1
|
Zheng W, Gu C, Yang H, Wang H, Rohling JHT. Adaptive coupling between neurons widens the entrainment range of the suprachiasmatic nucleus. Phys Rev E 2024; 110:034212. [PMID: 39425370 DOI: 10.1103/physreve.110.034212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 08/28/2024] [Indexed: 10/21/2024]
Abstract
In many realistic systems, such as neural networks in the brain, the coupling strength between neurons is not fixed, but adaptively adjusts according to their activities. The suprachiasmatic nucleus (SCN), as the main clock in the mammalian brain, has been found to be a plastic neural network, and the coupling strength between neurons is highly dynamical. An important function of the SCN is entrainment, reflecting the ability of the SCN to synchronize with the external light-dark cycle. The entrainment ability is reflected by the entrainment range, which is a period range for the external light-dark cycle to which the SCN can entrain. In this article, we investigated whether the entrainment range of the SCN is affected by the adaptive coupling. We use a modified Kuramoto model with external light-dark cycle. We found that when the light sensitivity is larger than the fixed coupling strength (the coupling strength without adaptive rules), adaptive coupling can widen the entrainment range. Our findings help to understand the impact of the adaptive coupling between oscillatorty neurons on the collective behavior of the SCN, and provides a possible explanation for the plasticity of coupling in the master clock network.
Collapse
|
2
|
Emelianova AA, Nekorkin VI. Adaptation rules inducing synchronization of heterogeneous Kuramoto oscillator network with triadic couplings. CHAOS (WOODBURY, N.Y.) 2024; 34:023112. [PMID: 38363960 DOI: 10.1063/5.0176911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 01/14/2024] [Indexed: 02/18/2024]
Abstract
A class of adaptation functions is found for which a synchronous mode with different number of phase clusters exists in a network of phase oscillators with triadic couplings. This mode is implemented in a fairly wide range of initial conditions and the maximum number of phase clusters is four. The joint influence of coupling strength and adaptation parameters on synchronization in the network has been studied. The desynchronization transition under variation of the adaptation parameter occurs abruptly and begins with the highest-frequency oscillator, spreading hierarchically to all other elements.
Collapse
Affiliation(s)
- Anastasiia A Emelianova
- A.V. Gaponov-Grekhov Institute of Applied Physics of the Russian Academy of Sciences, 46 Ulyanov Street, 603950 Nizhny Novgorod, Russia
| | - Vladimir I Nekorkin
- A.V. Gaponov-Grekhov Institute of Applied Physics of the Russian Academy of Sciences, 46 Ulyanov Street, 603950 Nizhny Novgorod, Russia
- National Research Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Avenue, 603022 Nizhny Novgorod, Russia
| |
Collapse
|
3
|
Thamizharasan S, Chandrasekar VK, Senthilvelan M, Senthilkumar DV. Hebbian and anti-Hebbian adaptation-induced dynamical states in adaptive networks. Phys Rev E 2024; 109:014221. [PMID: 38366486 DOI: 10.1103/physreve.109.014221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 12/13/2023] [Indexed: 02/18/2024]
Abstract
We investigate the interplay of an external forcing and an adaptive network, whose connection weights coevolve with the dynamical states of the phase oscillators. In particular, we consider the Hebbian and anti-Hebbian adaptation mechanisms for the evolution of the connection weights. The Hebbian adaptation manifests several interesting partially synchronized states, such as phase and frequency clusters, bump state, bump frequency phase clusters, and forced entrained clusters, in addition to the completely synchronized and forced entrained states. Anti-Hebbian adaptation facilitates the manifestation of the itinerant chimera characterized by randomly evolving coherent and incoherent domains along with some of the aforementioned dynamical states induced by the Hebbian adaptation. We introduce three distinct measures for the strength of incoherence based on the local standard deviations of the time-averaged frequency and the instantaneous phase of each oscillator, and the time-averaged mean frequency for each bin to corroborate the distinct dynamical states and to demarcate the two parameter phase diagrams. We also arrive at the existence and stability conditions for the forced entrained state using the linear stability analysis, which is found to be consistent with the simulation results.
Collapse
Affiliation(s)
- S Thamizharasan
- Department of Nonlinear Dynamics, School of Physics, Bharathidasan University, Tiruchirappalli-620 024, Tamil Nadu, India
| | - V K Chandrasekar
- Centre for Nonlinear Science & Engineering, Department of Physics, School of Electrical & Electronics Engineering, SASTRA Deemed University, Thanjavur-613 401, Tamil Nadu, India
| | - M Senthilvelan
- Department of Nonlinear Dynamics, School of Physics, Bharathidasan University, Tiruchirappalli-620 024, Tamil Nadu, India
| | - D V Senthilkumar
- School of Physics, Indian Institute of Science Education and Research, Thiruvananthapuram-695 551, Kerala, India
| |
Collapse
|
4
|
Duchet B, Bick C, Byrne Á. Mean-Field Approximations With Adaptive Coupling for Networks With Spike-Timing-Dependent Plasticity. Neural Comput 2023; 35:1481-1528. [PMID: 37437202 PMCID: PMC10422128 DOI: 10.1162/neco_a_01601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 04/26/2023] [Indexed: 07/14/2023]
Abstract
Understanding the effect of spike-timing-dependent plasticity (STDP) is key to elucidating how neural networks change over long timescales and to design interventions aimed at modulating such networks in neurological disorders. However, progress is restricted by the significant computational cost associated with simulating neural network models with STDP and by the lack of low-dimensional description that could provide analytical insights. Phase-difference-dependent plasticity (PDDP) rules approximate STDP in phase oscillator networks, which prescribe synaptic changes based on phase differences of neuron pairs rather than differences in spike timing. Here we construct mean-field approximations for phase oscillator networks with STDP to describe part of the phase space for this very high-dimensional system. We first show that single-harmonic PDDP rules can approximate a simple form of symmetric STDP, while multiharmonic rules are required to accurately approximate causal STDP. We then derive exact expressions for the evolution of the average PDDP coupling weight in terms of network synchrony. For adaptive networks of Kuramoto oscillators that form clusters, we formulate a family of low-dimensional descriptions based on the mean-field dynamics of each cluster and average coupling weights between and within clusters. Finally, we show that such a two-cluster mean-field model can be fitted to synthetic data to provide a low-dimensional approximation of a full adaptive network with symmetric STDP. Our framework represents a step toward a low-dimensional description of adaptive networks with STDP, and could for example inform the development of new therapies aimed at maximizing the long-lasting effects of brain stimulation.
