire de Physique Théorique de l'Ecole Normale Supérieure, 24 rue Lhomond, F-75231 Cedex 05 Paris, France
| | - Thimothée Thiery
- Instituut voor Theoretische Fysica, KU Leuven, 3001 Leuven, Belgium
| |
Collapse
|
16
|
Almeida RAL, Ferreira SO, Ferraz I, Oliveira TJ. Initial pseudo-steady state & asymptotic KPZ universality in semiconductor on polymer deposition. Sci Rep 2017. [PMID: 28630488 PMCID: PMC5476714 DOI: 10.1038/s41598-017-03843-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The Kardar-Parisi-Zhang (KPZ) class is a paradigmatic example of universality in nonequilibrium phenomena, but clear experimental evidences of asymptotic 2D-KPZ statistics are still very rare, and far less understanding stems from its short-time behavior. We tackle such issues by analyzing surface fluctuations of CdTe films deposited on polymeric substrates, based on a huge spatio-temporal surface sampling acquired through atomic force microscopy. A pseudo-steady state (where average surface roughness and spatial correlations stay constant in time) is observed at initial times, persisting up to deposition of ~104 monolayers. This state results from a fine balance between roughening and smoothening, as supported by a phenomenological growth model. KPZ statistics arises at long times, thoroughly verified by universal exponents, spatial covariance and several distributions. Recent theoretical generalizations of the Family-Vicsek scaling and the emergence of log-normal distributions during interface growth are experimentally confirmed. These results confirm that high vacuum vapor deposition of CdTe constitutes a genuine 2D-KPZ system, and expand our knowledge about possible substrate-induced short-time behaviors.
Collapse
Affiliation(s)
- Renan A L Almeida
- Tokyo Institute of Technology, Department of Physics, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8551, Japan.
| | - Sukarno O Ferreira
- Departamento de Física, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| | - Isnard Ferraz
- Departamento de Física, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| | - Tiago J Oliveira
- Departamento de Física, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil.
| |
Collapse
|
17
|
Reis FDAA. Effects of film growth kinetics on grain coarsening and grain shape. Phys Rev E 2017; 95:042805. [PMID: 28505723 DOI: 10.1103/physreve.95.042805] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Indexed: 11/07/2022]
Abstract
We study models of grain nucleation and coarsening during the deposition of a thin film using numerical simulations and scaling approaches. The incorporation of new particles in the film is determined by lattice growth models in three different universality classes, with no effect of the grain structure. The first model of grain coarsening is similar to that proposed by Saito and Omura [Phys. Rev. E 84, 021601 (2011)PLEEE81539-375510.1103/PhysRevE.84.021601], in which nucleation occurs only at the substrate, and the grain boundary evolution at the film surface is determined by a probabilistic competition of neighboring grains. The surface grain density has a power-law decay, with an exponent related to the dynamical exponent of the underlying growth kinetics, and the average radius of gyration scales with the film thickness with the same exponent. This model is extended by allowing nucleation of new grains during the deposition, with constant but small rates. The surface grain density crosses over from the initial power law decay to a saturation; at the crossover, the time, grain mass, and surface grain density are estimated as a function of the nucleation rate. The distributions of grain mass, height, and radius of gyration show remarkable power law decays, similar to other systems with coarsening and particle injection, with exponents also related to the dynamical exponent. The scaling of the radius of gyration with the height h relative to the base of the grain show clearly different exponents in growth dominated by surface tension and growth dominated by surface diffusion; thus it may be interesting for investigating the effects of kinetic roughening on grain morphology. In growth dominated by surface diffusion, the increase of grain size with temperature is observed.
Collapse
Affiliation(s)
- F D A Aarão Reis
- Instituto de Física, Universidade Federal Fluminense, Avenida Litorânea s/n, 24210-340 Niterói RJ, Brazil
| |
Collapse
|
18
|
Radu M, Kremer K. Enhanced Crystal Growth in Binary Lennard-Jones Mixtures. PHYSICAL REVIEW LETTERS 2017; 118:055702. [PMID: 28211741 DOI: 10.1103/physrevlett.118.055702] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Indexed: 06/06/2023]
Abstract
We study the crystal growth in binary Lennard-Jones mixtures by molecular dynamics simulations. Growth dynamics, the structure of the liquid-solid interfaces as well as droplet incorporation into the crystal vary with solution properties. For demixed systems we observe a strongly enhanced crystal growth at the cost of enclosed impurities. Furthermore, we find different interface morphologies depending on solubility. We relate our observations to growth mechanisms based on the Gibbs-Thomson effect as well as to predictions of the Kardar-Parisi-Zhang theory in 2+1 dimensions.
