1
|
Alonso-Matilla R, Provenzano PP, Odde DJ. Biophysical modeling identifies an optimal hybrid amoeboid-mesenchymal phenotype for maximal T cell migration speeds. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.29.564655. [PMID: 39026744 PMCID: PMC11257493 DOI: 10.1101/2023.10.29.564655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Despite recent experimental progress in characterizing cell migration mechanics, our understanding of the mechanisms governing rapid cell movement remains limited. To effectively limit tumor growth, antitumoral T cells need to rapidly migrate to find and kill cancer cells. To investigate the upper limits of cell speed, we developed a new hybrid stochastic-mean field model of bleb-based cell motility. We first examined the potential for adhesion-free bleb-based migration and show that cells migrate inefficiently in the absence of adhesion-based forces, i.e., cell swimming. While no cortical contractility oscillations are needed for cells to swim in viscoelastic media, high-to-low cortical contractility oscillations are necessary for cell swimming in viscous media. This involves a high cortical contractility phase with multiple bleb nucleation events, followed by an intracellular pressure buildup recovery phase at low cortical tensions, resulting in modest net cell motion. However, our model suggests that cells can employ a hybrid bleb- and adhesion-based migration mechanism for rapid cell motility and identifies conditions for optimality. The model provides a momentum-conserving mechanism underlying rapid single-cell migration and identifies factors as design criteria for engineering T cell therapies to improve movement in mechanically complex environments.
Collapse
Affiliation(s)
- Roberto Alonso-Matilla
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
- University of Minnesota Physical Sciences in Oncology Center, Minneapolis, MN, USA
- University of Minnesota Center for Multiparametric Imaging of Tumor Immune Microenvironments, Minneapolis, MN, USA
| | - Paolo P. Provenzano
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
- University of Minnesota Physical Sciences in Oncology Center, Minneapolis, MN, USA
- University of Minnesota Center for Multiparametric Imaging of Tumor Immune Microenvironments, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, USA
- Department of Hematology, Oncology, and Transplantation, University of Minnesota, USA
- Stem Cell Institute, University of Minnesota, USA
| | - David J. Odde
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
- University of Minnesota Physical Sciences in Oncology Center, Minneapolis, MN, USA
- University of Minnesota Center for Multiparametric Imaging of Tumor Immune Microenvironments, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, USA
| |
Collapse
|
2
|
Schindler D, Moldenhawer T, Beta C, Huisinga W, Holschneider M. Three-component contour dynamics model to simulate and analyze amoeboid cell motility in two dimensions. PLoS One 2024; 19:e0297511. [PMID: 38277351 PMCID: PMC10817190 DOI: 10.1371/journal.pone.0297511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 01/07/2024] [Indexed: 01/28/2024] Open
Abstract
Amoeboid cell motility is relevant in a wide variety of biomedical processes such as wound healing, cancer metastasis, and embryonic morphogenesis. It is characterized by pronounced changes of the cell shape associated with expansions and retractions of the cell membrane, which result in a crawling kind of locomotion. Despite existing computational models of amoeboid motion, the inference of expansion and retraction components of individual cells, the corresponding classification of cells, and the a priori specification of the parameter regime to achieve a specific motility behavior remain challenging open problems. We propose a novel model of the spatio-temporal evolution of two-dimensional cell contours comprising three biophysiologically motivated components: a stochastic term accounting for membrane protrusions and two deterministic terms accounting for membrane retractions by regularizing the shape and area of the contour. Mathematically, these correspond to the intensity of a self-exciting Poisson point process, the area-preserving curve-shortening flow, and an area adjustment flow. The model is used to generate contour data for a variety of qualitatively different, e.g., polarized and non-polarized, cell tracks that visually resemble experimental data very closely. In application to experimental cell tracks, we inferred the protrusion component and examined its correlation to common biomarkers: the F-actin density close to the membrane and its local motion. Due to the low model complexity, parameter estimation is fast, straightforward, and offers a simple way to classify contour dynamics based on two locomotion types: the amoeboid and a so-called fan-shaped type. For both types, we use cell tracks segmented from fluorescence imaging data of the model organism Dictyostelium discoideum. An implementation of the model is provided within the open-source software package AmoePy, a Python-based toolbox for analyzing and simulating amoeboid cell motility.
Collapse
Affiliation(s)
- Daniel Schindler
- Institute of Mathematics, University of Potsdam, Potsdam, Germany
- CRC 1294 Data Assimilation, University of Potsdam, Potsdam, Germany
| | - Ted Moldenhawer
- Institute of Physics and Astronomy, University of Potsdam, Potsdam, Germany
- CRC 1294 Data Assimilation, University of Potsdam, Potsdam, Germany
| | - Carsten Beta
- Institute of Physics and Astronomy, University of Potsdam, Potsdam, Germany
- CRC 1294 Data Assimilation, University of Potsdam, Potsdam, Germany
| | - Wilhelm Huisinga
- Institute of Mathematics, University of Potsdam, Potsdam, Germany
- CRC 1294 Data Assimilation, University of Potsdam, Potsdam, Germany
| | - Matthias Holschneider
- Institute of Mathematics, University of Potsdam, Potsdam, Germany
- CRC 1294 Data Assimilation, University of Potsdam, Potsdam, Germany
| |
Collapse
|
3
|
Callan-Jones A. Self-organization in amoeboid motility. Front Cell Dev Biol 2022; 10:1000071. [PMID: 36313569 PMCID: PMC9614430 DOI: 10.3389/fcell.2022.1000071] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 10/03/2022] [Indexed: 11/13/2022] Open
Abstract
Amoeboid motility has come to refer to a spectrum of cell migration modes enabling a cell to move in the absence of strong, specific adhesion. To do so, cells have evolved a range of motile surface movements whose physical principles are now coming into view. In response to external cues, many cells—and some single-celled-organisms—have the capacity to turn off their default migration mode. and switch to an amoeboid mode. This implies a restructuring of the migration machinery at the cell scale and suggests a close link between cell polarization and migration mediated by self-organizing mechanisms. Here, I review recent theoretical models with the aim of providing an integrative, physical picture of amoeboid migration.