Collapse
Affiliation(s)
- Benoit Duchet
- Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford X3 9DU, U.K
- MRC Brain Network Dynamics Unit, University of Oxford, Oxford X1 3TH, U.K.
| | - Christian Bick
- Department of Mathematics, Vrije Universiteit Amsterdam, Amsterdam 1081 HV, the Netherlands
- Amsterdam Neuroscience-Systems and Network Neuroscience, Amsterdam 1081 HV, the Netherlands
- Mathematical Institute, University of Oxford, Oxford X2 6GG, U.K.
| | - Áine Byrne
- School of Mathematics and Statistics, University College Dublin, Dublin D04 V1W8, Ireland
| |
Collapse
|
5
|
Berner R, Lu A, Sokolov IM. Synchronization transitions in Kuramoto networks with higher-mode interaction. CHAOS (WOODBURY, N.Y.) 2023; 33:073138. [PMID: 37463093 DOI: 10.1063/5.0151038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 06/21/2023] [Indexed: 07/20/2023]
Abstract
Synchronization is an omnipresent collective phenomenon in nature and technology, whose understanding is still elusive for real-world systems in particular. We study the synchronization transition in a phase oscillator system with two nonvanishing Fourier-modes in the interaction function, hence going beyond the Kuramoto paradigm. We show that the transition scenarios crucially depend on the interplay of the two coupling modes. We describe the multistability induced by the presence of a second coupling mode. By extending the collective coordinate approach, we describe the emergence of various states observed in the transition from incoherence to coherence. Remarkably, our analysis suggests that, in essence, the two-mode coupling gives rise to states characterized by two independent but interacting groups of oscillators. We believe that these findings will stimulate future research on dynamical systems, including complex interaction functions beyond the Kuramoto-type.
Collapse
Affiliation(s)
- Rico Berner
- Institut für Physik, Humboldt-Universität zu Berlin, Newtonstraße 15, 12489 Berlin, Germany
| | - Annie Lu
- Department of Mathematics, Washington State University, Pullman, Washington 99164-3113, USA
| | - Igor M Sokolov
- Institut für Physik, Humboldt-Universität zu Berlin, Newtonstraße 15, 12489 Berlin, Germany
| |
Collapse
|
6
|
Sawicki J, Berner R, Loos SAM, Anvari M, Bader R, Barfuss W, Botta N, Brede N, Franović I, Gauthier DJ, Goldt S, Hajizadeh A, Hövel P, Karin O, Lorenz-Spreen P, Miehl C, Mölter J, Olmi S, Schöll E, Seif A, Tass PA, Volpe G, Yanchuk S, Kurths J. Perspectives on adaptive dynamical systems. CHAOS (WOODBURY, N.Y.) 2023; 33:071501. [PMID: 37486668 DOI: 10.1063/5.0147231] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 05/24/2023] [Indexed: 07/25/2023]
Abstract
Adaptivity is a dynamical feature that is omnipresent in nature, socio-economics, and technology. For example, adaptive couplings appear in various real-world systems, such as the power grid, social, and neural networks, and they form the backbone of closed-loop control strategies and machine learning algorithms. In this article, we provide an interdisciplinary perspective on adaptive systems. We reflect on the notion and terminology of adaptivity in different disciplines and discuss which role adaptivity plays for various fields. We highlight common open challenges and give perspectives on future research directions, looking to inspire interdisciplinary approaches.
Collapse
Affiliation(s)
- Jakub Sawicki
- Potsdam Institute for Climate Impact Research, Telegrafenberg, 14473 Potsdam, Germany
- Akademie Basel, Fachhochschule Nordwestschweiz FHNW, Leonhardsstrasse 6, 4009 Basel, Switzerland
| | - Rico Berner
- Department of Physics, Humboldt-Universität zu Berlin, Newtonstraße 15, 12489 Berlin, Germany
| | - Sarah A M Loos
- DAMTP, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, United Kingdom
| | - Mehrnaz Anvari
- Potsdam Institute for Climate Impact Research, Telegrafenberg, 14473 Potsdam, Germany
- Fraunhofer Institute for Algorithms and Scientific Computing, Schloss Birlinghoven, 53757 Sankt-Augustin, Germany
| | - Rolf Bader
- Institute of Systematic Musicology, University of Hamburg, Hamburg, Germany
| | - Wolfram Barfuss
- Transdisciplinary Research Area: Sustainable Futures, University of Bonn, 53113 Bonn, Germany
- Center for Development Research (ZEF), University of Bonn, 53113 Bonn, Germany
| | - Nicola Botta
- Potsdam Institute for Climate Impact Research, Telegrafenberg, 14473 Potsdam, Germany
- Department of Computer Science and Engineering, Chalmers University of Technology, 412 96 Göteborg, Sweden
| | - Nuria Brede
- Potsdam Institute for Climate Impact Research, Telegrafenberg, 14473 Potsdam, Germany
- Department of Computer Science, University of Potsdam, An der Bahn 2, 14476 Potsdam, Germany
| | - Igor Franović
- Scientific Computing Laboratory, Center for the Study of Complex Systems, Institute of Physics Belgrade, University of Belgrade, Pregrevica 118, 11080 Belgrade, Serbia
| | - Daniel J Gauthier
- Potsdam Institute for Climate Impact Research, Telegrafenberg, 14473 Potsdam, Germany
| | - Sebastian Goldt
- Department of Physics, International School of Advanced Studies (SISSA), Trieste, Italy
| | - Aida Hajizadeh
- Research Group Comparative Neuroscience, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Philipp Hövel
- Potsdam Institute for Climate Impact Research, Telegrafenberg, 14473 Potsdam, Germany
| | - Omer Karin
- Department of Mathematics, Imperial College London, London SW7 2AZ, United Kingdom
| | - Philipp Lorenz-Spreen
- Center for Adaptive Rationality, Max Planck Institute for Human Development, Lentzeallee 94, 14195 Berlin, Germany
| | - Christoph Miehl
- Akademie Basel, Fachhochschule Nordwestschweiz FHNW, Leonhardsstrasse 6, 4009 Basel, Switzerland
| | - Jan Mölter
- Department of Mathematics, School of Computation, Information and Technology, Technical University of Munich, Boltzmannstraße 3, 85748 Garching bei München, Germany
| | - Simona Olmi
- Akademie Basel, Fachhochschule Nordwestschweiz FHNW, Leonhardsstrasse 6, 4009 Basel, Switzerland
| | - Eckehard Schöll
- Potsdam Institute for Climate Impact Research, Telegrafenberg, 14473 Potsdam, Germany
- Akademie Basel, Fachhochschule Nordwestschweiz FHNW, Leonhardsstrasse 6, 4009 Basel, Switzerland
| | - Alireza Seif
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois 60637, USA
| | - Peter A Tass
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, California 94304, USA
| | - Giovanni Volpe
- Department of Physics, University of Gothenburg, Gothenburg, Sweden
| | - Serhiy Yanchuk
- Potsdam Institute for Climate Impact Research, Telegrafenberg, 14473 Potsdam, Germany
- Department of Physics, Humboldt-Universität zu Berlin, Newtonstraße 15, 12489 Berlin, Germany
| | - Jürgen Kurths
- Potsdam Institute for Climate Impact Research, Telegrafenberg, 14473 Potsdam, Germany
- Department of Physics, Humboldt-Universität zu Berlin, Newtonstraße 15, 12489 Berlin, Germany
| |
Collapse
|
7
|
Jüttner B, Martens EA. Complex dynamics in adaptive phase oscillator networks. CHAOS (WOODBURY, N.Y.) 2023; 33:2888087. [PMID: 37133924 DOI: 10.1063/5.0133190] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 03/28/2023] [Indexed: 05/04/2023]
Abstract
Networks of coupled dynamical units give rise to collective dynamics such as the synchronization of oscillators or neurons in the brain. The ability of the network to adapt coupling strengths between units in accordance with their activity arises naturally in a variety of contexts, including neural plasticity in the brain, and adds an additional layer of complexity: the dynamics on the nodes influence the dynamics of the network and vice versa. We study a minimal model of Kuramoto phase oscillators including a general adaptive learning rule with three parameters (strength of adaptivity, adaptivity offset, adaptivity shift), mimicking learning paradigms based on spike-time-dependent plasticity. Importantly, the strength of adaptivity allows to tune the system away from the limit of the classical Kuramoto model, corresponding to stationary coupling strengths and no adaptation and, thus, to systematically study the impact of adaptivity on the collective dynamics. We carry out a detailed bifurcation analysis for the minimal model consisting of N=2 oscillators. The non-adaptive Kuramoto model exhibits very simple dynamic behavior, drift, or frequency-locking; but once the strength of adaptivity exceeds a critical threshold non-trivial bifurcation structures unravel: A symmetric adaptation rule results in multi-stability and bifurcation scenarios, and an asymmetric adaptation rule generates even more intriguing and rich dynamics, including a period-doubling cascade to chaos as well as oscillations displaying features of both librations and rotations simultaneously. Generally, adaptation improves the synchronizability of the oscillators. Finally, we also numerically investigate a larger system consisting of N=50 oscillators and compare the resulting dynamics with the case of N=2 oscillators.