Collapse
Affiliation(s)
- M Radu
- Max-Planck Institut für Polymerforschung, Ackermannweg 10, D-55128 Mainz, Germany
| | - K Kremer
- Max-Planck Institut für Polymerforschung, Ackermannweg 10, D-55128 Mainz, Germany
| |
Collapse
|
19
|
Kelling J, Ódor G, Gemming S. Universality of (2+1)-dimensional restricted solid-on-solid models. Phys Rev E 2016; 94:022107. [PMID: 27627246 DOI: 10.1103/physreve.94.022107] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Indexed: 11/07/2022]
Abstract
Extensive dynamical simulations of restricted solid-on-solid models in D=2+1 dimensions have been done using parallel multisurface algorithms implemented on graphics cards. Numerical evidence is presented that these models exhibit Kardar-Parisi-Zhang surface growth scaling, irrespective of the step heights N. We show that by increasing N the corrections to scaling increase, thus smaller step-sized models describe better the asymptotic, long-wave-scaling behavior.
Collapse
Affiliation(s)
- Jeffrey Kelling
- Department of Information Services and Computing, Helmholtz-Zentrum Dresden-Rossendorf, P. O. Box 51 01 19, 01314 Dresden, Germany.,Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf, P. O. Box 51 01 19, 01314 Dresden, Germany
| | - Géza Ódor
- Institute of Technical Physics and Materials Science, Centre for Energy Research of the Hungarian Academy of Sciences, P. O. Box 49, H-1525 Budapest, Hungary
| | - Sibylle Gemming
- Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf, P. O. Box 51 01 19, 01314 Dresden, Germany.,Institute of Physics, TU Chemnitz, 09107 Chemnitz, Germany
| |
Collapse
|
20
|
Sieberer LM, Buchhold M, Diehl S. Keldysh field theory for driven open quantum systems. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2016; 79:096001. [PMID: 27482736 DOI: 10.1088/0034-4885/79/9/096001] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Recent experimental developments in diverse areas-ranging from cold atomic gases to light-driven semiconductors to microcavity arrays-move systems into the focus which are located on the interface of quantum optics, many-body physics and statistical mechanics. They share in common that coherent and driven-dissipative quantum dynamics occur on an equal footing, creating genuine non-equilibrium scenarios without immediate counterpart in equilibrium condensed matter physics. This concerns both their non-thermal stationary states and their many-body time evolution. It is a challenge to theory to identify novel instances of universal emergent macroscopic phenomena, which are tied unambiguously and in an observable way to the microscopic drive conditions. In this review, we discuss some recent results in this direction. Moreover, we provide a systematic introduction to the open system Keldysh functional integral approach, which is the proper technical tool to accomplish a merger of quantum optics and many-body physics, and leverages the power of modern quantum field theory to driven open quantum systems.
Collapse
Affiliation(s)
- L M Sieberer
- Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | | | | |
Collapse
|
21
|
Carrasco ISS, Oliveira TJ. Width and extremal height distributions of fluctuating interfaces with window boundary conditions. Phys Rev E 2016; 93:012801. [PMID: 26871135 DOI: 10.1103/physreve.93.012801] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Indexed: 11/07/2022]
Abstract
We present a detailed study of squared local roughness (SLRDs) and local extremal height distributions (LEHDs), calculated in windows of lateral size l, for interfaces in several universality classes, in substrate dimensions d_{s}=1 and 2. We show that their cumulants follow a Family-Vicsek-type scaling, and, at early times, when ξ≪l (ξ is the correlation length), the rescaled SLRDs are given by log-normal distributions, with their nth cumulant scaling as (ξ/l)^{(n-1)d_{s}}. This gives rise to an interesting temporal scaling for such cumulants as 〈w_{n}〉_{c}∼t^{γ_{n}}, with γ_{n}=2nβ+(n-1)d_{s}/z=[2n+(n-1)d_{s}/α]β. This scaling is analytically proved for the Edwards-Wilkinson (EW) and random deposition interfaces and numerically confirmed for other classes. In general, it is featured by small corrections, and, thus, it yields exponents γ_{n} (and, consequently, α,β and z) in good agreement with their respective universality class. Thus, it is a useful framework for numerical and experimental investigations, where it is usually hard to estimate the dynamic z and mainly the (global) roughness α exponents. The stationary (for ξ≫l) SLRDs and LEHDs of the Kardar-Parisi-Zhang (KPZ) class are also investigated, and, for some models, strong finite-size corrections are found. However, we demonstrate that good evidence of their universality can be obtained through successive extrapolations of their cumulant ratios for long times and large l. We also show that SLRDs and LEHDs are the same for flat and curved KPZ interfaces.