Collapse
|
4
|
de Blois C, Bertin V, Suda S, Ichikawa M, Reyssat M, Dauchot O. Swimming droplets in 1D geometries: an active Bretherton problem. SOFT MATTER 2021; 17:6646-6660. [PMID: 34152345 DOI: 10.1039/d1sm00387a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We investigate experimentally the behavior of self-propelled water-in-oil droplets, confined in capillaries of different square and circular cross-sections. The droplet's activity comes from the formation of swollen micelles at its interface. In straight capillaries the velocity of the droplet decreases with increasing confinement. However, at very high confinement, the velocity converges toward a non-zero value, so that even very long droplets swim. Stretched circular capillaries are used to explore even higher confinement. The lubrication layer around the droplet then takes a non-uniform thickness which constitutes a significant difference to usual flow-driven passive droplets. A neck forms at the rear of the droplet, deepens with increasing confinement, and eventually undergoes successive spontaneous splitting events for large enough confinement. Such observations stress the critical role of the activity of the droplet interface in the droplet's behavior under confinement. We then propose an analytical formulation by integrating the interface activity and the swollen micelle transport problem into the classical Bretherton approach. The model accounts for the convergence of the droplet's velocity to a finite value for large confinement, and for the non-classical shape of the lubrication layer. We further discuss on the saturation of the micelle concentration along the interface, which would explain the divergence of the lubrication layer thickness for long enough droplets, eventually leading to spontaneous droplet division.
Collapse
Affiliation(s)
- Charlotte de Blois
- UMR CNRS Gulliver 7083, ESPCI Paris, PSL Research University, 75005 Paris, France. and Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa 904-0495, Japan
| | - Vincent Bertin
- UMR CNRS Gulliver 7083, ESPCI Paris, PSL Research University, 75005 Paris, France. and Univ. Bordeaux, CNRS, LOMA, UMR 5798, 33405 Talence, France
| | - Saori Suda
- Department of Physics, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Masatoshi Ichikawa
- Department of Physics, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Mathilde Reyssat
- UMR CNRS Gulliver 7083, ESPCI Paris, PSL Research University, 75005 Paris, France.
| | - Olivier Dauchot
- UMR CNRS Gulliver 7083, ESPCI Paris, PSL Research University, 75005 Paris, France.
| |
Collapse
|
5
|
Wang Q, Wu H. Mathematical modeling of chemotaxis guided amoeboid cell swimming. Phys Biol 2021; 18. [PMID: 33853049 DOI: 10.1088/1478-3975/abf7d8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 04/14/2021] [Indexed: 01/15/2023]
Abstract
Cells and microorganisms adopt various strategies to migrate in response to different environmental stimuli. To date, many modeling research has focused on the crawling-basedDictyostelium discoideum(Dd) cells migration induced by chemotaxis, yet recent experimental results reveal that even without adhesion or contact to a substrate, Dd cells can still swim to follow chemoattractant signals. In this paper, we develop a modeling framework to investigate the chemotaxis induced amoeboid cell swimming dynamics. A minimal swimming system consists of one deformable Dd amoeboid cell and a dilute suspension of bacteria, and the bacteria produce chemoattractant signals that attract the Dd cell. We use themathematical amoeba modelto generate Dd cell deformation and solve the resulting low Reynolds number flows, and use a moving mesh based finite volume method to solve the reaction-diffusion-convection equation. Using the computational model, we show that chemotaxis guides a swimming Dd cell to follow and catch bacteria, while on the other hand, bacterial rheotaxis may help the bacteria to escape from the predator Dd cell.
Collapse
Affiliation(s)
- Qixuan Wang
- Department of Mathematics, University of California, Riverside, CA, United States of America.,Interdisciplinary Center for Quantitative Modeling in Biology, University of California, Riverside, CA, United States of America
| | - Hao Wu
- Department of Polymer Science and Engineering, University of Massachusetts, Amherst, MA, United States of America
| |
Collapse
|
6
|
Chen YJ, Huang GB. Flagellum Malfunctions Trigger Metaboly as an Escape Strategy in Euglena gracilis. J Eukaryot Microbiol 2021; 68:e12842. [PMID: 33484607 DOI: 10.1111/jeu.12842] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 11/28/2022]
Abstract
Euglenoids present the ability to alter the shape of their bodies, a process referred to as metaboly. Metaboly is usually used by phagotrophic cells to engulf their prey. However, Euglena gracilis is osmotrophic and photosynthetic. Though metaboly was discovered centuries ago, it remains unclear why E. gracilis undergo metaboly and what causes them to deform, and some consider metaboly to be a functionless ancestral vestige. Here, we discover that flagellum malfunctions trigger metaboly and metaboly is a smart escape strategy adopted by E. gracilis when the proper rotation and beating of the flagellum are hindered by restrictions including surface obstruction, sticking, resistance, or limited space. Metaboly facilitates escape in five ways: (i) detaching the body from the surface; (ii) enlarging the space between flagellum and the restricting surface which restores beating and rotation of the flagellum; (iii) decreasing the torque of viscous resistance for rotation of the body; (iv) decreasing the length of the body; and (v) crawling backwards on a surface or swimming backwards if the flagellum completely malfunctions or has broken off. Our findings suggest that metaboly plays a key role in enabling E. gracilis to escape from harmful conditions when flagellar functions are impaired or absent.
Collapse
Affiliation(s)
- Yong-Jun Chen
- Department of Physics, Shaoxing University, Shaoxing, Zhejiang Province, 312000, China
| | - Guo-Bin Huang
- Department of Physics, Shaoxing University, Shaoxing, Zhejiang Province, 312000, China
| |
Collapse
|
7
|
Sprenger AR, Shaik VA, Ardekani AM, Lisicki M, Mathijssen AJTM, Guzmán-Lastra F, Löwen H, Menzel AM, Daddi-Moussa-Ider A. Towards an analytical description of active microswimmers in clean and in surfactant-covered drops. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2020; 43:58. [PMID: 32920676 DOI: 10.1140/epje/i2020-11980-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 08/10/2020] [Indexed: 05/24/2023]
Abstract
Geometric confinements are frequently encountered in the biological world and strongly affect the stability, topology, and transport properties of active suspensions in viscous flow. Based on a far-field analytical model, the low-Reynolds-number locomotion of a self-propelled microswimmer moving inside a clean viscous drop or a drop covered with a homogeneously distributed surfactant, is theoretically examined. The interfacial viscous stresses induced by the surfactant are described by the well-established Boussinesq-Scriven constitutive rheological model. Moreover, the active agent is represented by a force dipole and the resulting fluid-mediated hydrodynamic couplings between the swimmer and the confining drop are investigated. We find that the presence of the surfactant significantly alters the dynamics of the encapsulated swimmer by enhancing its reorientation. Exact solutions for the velocity images for the Stokeslet and dipolar flow singularities inside the drop are introduced and expressed in terms of infinite series of harmonic components. Our results offer useful insights into guiding principles for the control of confined active matter systems and support the objective of utilizing synthetic microswimmers to drive drops for targeted drug delivery applications.