Collapse
Affiliation(s)
- Benjamin Jüttner
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Erik A Martens
- Centre for Mathematical Sciences, Lund University, Sölvegatan 18B, 221 00 Lund, Sweden
- Center for Translational Neurosciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark
| |
Collapse
|
8
|
Bergoin R, Torcini A, Deco G, Quoy M, Zamora-López G. Inhibitory neurons control the consolidation of neural assemblies via adaptation to selective stimuli. Sci Rep 2023; 13:6949. [PMID: 37117236 PMCID: PMC10147639 DOI: 10.1038/s41598-023-34165-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 04/25/2023] [Indexed: 04/30/2023] Open
Abstract
Brain circuits display modular architecture at different scales of organization. Such neural assemblies are typically associated to functional specialization but the mechanisms leading to their emergence and consolidation still remain elusive. In this paper we investigate the role of inhibition in structuring new neural assemblies driven by the entrainment to various inputs. In particular, we focus on the role of partially synchronized dynamics for the creation and maintenance of structural modules in neural circuits by considering a network of excitatory and inhibitory [Formula: see text]-neurons with plastic Hebbian synapses. The learning process consists of an entrainment to temporally alternating stimuli that are applied to separate regions of the network. This entrainment leads to the emergence of modular structures. Contrary to common practice in artificial neural networks-where the acquired weights are typically frozen after the learning session-we allow for synaptic adaptation even after the learning phase. We find that the presence of inhibitory neurons in the network is crucial for the emergence and the post-learning consolidation of the modular structures. Indeed networks made of purely excitatory neurons or of neurons not respecting Dale's principle are unable to form or to maintain the modular architecture induced by the stimuli. We also demonstrate that the number of inhibitory neurons in the network is directly related to the maximal number of neural assemblies that can be consolidated, supporting the idea that inhibition has a direct impact on the memory capacity of the neural network.
Collapse
Affiliation(s)
- Raphaël Bergoin
- ETIS, UMR 8051, ENSEA, CY Cergy Paris Université, CNRS, 6 Av. du Ponceau, 95000, Cergy-Pontoise, France.
- Center for Brain and Cognition, Department of Information and Communications Technologies, Pompeu Fabra University, Carrer Ramón Trias i Fargas 25-27, 08005, Barcelona, Spain.
| | - Alessandro Torcini
- Laboratoire de Physique Théorique et Modélisation, UMR 8089, CY Cergy Paris Université, CNRS, 2 Av. Adolphe Chauvin, 95032, Cergy-Pontoise, France
| | - Gustavo Deco
- Center for Brain and Cognition, Department of Information and Communications Technologies, Pompeu Fabra University, Carrer Ramón Trias i Fargas 25-27, 08005, Barcelona, Spain
- Instituciò Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluis Companys 23, 08010, Barcelona, Spain
| | - Mathias Quoy
- ETIS, UMR 8051, ENSEA, CY Cergy Paris Université, CNRS, 6 Av. du Ponceau, 95000, Cergy-Pontoise, France
- IPAL, CNRS, 1 Fusionopolis Way #21-01 Connexis (South Tower), Singapore, 138632, Singapore
| | - Gorka Zamora-López
- Center for Brain and Cognition, Department of Information and Communications Technologies, Pompeu Fabra University, Carrer Ramón Trias i Fargas 25-27, 08005, Barcelona, Spain
| |
Collapse
|
9
|
Fialkowski J, Yanchuk S, Sokolov IM, Schöll E, Gottwald GA, Berner R. Heterogeneous Nucleation in Finite-Size Adaptive Dynamical Networks. PHYSICAL REVIEW LETTERS 2023; 130:067402. [PMID: 36827552 DOI: 10.1103/physrevlett.130.067402] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 10/17/2022] [Accepted: 01/10/2023] [Indexed: 06/18/2023]
Abstract
Phase transitions in equilibrium and nonequilibrium systems play a major role in the natural sciences. In dynamical networks, phase transitions organize qualitative changes in the collective behavior of coupled dynamical units. Adaptive dynamical networks feature a connectivity structure that changes over time, coevolving with the nodes' dynamical state. In this Letter, we show the emergence of two distinct first-order nonequilibrium phase transitions in a finite-size adaptive network of heterogeneous phase oscillators. Depending on the nature of defects in the internal frequency distribution, we observe either an abrupt single-step transition to full synchronization or a more gradual multistep transition. This observation has a striking resemblance to heterogeneous nucleation. We develop a mean-field approach to study the interplay between adaptivity and nodal heterogeneity and describe the dynamics of multicluster states and their role in determining the character of the phase transition. Our work provides a theoretical framework for studying the interplay between adaptivity and nodal heterogeneity.