Collapse
Affiliation(s)
- I S S Carrasco
- Departamento de Física, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| | - T J Oliveira
- Departamento de Física, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| |
Collapse
|
22
|
Centres PM, Bustingorry S. From single-file diffusion to two-dimensional cage diffusion and generalization of the totally asymmetric simple exclusion process to higher dimensions. Phys Rev E 2016; 93:012134. [PMID: 26871051 DOI: 10.1103/physreve.93.012134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Indexed: 06/05/2023]
Abstract
A two-dimensional constrained diffusion model is presented and characterized by numerical simulations. The model generalizes the one-dimensional single-file diffusion model by considering a cage diffusion constraint induced by neighboring particles, which is a more stringent condition than volume exclusion. Using numerical simulations we characterize the diffusion process and we particularly show that asymmetric transition probabilities lead to the two-dimensional Kardar-Parisi-Zhang universality class. Therefore, this very simple model effectively generalizes the one-dimensional totally asymmetric simple exclusion process to higher dimensions.
Collapse
Affiliation(s)
- P M Centres
- Departamento de Física, Instituto de Física Aplicada, Universidad Nacional de San Luis-CONICET, Chacabuco 917, D5700HHW, San Luis, Argentina
| | - S Bustingorry
- CONICET, Centro Atómico Bariloche, 8400 San Carlos de Bariloche, Río Negro, Argentina
| |
Collapse
|
23
|
Popkov V, Schadschneider A, Schmidt J, Schütz GM. Fibonacci family of dynamical universality classes. Proc Natl Acad Sci U S A 2015; 112:12645-50. [PMID: 26424449 PMCID: PMC4611608 DOI: 10.1073/pnas.1512261112] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Universality is a well-established central concept of equilibrium physics. However, in systems far away from equilibrium, a deeper understanding of its underlying principles is still lacking. Up to now, a few classes have been identified. Besides the diffusive universality class with dynamical exponent [Formula: see text], another prominent example is the superdiffusive Kardar-Parisi-Zhang (KPZ) class with [Formula: see text]. It appears, e.g., in low-dimensional dynamical phenomena far from thermal equilibrium that exhibit some conservation law. Here we show that both classes are only part of an infinite discrete family of nonequilibrium universality classes. Remarkably, their dynamical exponents [Formula: see text] are given by ratios of neighboring Fibonacci numbers, starting with either [Formula: see text] (if a KPZ mode exist) or [Formula: see text] (if a diffusive mode is present). If neither a diffusive nor a KPZ mode is present, all dynamical modes have the Golden Mean [Formula: see text] as dynamical exponent. The universal scaling functions of these Fibonacci modes are asymmetric Lévy distributions that are completely fixed by the macroscopic current density relation and compressibility matrix of the system and hence accessible to experimental measurement.
Collapse
Affiliation(s)
- Vladislav Popkov
- Institut für Theoretische Physik, Universität zu Köln, 50937 Cologne, Germany; Centro Interdipartimentale per lo Studio di Dinamiche Complesse, Università di Firenze, 50019 Sesto Fiorentino, Italy
| | | | - Johannes Schmidt
- Institut für Theoretische Physik, Universität zu Köln, 50937 Cologne, Germany
| | - Gunter M Schütz
- Theoretical Soft Matter and Biophysics, Institute of Complex Systems II, Forschungszentrum Jülich, 52425 Jülich, Germany
| |
Collapse
|