Collapse
Affiliation(s)
- Alexander R Sprenger
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, D-40225, Düsseldorf, Germany.
| | - Vaseem A Shaik
- School of Mechanical Engineering, Purdue University, 47907, West Lafayette, IN, USA
| | - Arezoo M Ardekani
- School of Mechanical Engineering, Purdue University, 47907, West Lafayette, IN, USA
| | - Maciej Lisicki
- Institute of Theoretical Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093, Warsaw, Poland
| | - Arnold J T M Mathijssen
- Department of Bioengineering, Stanford University, 443 Via Ortega, 94305, Stanford, CA, USA
- Department of Physics and Astronomy, University of Pennsylvania, 209 South 33rd Street, 19104, Philadelphia, PA, USA
| | - Francisca Guzmán-Lastra
- Centro de Investigación DAiTA Lab, Facultad de Estudios Interdisciplinarios, Universidad Mayor, Av. Manuel Montt 367, Providencia, Santiago de Chile, Chile
| | - Hartmut Löwen
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, D-40225, Düsseldorf, Germany
| | - Andreas M Menzel
- Institut für Physik, Otto-von-Guericke-Universität Magdeburg, Universitätsplatz 2, 39106, Magdeburg, Germany
| | - Abdallah Daddi-Moussa-Ider
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, D-40225, Düsseldorf, Germany
| |
Collapse
|
8
|
Morita T, Omori T, Nakayama Y, Toyabe S, Ishikawa T. Harnessing random low Reynolds number flow for net migration. Phys Rev E 2020; 101:063101. [PMID: 32688510 DOI: 10.1103/physreve.101.063101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 05/18/2020] [Indexed: 01/07/2023]
Abstract
Random noise in low Reynolds number flow has rarely been used to obtain net migration of microscale objects. In this study, we numerically show that net migration of a microscale object can be extracted from random directional fluid forces in Stokes flow, by introducing deformability and inhomogeneous density into the object. We also developed a mathematical framework to describe the deformation-induced migration caused by noise. These results provide a basis for understanding the noise-induced migration of a microswimmer and are useful for harnessing energy from low Reynolds number flow.
Collapse
Affiliation(s)
- Takeru Morita
- Department of Fine Mechanics, Graduate School of Engineering, Tohoku University 6-6-01 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
| | - Toshihiro Omori
- Department of Fine Mechanics, Graduate School of Engineering, Tohoku University 6-6-01 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
| | - Yohei Nakayama
- Department of Applied Physics, Graduate School of Engineering, Tohoku University 6-6-05 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
| | - Shoichi Toyabe
- Department of Applied Physics, Graduate School of Engineering, Tohoku University 6-6-05 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
| | - Takuji Ishikawa
- Department of Fine Mechanics, Graduate School of Engineering, Tohoku University 6-6-01 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan.,Graduate School of Biomedical Engineering, Tohoku University 6-6-01 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
| |
Collapse
|
9
|
Abstract
Various organisms such as crustaceans use their appendages for locomotion. If they are close to a confining boundary then viscous as opposed to inertial effects can play a central role in governing the dynamics. To study the minimal ingredients needed for swimming without inertia, we built an experimental system featuring a robot equipped with a pair of rigid slender arms with negligible inertia. Our results show that directing the arms to oscillate about the same time-averaged orientation produces no net displacement of the robot each cycle, regardless of any phase delay between the oscillating arms. The robot is able to swim if the arms oscillate asynchronously around distinct orientations. The measured displacement over time matches well with a mathematical model based on slender-body theory for Stokes flow. Near a confining boundary, the robot with no net displacement every cycle showed similar behavior, while the swimming robot increased in speed closer to the boundary.
Collapse
|
10
|
Abstract
Several prokaryotes and eukaryotic cells swim in the presence of deformable and rigid surfaces that form confinement. The most commonly observed examples from biological systems are motility of leukocytes and pathogens present within the blood suspension through a microvascular network, and locomotion of eukaryotic cells such as immune system cells and cancerous cells through interstices between soft interstitial cells and the extracellular matrix within the interstitial tissue. This motivated us to investigate numerically the flow dynamics of amoeboid swimming in a flexible channel. The effects of wall stiffness and channel confinement on the flow dynamics and swimmer motion are studied. The swimmer motion through the flexible channel is substantially decelerated compared to the rigid channel. The strong confinement in the amply flexible channel imprisons the swimmer by severely restricting its forward motion. The swimmer velocity in a stiff channel displays nonmonotonic variation with the confinement while it shows monotonic reduction in a highly flexible channel. The physical rationale behind such distinct velocity behaviour in flexible and rigid channels is illustrated using an instantaneous flow field and flow history displayed by the swimmer. This behavior follows from a subtle interplay between the shape changes exhibited by the swimmer and the wall compliance. This study may aid in understanding the influence of elasticity of the surrounding environment on cell motility in immunological surveillance and invasiveness of cancer cells.
Collapse
Affiliation(s)
- Swapnil Dalal
- Univ. Grenoble Alpes, CNRS, LIPhy, F-38000 Grenoble, France.
| | | | | |
Collapse
|
11
|
Lavi I, Meunier N, Voituriez R, Casademunt J. Motility and morphodynamics of confined cells. Phys Rev E 2020; 101:022404. [PMID: 32168566 DOI: 10.1103/physreve.101.022404] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 12/03/2019] [Indexed: 06/10/2023]
Abstract
We introduce a minimal hydrodynamic model of polarization, migration, and deformation of a biological cell confined between two parallel surfaces. In our model, the cell is driven out of equilibrium by an active cytsokeleton force that acts on the membrane. The cell cytoplasm, described as a viscous droplet in the Darcy flow regime, contains a diffusive solute that actively transduces the applied cytoskeleton force. While fairly simple and analytically tractable, this quasi-two-dimensional model predicts a range of compelling dynamic behaviours. A linear stability analysis of the system reveals that solute activity first destabilizes a global polarization-translation mode, prompting cell motility through spontaneous symmetry breaking. At higher activity, the system crosses a series of Hopf bifurcations leading to coupled oscillations of droplet shape and solute concentration profiles. At the nonlinear level, we find traveling-wave solutions associated with unique polarized shapes that resemble experimental observations. Altogether, this model offers an analytical paradigm of active deformable systems in which viscous hydrodynamics are coupled to diffusive force transducers.