Collapse
Affiliation(s)
- Jan Fialkowski
- Institute for Theoretical Physics, Technische Universität Berlin, Hardenbergstraße 36, 10623 Berlin, Germany
| | - Serhiy Yanchuk
- Potsdam Institute for Climate Impact Research, Telegrafenberg A 31, 14473 Potsdam, Germany
- Institute of Mathematics, Humboldt-Universität zu Berlin, 12489 Berlin, Germany
| | - Igor M Sokolov
- Department of Physics, Humboldt-Universität zu Berlin, Newtonstraße 15, 12489 Berlin, Germany
- IRIS Adlershof, Humboldt-Universität zu Berlin, Zum Großen Windkanal 6, 12489 Berlin, Germany
| | - Eckehard Schöll
- Institute for Theoretical Physics, Technische Universität Berlin, Hardenbergstraße 36, 10623 Berlin, Germany
- Potsdam Institute for Climate Impact Research, Telegrafenberg A 31, 14473 Potsdam, Germany
- Bernstein Center for Computational Neuroscience Berlin, Humboldt-Universität zu Berlin, 10115 Berlin, Germany
| | - Georg A Gottwald
- School of Mathematics and Statistics, University of Sydney, Camperdown New South Wales 2006, Australia
| | - Rico Berner
- Institute for Theoretical Physics, Technische Universität Berlin, Hardenbergstraße 36, 10623 Berlin, Germany
- Department of Physics, Humboldt-Universität zu Berlin, Newtonstraße 15, 12489 Berlin, Germany
| |
Collapse
|
10
|
Ratas I, Pyragas K. Interplay of different synchronization modes and synaptic plasticity in a system of class I neurons. Sci Rep 2022; 12:19631. [PMID: 36385488 PMCID: PMC9668974 DOI: 10.1038/s41598-022-24001-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 11/08/2022] [Indexed: 11/17/2022] Open
Abstract
We analyze the effect of spike-timing-dependent plasticity (STDP) on a system of pulse-coupled class I neurons. Our research begins with a system of two mutually connected quadratic integrate-and-fire (QIF) neurons, which are canonical representatives of class I neurons. Along with various asymptotic modes previously observed in other neuronal models with plastic synapses, we found a stable synchronous mode characterized by unidirectional link from a slower neuron to a faster neuron. In this frequency-locked mode, the faster neuron emits multiple spikes per cycle of the slower neuron. We analytically obtain the Arnold tongues for this mode without STDP and with STDP. We also consider larger plastic networks of QIF neurons and show that the detected mode can manifest itself in such a way that slow neurons become pacemakers. As a result, slow and fast neurons can form large synchronous clusters that generate low-frequency oscillations. We demonstrate the generality of the results obtained with two connected QIF neurons using Wang-Buzsáki and Morris-Lecar biophysically plausible class I neuron models.
Collapse
Affiliation(s)
- Irmantas Ratas
- Center for Physical Sciences and Technology, 10257, Vilnius, Lithuania.
| | - Kestutis Pyragas
- Center for Physical Sciences and Technology, 10257, Vilnius, Lithuania
| |
Collapse
|
11
|
Chauhan K, Khaledi-Nasab A, Neiman AB, Tass PA. Dynamics of phase oscillator networks with synaptic weight and structural plasticity. Sci Rep 2022; 12:15003. [PMID: 36056151 PMCID: PMC9440105 DOI: 10.1038/s41598-022-19417-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 08/29/2022] [Indexed: 11/08/2022] Open
Abstract
We study the dynamics of Kuramoto oscillator networks with two distinct adaptation processes, one varying the coupling strengths and the other altering the network structure. Such systems model certain networks of oscillatory neurons where the neuronal dynamics, synaptic weights, and network structure interact with and shape each other. We model synaptic weight adaptation with spike-timing-dependent plasticity (STDP) that runs on a longer time scale than neuronal spiking. Structural changes that include addition and elimination of contacts occur at yet a longer time scale than the weight adaptations. First, we study the steady-state dynamics of Kuramoto networks that are bistable and can settle in synchronized or desynchronized states. To compare the impact of adding structural plasticity, we contrast the network with only STDP to one with a combination of STDP and structural plasticity. We show that the inclusion of structural plasticity optimizes the synchronized state of a network by allowing for synchronization with fewer links than a network with STDP alone. With non-identical units in the network, the addition of structural plasticity leads to the emergence of correlations between the oscillators' natural frequencies and node degrees. In the desynchronized regime, the structural plasticity decreases the number of contacts, leading to a sparse network. In this way, adding structural plasticity strengthens both synchronized and desynchronized states of a network. Second, we use desynchronizing coordinated reset stimulation and synchronizing periodic stimulation to induce desynchronized and synchronized states, respectively. Our findings indicate that a network with a combination of STDP and structural plasticity may require stronger and longer stimulation to switch between the states than a network with STDP only.
Collapse
Affiliation(s)
- Kanishk Chauhan
- Department of Physics and Astronomy, Ohio University, Athens, OH, 45701, USA.
- Neuroscience Program, Ohio University, Athens, OH, 45701, USA.
| | - Ali Khaledi-Nasab
- Department of Neurosurgery, Stanford University, Stanford, CA, 94305, USA
| | - Alexander B Neiman
- Department of Physics and Astronomy, Ohio University, Athens, OH, 45701, USA
- Neuroscience Program, Ohio University, Athens, OH, 45701, USA
| | - Peter A Tass
- Department of Neurosurgery, Stanford University, Stanford, CA, 94305, USA
| |
Collapse
|
12
|
Berner R, Sawicki J, Thiele M, Löser T, Schöll E. Critical Parameters in Dynamic Network Modeling of Sepsis. FRONTIERS IN NETWORK PHYSIOLOGY 2022; 2:904480. [PMID: 36926088 PMCID: PMC10012967 DOI: 10.3389/fnetp.2022.904480] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/03/2022] [Indexed: 11/13/2022]
Abstract
In this work, we propose a dynamical systems perspective on the modeling of sepsis and its organ-damaging consequences. We develop a functional two-layer network model for sepsis based upon the interaction of parenchymal cells and immune cells via cytokines, and the coevolutionary dynamics of parenchymal, immune cells, and cytokines. By means of the simple paradigmatic model of phase oscillators in a two-layer system, we analyze the emergence of organ threatening interactions between the dysregulated immune system and the parenchyma. We demonstrate that the complex cellular cooperation between parenchyma and stroma (immune layer) either in the physiological or in the pathological case can be related to dynamical patterns of the network. In this way we explain sepsis by the dysregulation of the healthy homeostatic state (frequency synchronized) leading to a pathological state (desynchronized or multifrequency cluster) in the parenchyma. We provide insight into the complex stabilizing and destabilizing interplay of parenchyma and stroma by determining critical interaction parameters. The coupled dynamics of parenchymal cells (metabolism) and nonspecific immune cells (response of the innate immune system) is represented by nodes of a duplex layer. Cytokine interaction is modeled by adaptive coupling weights between nodes representing immune cells (with fast adaptation timescale) and parenchymal cells (slow adaptation timescale), and between pairs of parenchymal and immune cells in the duplex network (fixed bidirectional coupling). The proposed model allows for a functional description of organ dysfunction in sepsis and the recurrence risk in a plausible pathophysiological context.
Collapse
Affiliation(s)
- Rico Berner
- Institut für Physik, Humboldt-Universität zu Berlin, Berlin, Germany
- Institut für Theoretische Physik, Technische Universität Berlin, Berlin, Germany
| | - Jakub Sawicki
- Institut für Theoretische Physik, Technische Universität Berlin, Berlin, Germany
- Potsdam Institute for Climate Impact Research, Potsdam, Germany
- Fachhochschule Nordwestschweiz FHNW, Basel, Switzerland
| | - Max Thiele
- Institut für Theoretische Physik, Technische Universität Berlin, Berlin, Germany
| | | | - Eckehard Schöll
- Institut für Theoretische Physik, Technische Universität Berlin, Berlin, Germany
- Potsdam Institute for Climate Impact Research, Potsdam, Germany
- Bernstein Center for Computational Neuroscience Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
13
|
Vignoud G, Robert P. Spontaneous dynamics of synaptic weights in stochastic models with pair-based spike-timing-dependent plasticity. Phys Rev E 2022; 105:054405. [PMID: 35706237 DOI: 10.1103/physreve.105.054405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 03/31/2022] [Indexed: 06/15/2023]
Abstract
We investigate spike-timing dependent plasticity (STPD) in the case of a synapse connecting two neuronal cells. We develop a theoretical analysis of several STDP rules using Markovian theory. In this context there are two different timescales, fast neuronal activity and slower synaptic weight updates. Exploiting this timescale separation, we derive the long-time limits of a single synaptic weight subject to STDP. We show that the pairing model of presynaptic and postsynaptic spikes controls the synaptic weight dynamics for small external input on an excitatory synapse. This result implies in particular that mean-field analysis of plasticity may miss some important properties of STDP. Anti-Hebbian STDP favors the emergence of a stable synaptic weight. In the case of an inhibitory synapse the pairing schemes matter less, and we observe convergence of the synaptic weight to a nonnull value only for Hebbian STDP. We extensively study different asymptotic regimes for STDP rules, raising interesting questions for future work on adaptative neuronal networks and, more generally, on adaptative systems.
Collapse
Affiliation(s)
- Gaëtan Vignoud
- INRIA Paris, 2 rue Simone Iff, 75589 Paris Cedex 12, France and Center for Interdisciplinary Research in Biology (CIRB), Collège de France (CNRS UMR 7241, INSERM U1050), 11 Place Marcelin Berthelot, 75005 Paris, France
| | | |
Collapse
|
14
|
Franović I, Eydam S, Yanchuk S, Berner R. Collective Activity Bursting in a Population of Excitable Units Adaptively Coupled to a Pool of Resources. FRONTIERS IN NETWORK PHYSIOLOGY 2022; 2:841829. [PMID: 36926089 PMCID: PMC10013072 DOI: 10.3389/fnetp.2022.841829] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/16/2022] [Indexed: 06/18/2023]
Abstract
We study the collective dynamics in a population of excitable units (neurons) adaptively interacting with a pool of resources. The resource pool is influenced by the average activity of the population, whereas the feedback from the resources to the population is comprised of components acting homogeneously or inhomogeneously on individual units of the population. Moreover, the resource pool dynamics is assumed to be slow and has an oscillatory degree of freedom. We show that the feedback loop between the population and the resources can give rise to collective activity bursting in the population. To explain the mechanisms behind this emergent phenomenon, we combine the Ott-Antonsen reduction for the collective dynamics of the population and singular perturbation theory to obtain a reduced system describing the interaction between the population mean field and the resources.
Collapse
Affiliation(s)
- Igor Franović
- Scientific Computing Laboratory, Center for the Study of Complex Systems, Institute of Physics Belgrade, University of Belgrade, Belgrade, Serbia
| | - Sebastian Eydam
- Neural Circuits and Computations Unit, RIKEN Center for Brain Science, Wako, Japan
| | - Serhiy Yanchuk
- Institut für Mathematik, Technische Universität Berlin, Berlin, Germany
- Potsdam Institute for Climate Impact Research, Potsdam, Germany
- Institut für Mathematik, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Rico Berner
- Institut für Physik, Humboldt-Universität zu Berlin, Berlin, Germany
- Institut für Theoretische Physik, Technische Universität Berlin, Berlin, Germany
| |
Collapse
|
15
|
Thamizharasan S, Chandrasekar VK, Senthilvelan M, Berner R, Schöll E, Senthilkumar DV. Exotic states induced by coevolving connection weights and phases in complex networks. Phys Rev E 2022; 105:034312. [PMID: 35428128 DOI: 10.1103/physreve.105.034312] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 03/07/2022] [Indexed: 06/14/2023]
Abstract
We consider an adaptive network, whose connection weights coevolve in congruence with the dynamical states of the local nodes that are under the influence of an external stimulus. The adaptive dynamical system mimics the adaptive synaptic connections common in neuronal networks. The adaptive network under external forcing displays exotic dynamical states such as itinerant chimeras whose population density of coherent and incoherent domains coevolves with the synaptic connection, bump states, and bump frequency cluster states, which do not exist in adaptive networks without forcing. In addition, the adaptive network also exhibits partial synchronization patterns such as phase and frequency clusters, forced entrained, and incoherent states. We introduce two measures for the strength of incoherence based on the standard deviation of the temporally averaged (mean) frequency and on the mean frequency to classify the emergent dynamical states as well as their transitions. We provide a two-parameter phase diagram showing the wealth of dynamical states. We additionally deduce the stability condition for the frequency-entrained state. We use the paradigmatic Kuramoto model of phase oscillators, which is a simple generic model that has been widely employed in unraveling a plethora of cooperative phenomena in natural and man-made systems.
Collapse
Affiliation(s)
- S Thamizharasan
- Department of Nonlinear Dynamics, School of Physics, Bharathidasan University, Tiruchirappalli-620 024, Tamil Nadu, India
| | - V K Chandrasekar
- Centre for Nonlinear Science & Engineering, Department of Physics, School of Electrical & Electronics Engineering, SASTRA Deemed University, Thanjavur-613 401, Tamil Nadu, India
| | - M Senthilvelan
- Department of Nonlinear Dynamics, School of Physics, Bharathidasan University, Tiruchirappalli-620 024, Tamil Nadu, India
| | - Rico Berner
- Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstrasse 36, 10623 Berlin, Germany
- Institut für Physik, Humboldt-Universität zu Berlin, Newtonstraße 15, 12489 Berlin, Germany
| | - Eckehard Schöll
- Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstrasse 36, 10623 Berlin, Germany
- Potsdam Institute for Climate Impact Research, Telegrafenberg A 31, 14473 Potsdam, Germany
- Bernstein Center for Computational Neuroscience Berlin, Humboldt-Universität, Philippstraße 13, 10115 Berlin, Germany
| | - D V Senthilkumar
- School of Physics, Indian Institute of Science Education and Research, Thiruvananthapuram-695 551, Kerala, India
| |
Collapse
|
16
|
Sawicki J, Berner R, Löser T, Schöll E. Modeling Tumor Disease and Sepsis by Networks of Adaptively Coupled Phase Oscillators. FRONTIERS IN NETWORK PHYSIOLOGY 2022; 1:730385. [PMID: 36925568 PMCID: PMC10013027 DOI: 10.3389/fnetp.2021.730385] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 11/19/2021] [Indexed: 06/18/2023]
Abstract
In this study, we provide a dynamical systems perspective to the modelling of pathological states induced by tumors or infection. A unified disease model is established using the innate immune system as the reference point. We propose a two-layer network model for carcinogenesis and sepsis based upon the interaction of parenchymal cells and immune cells via cytokines, and the co-evolutionary dynamics of parenchymal, immune cells, and cytokines. Our aim is to show that the complex cellular cooperation between parenchyma and stroma (immune layer) in the physiological and pathological case can be qualitatively and functionally described by a simple paradigmatic model of phase oscillators. By this, we explain carcinogenesis, tumor progression, and sepsis by destabilization of the healthy homeostatic state (frequency synchronized), and emergence of a pathological state (desynchronized or multifrequency cluster). The coupled dynamics of parenchymal cells (metabolism) and nonspecific immune cells (reaction of innate immune system) are represented by nodes of a duplex layer. The cytokine interaction is modeled by adaptive coupling weights between the nodes representing the immune cells (with fast adaptation time scale) and the parenchymal cells (slow adaptation time scale) and between the pairs of parenchymal and immune cells in the duplex network (fixed bidirectional coupling). Thereby, carcinogenesis, organ dysfunction in sepsis, and recurrence risk can be described in a correct functional context.