Collapse
Affiliation(s)
- Ido Lavi
- Laboratoire Jean Perrin, CNRS/Sorbonne Université, 4 Place Jussieu, 75005 Paris, France
- Departament de Fsica de la Matria Condensada, Universitat de Barcelona, Avinguda Diagonal 647, 08028 Barcelona, Spain
| | | | - Raphael Voituriez
- Laboratoire Jean Perrin, CNRS/Sorbonne Université, 4 Place Jussieu, 75005 Paris, France
- Laboratoire de Physique Théorique de la Matière Condensée, CNRS/Sorbonne Université, 4 Place Jussieu, 75005 Paris, France
| | - Jaume Casademunt
- Departament de Fsica de la Matria Condensada, Universitat de Barcelona, Avinguda Diagonal 647, 08028 Barcelona, Spain
| |
Collapse
|
12
|
Hennig K, Wang I, Moreau P, Valon L, DeBeco S, Coppey M, Miroshnikova YA, Albiges-Rizo C, Favard C, Voituriez R, Balland M. Stick-slip dynamics of cell adhesion triggers spontaneous symmetry breaking and directional migration of mesenchymal cells on one-dimensional lines. SCIENCE ADVANCES 2020; 6:eaau5670. [PMID: 31921998 PMCID: PMC6941913 DOI: 10.1126/sciadv.aau5670] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Accepted: 10/29/2019] [Indexed: 05/18/2023]
Abstract
Directional cell motility relies on the ability of single cells to establish a front-rear polarity and can occur in the absence of external cues. The initiation of migration has often been attributed to the spontaneous polarization of cytoskeleton components, while the spatiotemporal evolution of cell-substrate interaction forces has yet to be resolved. Here, we establish a one-dimensional microfabricated migration assay that mimics the complex in vivo fibrillar environment while being compatible with high-resolution force measurements, quantitative microscopy, and optogenetics. Quantification of morphometric and mechanical parameters of NIH-3T3 fibroblasts and RPE1 epithelial cells reveals a generic stick-slip behavior initiated by contractility-dependent stochastic detachment of adhesive contacts at one side of the cell, which is sufficient to trigger cell motility in 1D in the absence of pre-established polarity. A theoretical model validates the crucial role of adhesion dynamics, proposing that front-rear polarity can emerge independently of a complex self-polarizing system.
Collapse
Affiliation(s)
- K. Hennig
- Laboratoire Interdisciplinaire de Physique, Grenoble Alpes University, Saint Martin d’Heres, France
| | - I. Wang
- Laboratoire Interdisciplinaire de Physique, Grenoble Alpes University, Saint Martin d’Heres, France
| | - P. Moreau
- Laboratoire Interdisciplinaire de Physique, Grenoble Alpes University, Saint Martin d’Heres, France
| | - L. Valon
- Institut Pasteur, Department of Developmental and Stem Cell Biology, 25 rue du Dr. Roux, 75015 Paris, France
| | - S. DeBeco
- Laboratoire Physico-Chimie, Institut Curie, Centre National de la Recherche Scientifique UMR168, Paris, France
| | - M. Coppey
- Laboratoire Physico-Chimie, Institut Curie, Centre National de la Recherche Scientifique UMR168, Paris, France
| | - Y. A. Miroshnikova
- DYSAD, Institut for Advanced Biosciences, Centre de Recherche UGA/Inserm U 1209/CNRS UMR 5309, La Tronche, France
| | - C. Albiges-Rizo
- DYSAD, Institut for Advanced Biosciences, Centre de Recherche UGA/Inserm U 1209/CNRS UMR 5309, La Tronche, France
| | - C. Favard
- Membrane Domains and Viral Assembly, IRIM, UMR9004 CNRS/Université de Montpellier, 1919, route de Mende, 34293 Montpellier Cedex, France
| | - R. Voituriez
- Laboratoire Jean Perrin and Laboratoire de Physique Théorique de la Matière Condensée, Sorbonne Université, Tour 13-12, 5eme etage, 4 place Jussieu, 75252 Paris Cedex 05, France
- Corresponding author. (M.B.); (R.V.)
| | - M. Balland
- Laboratoire Interdisciplinaire de Physique, Grenoble Alpes University, Saint Martin d’Heres, France
- Corresponding author. (M.B.); (R.V.)
| |
Collapse
|
13
|
Binagia JP, Guido CJ, Shaqfeh ESG. Three-dimensional simulations of undulatory and amoeboid swimmers in viscoelastic fluids. SOFT MATTER 2019; 15:4836-4855. [PMID: 31155624 DOI: 10.1039/c8sm02518e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Microorganisms often move through viscoelastic environments, as biological fluids frequently have a rich microstructure owing to the presence of large polymeric molecules. Research on the effect of fluid elasticity on the swimming kinematics of these organisms has usually been focused on those that move via cilia or flagellum. Experimentally, Shen (X. N. Shen et al., Phys. Rev. Lett., 2011, 106, 208101) reported that the nematode C. elegans, a model organism used to study undulatory motion, swims more slowly as the Deborah number describing the fluid's elasticity is increased. This phenomenon has not been thoroughly studied via a fully resolved three-dimensional simulation; moreover, the effect of fluid elasticity on the swimming speed of organisms moving via euglenoid movement, such as E. gracilis, is completely unknown. In this study, we discuss the simulation of the arbitrary motion of an undulating or pulsating swimmer that occupies finite volume in three dimensions, with the ability to specify any differential viscoelastic rheological model for the surrounding fluid. To accomplish this task, we use a modified version of the Immersed Finite Element Method presented in a previous paper by Guido and Saadat in 2018 (A. Saadat et al., Phys. Rev. E, 2018, 98, 063316). In particular, this version allows for the simulation of deformable swimmers such that they evolve through an arbitrary set of specified shapes via a conformation-driven force. From our analysis, we observe several key trends not found in previous two-dimensional simulations or theoretical analyses for C. elegans, as well as novel results for the amoeboid motion. In particular, we find that regions of high polymer stress concentrated at the head and tail of the swimming C. elegans are created by strong extensional flow fields and are associated with a decrease in swimming speed for a given swimming stroke. In contrast, in two dimensions these regions of stress are commonly found distributed along the entire body, likely owing to the lack of a third dimension for polymer relaxation. A comparison of swim speeds shows that the calculations in two-dimensional simulations result in an over-prediction of the speed reduction. We believe that our simulation tool accurately captures the swimming motion of the two aforementioned model swimmers and furthermore, allows for the simulation of multiple deformable swimmers, as well as more complex swimming geometries. This methodology opens many new possibilities for future studies of swimmers in viscoelastic fluids.