Collapse
Affiliation(s)
- Jakub Sawicki
- Potsdam Institute for Climate Impact Research, Potsdam, Germany
| | - Rico Berner
- Institut für Mathematik, Technische Universität Berlin, Berlin, Germany
- Institut für Theoretische Physik, Technische Universität Berlin, Berlin, Germany
| | | | - Eckehard Schöll
- Potsdam Institute for Climate Impact Research, Potsdam, Germany
- Institut für Theoretische Physik, Technische Universität Berlin, Berlin, Germany
- Bernstein Center for Computational Neuroscience Berlin, Humboldt-Universität, Berlin, Germany
| |
Collapse
|
17
|
Takeda Y, Hata K, Yamazaki T, Kaneko M, Yokoi O, Tsai C, Umemura K, Nikuni T. Numerical Simulation: Fluctuation in Background Synaptic Activity Regulates Synaptic Plasticity. Front Syst Neurosci 2021; 15:771661. [PMID: 34880734 PMCID: PMC8646040 DOI: 10.3389/fnsys.2021.771661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 10/27/2021] [Indexed: 11/13/2022] Open
Abstract
Synaptic plasticity is vital for learning and memory in the brain. It consists of long-term potentiation (LTP) and long-term depression (LTD). Spike frequency is one of the major components of synaptic plasticity in the brain, a noisy environment. Recently, we mathematically analyzed the frequency-dependent synaptic plasticity (FDP) in vivo and found that LTP is more likely to occur with an increase in the frequency of background synaptic activity. Meanwhile, previous studies suggest statistical fluctuation in the amplitude of background synaptic activity. Little is understood, however, about its contribution to synaptic plasticity. To address this issue, we performed numerical simulations of a calcium-based synapse model. Then, we found attenuation of the tendency to become LTD due to an increase in the fluctuation of background synaptic activity, leading to an enhancement of synaptic weight. Our result suggests that the fluctuation affects synaptic plasticity in the brain.
Collapse
Affiliation(s)
- Yuto Takeda
- Department of Physics, Tokyo University of Science, Tokyo, Japan
| | - Katsuhiko Hata
- Department of Physics, Tokyo University of Science, Tokyo, Japan.,Department of Neuroscience, Research Center for Mathematical Medicine, Tokyo, Japan.,Department of Sports and Medical Science, Kokushikan University, Tokyo, Japan.,Graduate School of Emergency Medical System, Kokushikan University, Tokyo, Japan
| | - Tokio Yamazaki
- Department of Physics, Tokyo University of Science, Tokyo, Japan
| | - Masaki Kaneko
- KYB Medical Service Co., Ltd., Tokyo, Japan.,The Institute of Physical Education, Kokushikan University, Tokyo, Japan
| | - Osamu Yokoi
- Department of Neuroscience, Research Center for Mathematical Medicine, Tokyo, Japan
| | - Chengta Tsai
- Department of Neuroscience, Research Center for Mathematical Medicine, Tokyo, Japan.,Graduate School of Emergency Medical System, Kokushikan University, Tokyo, Japan
| | - Kazuo Umemura
- Department of Physics, Tokyo University of Science, Tokyo, Japan
| | - Tetsuro Nikuni
- Department of Physics, Tokyo University of Science, Tokyo, Japan
| |
Collapse
|
18
|
Berner R, Yanchuk S, Maistrenko Y, Schöll E. Generalized splay states in phase oscillator networks. CHAOS (WOODBURY, N.Y.) 2021; 31:073128. [PMID: 34340340 DOI: 10.1063/5.0056664] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 06/24/2021] [Indexed: 06/13/2023]
Abstract
Networks of coupled phase oscillators play an important role in the analysis of emergent collective phenomena. In this article, we introduce generalized m-splay states constituting a special subclass of phase-locked states with vanishing mth order parameter. Such states typically manifest incoherent dynamics, and they often create high-dimensional families of solutions (splay manifolds). For a general class of phase oscillator networks, we provide explicit linear stability conditions for splay states and exemplify our results with the well-known Kuramoto-Sakaguchi model. Importantly, our stability conditions are expressed in terms of just a few observables such as the order parameter or the trace of the Jacobian. As a result, these conditions are simple and applicable to networks of arbitrary size. We generalize our findings to phase oscillators with inertia and adaptively coupled phase oscillator models.
Collapse
Affiliation(s)
- Rico Berner
- Institute of Theoretical Physics, Technische Universität Berlin, Hardenbergstr. 36, 10623 Berlin, Germany
| | - Serhiy Yanchuk
- Institute of Mathematics, Technische Universität Berlin, Strasse des 17. Juni 136, 10623 Berlin, Germany
| | - Yuri Maistrenko
- Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, 52428 Jülich, Germany
| | - Eckehard Schöll
- Institute of Theoretical Physics, Technische Universität Berlin, Hardenbergstr. 36, 10623 Berlin, Germany
| |
Collapse
|
19
|
Multistability in a star network of Kuramoto-type oscillators with synaptic plasticity. Sci Rep 2021; 11:9840. [PMID: 33972613 PMCID: PMC8110549 DOI: 10.1038/s41598-021-89198-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 04/20/2021] [Indexed: 11/09/2022] Open
Abstract
We analyze multistability in a star-type network of phase oscillators with coupling weights governed by phase-difference-dependent plasticity. It is shown that a network with N leaves can evolve into \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$2^N$$\end{document}2N various asymptotic states, characterized by different values of the coupling strength between the hub and the leaves. Starting from the simple case of two coupled oscillators, we develop an analytical approach based on two small parameters \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\varepsilon$$\end{document}ε and \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mu$$\end{document}μ, where \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\varepsilon$$\end{document}ε is the ratio of the time scales of the phase variables and synaptic weights, and \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mu$$\end{document}μ defines the sharpness of the plasticity boundary function. The limit \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mu \rightarrow 0$$\end{document}μ→0 corresponds to a hard boundary. The analytical results obtained on the model of two oscillators are generalized for multi-leaf star networks. Multistability with \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$2^N$$\end{document}2N various asymptotic states is numerically demonstrated for one-, two-, three- and nine-leaf star-type networks.