Collapse
Affiliation(s)
- Jeremy P Binagia
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA.
| | | | | |
Collapse
|
14
|
Xiao Z, Wei M, Wang W. A Review of Micromotors in Confinements: Pores, Channels, Grooves, Steps, Interfaces, Chains, and Swimming in the Bulk. ACS APPLIED MATERIALS & INTERFACES 2019; 11:6667-6684. [PMID: 30562451 DOI: 10.1021/acsami.8b13103] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
One of the recent frontiers of nanotechnology research involves machines that operate at nano- and microscales, also known as nano/micromotors. Their potential applications in biomedicine, environmental sciences and engineering, military and defense industries, self-assembly, and many other areas have fueled an intense interest in this topic over the last 15 years. Despite deepened understanding of their propulsion mechanisms, we are still in the early days of exploring the dynamics of micromotors in complex and more realistic environments. Confinements, as a typical example of complex environments, are extremely relevant to the applications of micromotors, which are expected to travel in mucus gels, blood vessels, reproductive and digestive tracts, microfluidic chips, and capillary tubes. In this review, we summarize and critically examine recent studies (mostly experimental ones) of micromotor dynamics in confinements in 3D (spheres and porous network, channels, grooves, steps, and obstacles), 2D (liquid-liquid, liquid-solid, and liquid-air interfaces), and 1D (chains). In addition, studies of micromotors moving in the bulk solution and the usefulness of acoustic levitation is discussed. At the end of this article, we summarize how confinements can affect micromotors and offer our insights on future research directions. This review article is relevant to readers who are interested in the interactions of materials with interfaces and structures at the microscale and helpful for the design of smart and multifunctional materials for various applications.
Collapse
Affiliation(s)
- Zuyao Xiao
- School of Materials Science and Engineering , Harbin Institute of Technology (Shenzhen) , Shenzhen , Guangdong 518055 , China
| | - Mengshi Wei
- School of Materials Science and Engineering , Harbin Institute of Technology (Shenzhen) , Shenzhen , Guangdong 518055 , China
| | - Wei Wang
- School of Materials Science and Engineering , Harbin Institute of Technology (Shenzhen) , Shenzhen , Guangdong 518055 , China
| |
Collapse
|
15
|
Chepizhko O, Franosch T. Ideal circle microswimmers in crowded media. SOFT MATTER 2019; 15:452-461. [PMID: 30574653 PMCID: PMC6336149 DOI: 10.1039/c8sm02030b] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 12/08/2018] [Indexed: 05/26/2023]
Abstract
Microswimmers are exposed in nature to crowded environments and their transport properties depend in a subtle way on the interaction with obstacles. Here, we investigate a model for a single ideal circle swimmer exploring a two-dimensional disordered array of impenetrable obstacles. The microswimmer moves on circular orbits in the freely accessible space and follows the surface of an obstacle for a certain time upon collision. Depending on the obstacle density and the radius of the circular orbits, the microswimmer displays either long-range transport or is localized in a finite region. We show that there are transitions from two localized states to a diffusive state each driven by an underlying static percolation transition. We determine the non-equilibrium state diagram and calculate the mean-square displacements and diffusivities by computer simulations. Close to the transition lines transport becomes subdiffusive which is rationalized as a dynamic critical phenomenon.
Collapse
Affiliation(s)
- Oleksandr Chepizhko
- Institut für Theoretische Physik, Universität Innsbruck, Technikerstraße 21A, A-6020 Innsbruck, Austria.
| | - Thomas Franosch
- Institut für Theoretische Physik, Universität Innsbruck, Technikerstraße 21A, A-6020 Innsbruck, Austria.
| |
Collapse
|
16
|
Morita T, Omori T, Ishikawa T. Passive swimming of a microcapsule in vertical fluid oscillation. Phys Rev E 2018; 98:023108. [PMID: 30253563 DOI: 10.1103/physreve.98.023108] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Indexed: 12/24/2022]
Abstract
The artificial microswimmer is a cutting-edge technology with applications in drug delivery and micro-total-analysis systems. The flow field around a microswimmer can be regarded as Stokes flow, in which reciprocal body deformation cannot induce migration. In this study, we propose a microcapsule swimmer that undergoes amoeboidlike shape deformations under fluid oscillation conditions. This is a study on the propulsion principle using a capsule with a solid membrane, and one of only a few studies using fluid oscillation. The microswimmer consists of an elastic capsule containing fluid and a rigid sphere. Opposing forces are generated when fluid oscillations are applied, because the densities of the internal fluid and sphere are different. The opposing forces induce nonreciprocal body deformation, which leads to migration of the microswimmer under Stokes flow conditions. Using numerical simulations, we found that the microswimmer propels itself in one of two modes, i.e., stroke swimming or drag swimming. We discuss the feasibility of the proposed microswimmer and show that the most efficient swimmer can migrate tens of micrometers per second. These findings pave the way for future artificial microswimmer designs.