Collapse
|
20
|
Berner R, Yanchuk S, Schöll E. What adaptive neuronal networks teach us about power grids. Phys Rev E 2021; 103:042315. [PMID: 34005899 DOI: 10.1103/physreve.103.042315] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 04/08/2021] [Indexed: 06/12/2023]
Abstract
Power grid networks, as well as neuronal networks with synaptic plasticity, describe real-world systems of tremendous importance for our daily life. The investigation of these seemingly unrelated types of dynamical networks has attracted increasing attention over the past decade. In this paper, we provide insight into the fundamental relation between these two types of networks. For this, we consider well-established models based on phase oscillators and show their intimate relation. In particular, we prove that phase oscillator models with inertia can be viewed as a particular class of adaptive networks. This relation holds even for more general classes of power grid models that include voltage dynamics. As an immediate consequence of this relation, we discover a plethora of multicluster states for phase oscillators with inertia. Moreover, the phenomenon of cascading line failure in power grids is translated into an adaptive neuronal network.
Collapse
Affiliation(s)
- Rico Berner
- Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstraße 36, 10623 Berlin, Germany
- Institut für Mathematik, Technische Universität Berlin, Straße des 17. Juni 136, 10623 Berlin, Germany
| | - Serhiy Yanchuk
- Institut für Mathematik, Technische Universität Berlin, Straße des 17. Juni 136, 10623 Berlin, Germany
| | - Eckehard Schöll
- Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstraße 36, 10623 Berlin, Germany
- Bernstein Center for Computational Neuroscience Berlin, Humboldt-Universität, 10115 Berlin, Germany
- Potsdam Institute for Climate Impact Research, Telegrafenberg A 31, 14473 Potsdam, Germany
| |
Collapse
|
21
|
Berner R, Vock S, Schöll E, Yanchuk S. Desynchronization Transitions in Adaptive Networks. PHYSICAL REVIEW LETTERS 2021; 126:028301. [PMID: 33512200 DOI: 10.1103/physrevlett.126.028301] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/04/2020] [Accepted: 12/15/2020] [Indexed: 06/12/2023]
Abstract
Adaptive networks change their connectivity with time, depending on their dynamical state. While synchronization in structurally static networks has been studied extensively, this problem is much more challenging for adaptive networks. In this Letter, we develop the master stability approach for a large class of adaptive networks. This approach allows for reducing the synchronization problem for adaptive networks to a low-dimensional system, by decoupling topological and dynamical properties. We show how the interplay between adaptivity and network structure gives rise to the formation of stability islands. Moreover, we report a desynchronization transition and the emergence of complex partial synchronization patterns induced by an increasing overall coupling strength. We illustrate our findings using adaptive networks of coupled phase oscillators and FitzHugh-Nagumo neurons with synaptic plasticity.
Collapse
Affiliation(s)
- Rico Berner
- Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstrasse 36, 10623 Berlin, Germany
- Institut für Mathematik, Technische Universität Berlin, Straße des 17. Juni 136, 10623 Berlin, Germany
| | - Simon Vock
- Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstrasse 36, 10623 Berlin, Germany
| | - Eckehard Schöll
- Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstrasse 36, 10623 Berlin, Germany
- Bernstein Center for Computational Neuroscience Berlin, Humboldt-Universität, Philippstraße 13, 10115 Berlin, Germany
- Potsdam Institute for Climate Impact Research, Telegrafenberg A 31, 14473 Potsdam, Germany
| | - Serhiy Yanchuk
- Institut für Mathematik, Technische Universität Berlin, Straße des 17. Juni 136, 10623 Berlin, Germany
| |
Collapse
|
22
|
Franović I, Yanchuk S, Eydam S, Bačić I, Wolfrum M. Dynamics of a stochastic excitable system with slowly adapting feedback. CHAOS (WOODBURY, N.Y.) 2020; 30:083109. [PMID: 32872843 DOI: 10.1063/1.5145176] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 07/15/2020] [Indexed: 06/11/2023]
Abstract
We study an excitable active rotator with slowly adapting nonlinear feedback and noise. Depending on the adaptation and the noise level, this system may display noise-induced spiking, noise-perturbed oscillations, or stochastic bursting. We show how the system exhibits transitions between these dynamical regimes, as well as how one can enhance or suppress the coherence resonance or effectively control the features of the stochastic bursting. The setup can be considered a paradigmatic model for a neuron with a slow recovery variable or, more generally, as an excitable system under the influence of a nonlinear control mechanism. We employ a multiple timescale approach that combines the classical adiabatic elimination with averaging of rapid oscillations and stochastic averaging of noise-induced fluctuations by a corresponding stationary Fokker-Planck equation. This allows us to perform a numerical bifurcation analysis of a reduced slow system and to determine the parameter regions associated with different types of dynamics. In particular, we demonstrate the existence of a region of bistability, where the noise-induced switching between a stationary and an oscillatory regime gives rise to stochastic bursting.
Collapse
Affiliation(s)
- Igor Franović
- Scientific Computing Laboratory, Center for the Study of Complex Systems, Institute of Physics Belgrade, University of Belgrade, Pregrevica 118, 11080 Belgrade, Serbia
| | - Serhiy Yanchuk
- Institut für Mathematik, Technische Universität Berlin, Straße des 17. Juni 136, 10623 Berlin, Germany
| | - Sebastian Eydam
- Weierstrass Institute, Mohrenstrasse 39, 10117 Berlin, Germany
| | - Iva Bačić
- Scientific Computing Laboratory, Center for the Study of Complex Systems, Institute of Physics Belgrade, University of Belgrade, Pregrevica 118, 11080 Belgrade, Serbia
| | | |
Collapse
|
23
|
Bačić I, Franović I. Two paradigmatic scenarios for inverse stochastic resonance. CHAOS (WOODBURY, N.Y.) 2020; 30:033123. [PMID: 32237779 DOI: 10.1063/1.5139628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 03/04/2020] [Indexed: 06/11/2023]
Abstract
Inverse stochastic resonance comprises a nonlinear response of an oscillatory system to noise where the frequency of noise-perturbed oscillations becomes minimal at an intermediate noise level. We demonstrate two generic scenarios for inverse stochastic resonance by considering a paradigmatic model of two adaptively coupled stochastic active rotators whose local dynamics is close to a bifurcation threshold. In the first scenario, shown for the two rotators in the excitable regime, inverse stochastic resonance emerges due to a biased switching between the oscillatory and the quasi-stationary metastable states derived from the attractors of the noiseless system. In the second scenario, illustrated for the rotators in the oscillatory regime, inverse stochastic resonance arises due to a trapping effect associated with a noise-enhanced stability of an unstable fixed point. The details of the mechanisms behind the resonant effect are explained in terms of slow-fast analysis of the corresponding noiseless systems.