Collapse
Affiliation(s)
- Takeru Morita
- Department of Finemechanics, Graduate School of Engineering, Tohoku University, 6-6-01 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
| | - Toshihiro Omori
- Department of Finemechanics, Graduate School of Engineering, Tohoku University, 6-6-01 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
| | - Takuji Ishikawa
- Department of Finemechanics, Graduate School of Engineering, Tohoku University, 6-6-01 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan.,Graduate School of Biomedical Engineering, Tohoku University, 6-6-01 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
| |
Collapse
|
17
|
Wu H, de León MAP, Othmer HG. Getting in shape and swimming: the role of cortical forces and membrane heterogeneity in eukaryotic cells. J Math Biol 2018; 77:595-626. [PMID: 29480329 PMCID: PMC6109630 DOI: 10.1007/s00285-018-1223-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 02/12/2018] [Indexed: 12/14/2022]
Abstract
Recent research has shown that motile cells can adapt their mode of propulsion to the mechanical properties of the environment in which they find themselves-crawling in some environments while swimming in others. The latter can involve movement by blebbing or other cyclic shape changes, and both highly-simplified and more realistic models of these modes have been studied previously. Herein we study swimming that is driven by membrane tension gradients that arise from flows in the actin cortex underlying the membrane, and does not involve imposed cyclic shape changes. Such gradients can lead to a number of different characteristic cell shapes, and our first objective is to understand how different distributions of membrane tension influence the shape of cells in an inviscid quiescent fluid. We then analyze the effects of spatial variation in other membrane properties, and how they interact with tension gradients to determine the shape. We also study the effect of fluid-cell interactions and show how tension leads to cell movement, how the balance between tension gradients and a variable bending modulus determine the shape and direction of movement, and how the efficiency of movement depends on the properties of the fluid and the distribution of tension and bending modulus in the membrane.
Collapse
Affiliation(s)
- Hao Wu
- School of Mathematics, University of Minnesota, 270A Vincent Hall, Minneapolis, MN, USA
| | | | - Hans G Othmer
- School of Mathematics, University of Minnesota, 270A Vincent Hall, Minneapolis, MN, USA.
| |
Collapse
|
18
|
Mirzakhanloo M, Alam MR. Flow characteristics of Chlamydomonas result in purely hydrodynamic scattering. Phys Rev E 2018; 98:012603. [PMID: 30110819 DOI: 10.1103/physreve.98.012603] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Indexed: 11/07/2022]
Abstract
It has long been believed that eukaryotic flagellated swimming cells feel solid boundaries through direct ciliary contact. Specifically, based on observations of behavior of green alga Chlamydomonas reinhardtii it has been reported that it is their "flagella [that] prevent the cell body from touching the surface" [Kantsler et al., Proc. Natl. Acad. Sci. USA 110, 1187 (2013)PNASA60027-842410.1073/pnas.1210548110]. Here, via investigation of a model swimmer whose flow field closely resembles that of C. reinhardtii, we show that the scattering from a wall can be purely hydrodynamic and that no mechanical or flagellar force is needed for sensing and escaping the boundary.
Collapse
Affiliation(s)
- Mehdi Mirzakhanloo
- Department of Mechanical Engineering, University of California, Berkeley, California 94720, USA
| | - Mohammad-Reza Alam
- Department of Mechanical Engineering, University of California, Berkeley, California 94720, USA
| |
Collapse
|
19
|
Othmer HG. Eukaryotic Cell Dynamics from Crawlers to Swimmers. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2018; 9. [PMID: 30854030 DOI: 10.1002/wcms.1376] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Movement requires force transmission to the environment, and motile cells are robustly, though not elegantly, designed nanomachines that often can cope with a variety of environmental conditions by altering the mode of force transmission used. As with humans, the available modes range from momentary attachment to a substrate when crawling, to shape deformations when swimming, and at the cellular level this involves sensing the mechanical properties of the environment and altering the mode appropriately. While many types of cells can adapt their mode of movement to their microenvironment (ME), our understanding of how they detect, transduce and process information from the ME to determine the optimal mode is still rudimentary. The shape and integrity of a cell is determined by its cytoskeleton (CSK), and thus the shape changes that may be required to move involve controlled remodeling of the CSK. Motion in vivo is often in response to extracellular signals, which requires the ability to detect such signals and transduce them into the shape changes and force generation needed for movement. Thus the nanomachine is complex, and while much is known about individual components involved in movement, an integrated understanding of motility in even simple cells such as bacteria is not at hand. In this review we discuss recent advances in our understanding of cell motility and some of the problems remaining to be solved.
Collapse
Affiliation(s)
- H G Othmer
- School of Mathematics, University of Minnesota
| |
Collapse
|
20
|
Campbell EJ, Bagchi P. A computational model of amoeboid cell motility in the presence of obstacles. SOFT MATTER 2018; 14:5741-5763. [PMID: 29873659 DOI: 10.1039/c8sm00457a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Locomotion of amoeboid cells is mediated by finger-like protrusions of the cell body, known as pseudopods, which grow, bifurcate, and retract in a dynamic fashion. Pseudopods are the primary mode of locomotion for many cells within the human body, such as leukocytes, embryonic cells, and metastatic cancer cells. Amoeboid motility is a complex and multiscale process, which involves bio-molecular reactions, cell deformation, and cytoplasmic and extracellular fluid motion. Additionally, cells within the human body are subject to a confined 3D environment known as the extra-cellular matrix (ECM), which resembles a fluid-filled porous medium. In this article, we present a 3D, multiphysics computational approach coupling fluid mechanics, solid mechanics, and a pattern formation model to simulate locomotion of amoeboid cells through a porous matrix composed of a viscous fluid and an array of finite-sized spherical obstacles. The model combines reaction-diffusion of activator/inhibitors, extreme deformation of the cell, pseudopod dynamics, cytoplasmic and extracellular fluid motion, and fully resolved extracellular matrix. A surface finite-element method is used to obtain the cell deformation and activator/inhibitor concentrations, while the fluid motion is solved using a combined finite-volume and spectral method. The immersed-boundary methods are used to couple the cell deformation, obstacles, and fluid. The model is able to recreate squeezing and weaving motion of cells through the matrix. We study the influence of matrix porosity, obstacle size, and cell deformability on the motility behavior. It is found that below certain values of these parameters, cell motion is completely inhibited. Phase diagrams are presented depicting such motility limits. Interesting dynamics seen in the presence of obstacles but absent in unconfined medium, such as freezing or cell arrest, probing, doubling-back, and tug-of-war are predicted. Furthermore, persistent unidirectional motion of cells that is often observed in an unconfined medium is shown to be lost in presence of obstacles, and is attributed to an alteration of the pseudopod dynamics. The same mechanism, however, allows the cell to find a new direction to penetrate further into the matrix without being stuck in one place. The results and analysis presented here show a strong coupling between cell deformability and ECM properties, and provide new fluid mechanical insights on amoeboid motility in confined medium.
Collapse
Affiliation(s)
- Eric J Campbell
- Mechanical and Aerospace Engineering Department, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA.
| | | |
Collapse
|
21
|
Abstract
The self-propelled microswimmers have recently attracted considerable attention as model systems for biological cell migration as well as artificial micromachines. A simple and well-studied microswimmer model consists of three identical spherical beads joined by two springs in a linear fashion with active oscillatory forces being applied on the beads to generate self-propulsion. We have extended this linear microswimmer configuration to a triangular geometry where the three beads are connected by three identical springs in an equilateral triangular manner. The active forces acting on each spring can lead to autonomous steering motion; i.e., allowing the swimmer to move along arbitrary paths. We explore the microswimmer dynamics analytically and pinpoint its rich character depending on the nature of the active forces. The microswimmers can translate along a straight trajectory, rotate at a fixed location, as well as perform a simultaneous translation and rotation resulting in complex curved trajectories. The sinusoidal active forces on the three springs of the microswimmer contain naturally four operating parameters which are more than required for the steering motion. We identify the minimal operating parameters which are essential for the motion of the microswimmer along any given arbitrary trajectory. Therefore, along with providing insights into the mechanics of the complex motion of the natural and artificial microswimmers, the triangular three-bead microswimmer can be utilized as a model for targeted drug delivery systems and autonomous underwater vehicles where intricate trajectories are involved.
Collapse
Affiliation(s)
- Mohd Suhail Rizvi
- Laboratoire Interdisciplinaire de Physique, Université Grenoble Alpes and CNRS, F-38000 Grenoble, France
| | - Alexander Farutin
- Laboratoire Interdisciplinaire de Physique, Université Grenoble Alpes and CNRS, F-38000 Grenoble, France
| | - Chaouqi Misbah
- Laboratoire Interdisciplinaire de Physique, Université Grenoble Alpes and CNRS, F-38000 Grenoble, France
| |
Collapse
|
22
|
Ostapenko T, Schwarzendahl FJ, Böddeker TJ, Kreis CT, Cammann J, Mazza MG, Bäumchen O. Curvature-Guided Motility of Microalgae in Geometric Confinement. PHYSICAL REVIEW LETTERS 2018; 120:068002. [PMID: 29481277 DOI: 10.1103/physrevlett.120.068002] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Indexed: 06/08/2023]
Abstract
Microorganisms, such as bacteria and microalgae, often live in habitats consisting of a liquid phase and a plethora of interfaces. The precise ways in which these motile microbes behave in their confined environment remain unclear. Using experiments and Brownian dynamics simulations, we study the motility of a single Chlamydomonas microalga in an isolated microhabitat with controlled geometric properties. We demonstrate how the geometry of the habitat controls the cell's navigation in confinement. The probability of finding the cell swimming near the boundary increases with the wall curvature, as seen for both circular and elliptical chambers. The theory, utilizing an asymmetric dumbbell model of the cell and steric wall interactions, captures this curvature-guided navigation quantitatively with no free parameters.
Collapse
Affiliation(s)
- Tanya Ostapenko
- Max Planck Institute for Dynamics and Self-Organization (MPIDS), Am Faßberg 17, D-37077 Göttingen, Germany
| | - Fabian Jan Schwarzendahl
- Max Planck Institute for Dynamics and Self-Organization (MPIDS), Am Faßberg 17, D-37077 Göttingen, Germany
- Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, D-37077 Göttingen, Germany
| | - Thomas J Böddeker
- Max Planck Institute for Dynamics and Self-Organization (MPIDS), Am Faßberg 17, D-37077 Göttingen, Germany
| | - Christian Titus Kreis
- Max Planck Institute for Dynamics and Self-Organization (MPIDS), Am Faßberg 17, D-37077 Göttingen, Germany
- Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, D-37077 Göttingen, Germany
| | - Jan Cammann
- Max Planck Institute for Dynamics and Self-Organization (MPIDS), Am Faßberg 17, D-37077 Göttingen, Germany
| | - Marco G Mazza
- Max Planck Institute for Dynamics and Self-Organization (MPIDS), Am Faßberg 17, D-37077 Göttingen, Germany
| | - Oliver Bäumchen
- Max Planck Institute for Dynamics and Self-Organization (MPIDS), Am Faßberg 17, D-37077 Göttingen, Germany
| |
Collapse
|
23
|
Pande J, Merchant L, Krüger T, Harting J, Smith AS. Effect of body deformability on microswimming. SOFT MATTER 2017; 13:3984-3993. [PMID: 28504290 DOI: 10.1039/c7sm00181a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In this work we consider the following question: given a mechanical microswimming mechanism, does increased deformability of the swimmer body hinder or promote the motility of the swimmer? To answer this we run immersed-boundary-lattice-Boltzmann simulations of a microswimmer composed of deformable beads connected with springs. We find that the same deformations in the beads can result in different effects on the swimming velocity, namely an enhancement or a reduction, depending on the other parameters. To understand this we determine analytically the velocity of the swimmer, starting from the forces driving the motion and assuming that the deformations in the beads are known as functions of time and are much smaller than the beads themselves. We find that to the lowest order, only the driving frequency mode of the surface deformations contributes to the swimming velocity, and comparison to the simulations shows that both the velocity-promoting and velocity-hindering effects of bead deformability are reproduced correctly by the theory in the limit of small bead deformations. For the case of active deformations we show that there are critical values of the spring constant - which for a general swimmer corresponds to its main elastic degree of freedom - which decide whether the body deformability is beneficial for motion or not.
Collapse
Affiliation(s)
- Jayant Pande
- PULS Group, Department of Physics, Friedrich-Alexander-University Erlangen-Nuremberg, Nägelsbachstraße 49b, 91054 Erlangen, Germany
| | | | | | | | | |
Collapse
|
24
|
Malgaretti P, Stark H. Model microswimmers in channels with varying cross section. J Chem Phys 2017; 146:174901. [DOI: 10.1063/1.4981886] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Affiliation(s)
- Paolo Malgaretti
- Max-Planck-Institut für Intelligente Systeme, Heisenbergstr. 3, D-70569 Stuttgart, Germany
- IV. Institut für Theoretische Physik, Universität Stuttgart, Pfaffenwaldring 57, D-70569 Stuttgart, Germany
| | - Holger Stark
- Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstrasse 36, 10623 Berlin, Germany
| |
Collapse
|
25
|
Liu C, Zhou C, Wang W, Zhang HP. Bimetallic Microswimmers Speed Up in Confining Channels. PHYSICAL REVIEW LETTERS 2016; 117:198001. [PMID: 27858454 DOI: 10.1103/physrevlett.117.198001] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Indexed: 06/06/2023]
Abstract
Synthetic microswimmers are envisioned to be useful in numerous applications, many of which occur in tightly confined spaces. It is therefore important to understand how confinement influences swimmer dynamics. Here we study the motility of bimetallic microswimmers in linear and curved channels. Our experiments show swimmer velocities increase, up to 5 times, with the degree of confinement, and the relative velocity increase depends weakly on the fuel concentration and ionic strength in solution. Experimental results are reproduced in a numerical model which attributes the swimmer velocity increase to electrostatic and electrohydrodynamic boundary effects. Our work not only helps to elucidate the confinement effect of phoretic swimmers, but also suggests that spatial confinement may be used as an effective control method for them.
Collapse
Affiliation(s)
- Chang Liu
- Department of Physics and Astronomy and Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chao Zhou
- School of Material Science and Engineering, Harbin Institute of Technology, Shenzhen Graduate School, Shenzhen 518055, China
| | - Wei Wang
- School of Material Science and Engineering, Harbin Institute of Technology, Shenzhen Graduate School, Shenzhen 518055, China
- Center for Soft and Living Matter, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
| | - H P Zhang
- Department of Physics and Astronomy and Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China
| |
Collapse
|
26
|
Wu H, Farutin A, Hu WF, Thiébaud M, Rafaï S, Peyla P, Lai MC, Misbah C. Amoeboid swimming in a channel. SOFT MATTER 2016; 12:7470-7484. [PMID: 27546154 DOI: 10.1039/c6sm00934d] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Several micro-organisms, such as bacteria, algae, or spermatozoa, use flagellar or ciliary activity to swim in a fluid, while many other micro-organisms instead use ample shape deformation, described as amoeboid, to propel themselves either by crawling on a substrate or swimming. Many eukaryotic cells were believed to require an underlying substratum to migrate (crawl) by using membrane deformation (like blebbing or generation of lamellipodia) but there is now increasing evidence that a large variety of cells (including those of the immune system) can migrate without the assistance of focal adhesion, allowing them to swim as efficiently as they can crawl. This paper details the analysis of amoeboid swimming in a confined fluid by modeling the swimmer as an inextensible membrane deploying local active forces (with zero total force and torque). The swimmer displays a rich behavior: it may settle into a straight trajectory in the channel or navigate from one wall to the other depending on its confinement. The nature of the swimmer is also found to be affected by confinement: the swimmer can behave, on average over one swimming cycle, as a pusher at low confinement, and becomes a puller at higher confinement, or vice versa. The swimmer's nature is thus not an intrinsic property. The scaling of the swimmer velocity V with the force amplitude A is analyzed in detail showing that at small enough A, V∼A(2)/η(2) (where η is the viscosity of the ambient fluid), whereas at large enough A, V is independent of the force and is determined solely by the stroke cycle frequency and the swimmer size. This finding starkly contrasts with models where motion is based on ciliary and flagellar activity, where V∼A/η. To conclude, two definitions of efficiency as put forward in the literature are analyzed with distinct outcomes. We find that one type of efficiency has an optimum as a function of confinement while the other does not. Future perspectives are outlined.
Collapse
Affiliation(s)
- Hao Wu
- Université Grenoble Alpes, LIPHY, F-38000 Grenoble, France.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
de Graaf J, Mathijssen AJTM, Fabritius M, Menke H, Holm C, Shendruk TN. Understanding the onset of oscillatory swimming in microchannels. SOFT MATTER 2016; 12:4704-4708. [PMID: 27184912 DOI: 10.1039/c6sm00939e] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Self-propelled colloids (swimmers) in confining geometries follow trajectories determined by hydrodynamic interactions with the bounding surfaces. However, typically these interactions are ignored or truncated to the lowest order. We demonstrate that higher-order hydrodynamic moments cause rod-like swimmers to follow oscillatory trajectories in quiescent fluid between two parallel plates, using a combination of lattice-Boltzmann simulations and far-field calculations. This behavior occurs even far from the confining walls and does not require lubrication results. We show that a swimmer's hydrodynamic quadrupole moment is crucial to the onset of the oscillatory trajectories. This insight allows us to develop a simple model for the dynamics near the channel center based on these higher hydrodynamic moments, and suggests opportunities for trajectory-based experimental characterization of swimmers' hydrodynamic properties.
Collapse
Affiliation(s)
- Joost de Graaf
- Institute for Computational Physics, University of Stuttgart, Allmandring 3, 70569 Stuttgart, Germany.
| | | | - Marc Fabritius
- Institute for Computational Physics, University of Stuttgart, Allmandring 3, 70569 Stuttgart, Germany.
| | - Henri Menke
- Institute for Computational Physics, University of Stuttgart, Allmandring 3, 70569 Stuttgart, Germany.
| | - Christian Holm
- Institute for Computational Physics, University of Stuttgart, Allmandring 3, 70569 Stuttgart, Germany.
| | - Tyler N Shendruk
- The Rudolf Peierls Centre for Theoretical Physics, 1 Keble Road, Oxford, OX1 3NP, UK
| |
Collapse
|
28
|
de Graaf J, Menke H, Mathijssen AJTM, Fabritius M, Holm C, Shendruk TN. Lattice-Boltzmann hydrodynamics of anisotropic active matter. J Chem Phys 2016; 144:134106. [DOI: 10.1063/1.4944962] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Affiliation(s)
- Joost de Graaf
- Institute for Computational Physics, University of Stuttgart, Allmandring 3, 70569 Stuttgart, Germany
| | - Henri Menke
- Institute for Computational Physics, University of Stuttgart, Allmandring 3, 70569 Stuttgart, Germany
| | | | - Marc Fabritius
- Institute for Computational Physics, University of Stuttgart, Allmandring 3, 70569 Stuttgart, Germany
| | - Christian Holm
- Institute for Computational Physics, University of Stuttgart, Allmandring 3, 70569 Stuttgart, Germany
| | - Tyler N. Shendruk
- The Rudolf Peierls Centre for Theoretical Physics, 1 Keble Road, Oxford OX1 3NP, United Kingdom
| |
Collapse
|