Collapse
Affiliation(s)
- Iva Bačić
- Scientific Computing Laboratory, Center for the Study of Complex Systems, Institute of Physics Belgrade, University of Belgrade, Pregrevica 118, 11080 Belgrade, Serbia
| | - Igor Franović
- Scientific Computing Laboratory, Center for the Study of Complex Systems, Institute of Physics Belgrade, University of Belgrade, Pregrevica 118, 11080 Belgrade, Serbia
| |
Collapse
|
24
|
Berner R, Sawicki J, Schöll E. Birth and Stabilization of Phase Clusters by Multiplexing of Adaptive Networks. PHYSICAL REVIEW LETTERS 2020; 124:088301. [PMID: 32167358 DOI: 10.1103/physrevlett.124.088301] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 12/05/2019] [Accepted: 01/16/2020] [Indexed: 06/10/2023]
Abstract
We propose a concept to generate and stabilize diverse partial synchronization patterns (phase clusters) in adaptive networks which are widespread in neuroscience and social sciences, as well as biology, engineering, and other disciplines. We show by theoretical analysis and computer simulations that multiplexing in a multilayer network with symmetry can induce various stable phase cluster states in a situation where they are not stable or do not even exist in the single layer. Further, we develop a method for the analysis of Laplacian matrices of multiplex networks which allows for insight into the spectral structure of these networks enabling a reduction to the stability problem of single layers. We employ the multiplex decomposition to provide analytic results for the stability of the multilayer patterns. As local dynamics we use the paradigmatic Kuramoto phase oscillator, which is a simple generic model and has been successfully applied in the modeling of synchronization phenomena in a wide range of natural and technological systems.
Collapse
Affiliation(s)
- Rico Berner
- Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstrasse 36, 10623 Berlin, Germany
- Institut für Mathematik, Technische Universität Berlin, Hardenbergstrasse 36, 10623 Berlin, Germany
| | - Jakub Sawicki
- Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstrasse 36, 10623 Berlin, Germany
| | - Eckehard Schöll
- Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstrasse 36, 10623 Berlin, Germany
| |
Collapse
|
25
|
Frequency cluster formation and slow oscillations in neural populations with plasticity. PLoS One 2019; 14:e0225094. [PMID: 31725782 PMCID: PMC6855470 DOI: 10.1371/journal.pone.0225094] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 10/29/2019] [Indexed: 11/20/2022] Open
Abstract
We report the phenomenon of frequency clustering in a network of Hodgkin-Huxley neurons with spike timing-dependent plasticity. The clustering leads to a splitting of a neural population into a few groups synchronized at different frequencies. In this regime, the amplitude of the mean field undergoes low-frequency modulations, which may contribute to the mechanism of the emergence of slow oscillations of neural activity observed in spectral power of local field potentials or electroencephalographic signals at high frequencies. In addition to numerical simulations of such multi-clusters, we investigate the mechanisms of the observed phenomena using the simplest case of two clusters. In particular, we propose a phenomenological model which describes the dynamics of two clusters taking into account the adaptation of coupling weights. We also determine the set of plasticity functions (update rules), which lead to multi-clustering.
Collapse
|
26
|
Berner R, Fialkowski J, Kasatkin D, Nekorkin V, Yanchuk S, Schöll E. Hierarchical frequency clusters in adaptive networks of phase oscillators. CHAOS (WOODBURY, N.Y.) 2019; 29:103134. [PMID: 31675820 DOI: 10.1063/1.5097835] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 10/03/2019] [Indexed: 06/10/2023]
Abstract
Adaptive dynamical networks appear in various real-word systems. One of the simplest phenomenological models for investigating basic properties of adaptive networks is the system of coupled phase oscillators with adaptive couplings. In this paper, we investigate the dynamics of this system. We extend recent results on the appearance of hierarchical frequency multiclusters by investigating the effect of the time scale separation. We show that the slow adaptation in comparison with the fast phase dynamics is necessary for the emergence of the multiclusters and their stability. Additionally, we study the role of double antipodal clusters, which appear to be unstable for all considered parameter values. We show that such states can be observed for a relatively long time, i.e., they are metastable. A geometrical explanation for such an effect is based on the emergence of a heteroclinic orbit.
Collapse
Affiliation(s)
- Rico Berner
- Institute of Theoretical Physics, Technische Universität Berlin, Hardenbergstr. 36, D-10623 Berlin, Germany
| | - Jan Fialkowski
- Institute of Theoretical Physics, Technische Universität Berlin, Hardenbergstr. 36, D-10623 Berlin, Germany
| | - Dmitry Kasatkin
- Institute of Applied Physics of RAS, 46 Ul'yanov Street, 603950 Nizhny Novgorod, Russia
| | - Vladimir Nekorkin
- Institute of Applied Physics of RAS, 46 Ul'yanov Street, 603950 Nizhny Novgorod, Russia
| | - Serhiy Yanchuk
- Institute of Mathematics, Technische Universität Berlin, Strasse des 17. Juni 136, D-10623 Berlin, Germany
| | - Eckehard Schöll
- Institute of Theoretical Physics, Technische Universität Berlin, Hardenbergstr. 36, D-10623 Berlin, Germany
| |
Collapse
|
27
|
Madadi Asl M, Valizadeh A, Tass PA. Dendritic and Axonal Propagation Delays May Shape Neuronal Networks With Plastic Synapses. Front Physiol 2018; 9:1849. [PMID: 30618847 PMCID: PMC6307091 DOI: 10.3389/fphys.2018.01849] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Accepted: 12/07/2018] [Indexed: 12/27/2022] Open
Abstract
Biological neuronal networks are highly adaptive and plastic. For instance, spike-timing-dependent plasticity (STDP) is a core mechanism which adapts the synaptic strengths based on the relative timing of pre- and postsynaptic spikes. In various fields of physiology, time delays cause a plethora of biologically relevant dynamical phenomena. However, time delays increase the complexity of model systems together with the computational and theoretical analysis burden. Accordingly, in computational neuronal network studies propagation delays were often neglected. As a downside, a classic STDP rule in oscillatory neurons without propagation delays is unable to give rise to bidirectional synaptic couplings, i.e., loops or uncoupled states. This is at variance with basic experimental results. In this mini review, we focus on recent theoretical studies focusing on how things change in the presence of propagation delays. Realistic propagation delays may lead to the emergence of neuronal activity and synaptic connectivity patterns, which cannot be captured by classic STDP models. In fact, propagation delays determine the inventory of attractor states and shape their basins of attractions. The results reviewed here enable to overcome fundamental discrepancies between theory and experiments. Furthermore, these findings are relevant for the development of therapeutic brain stimulation techniques aiming at shifting the diseased brain to more favorable attractor states.
Collapse
Affiliation(s)
- Mojtaba Madadi Asl
- Department of Physics, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, Iran
| | - Alireza Valizadeh
- Department of Physics, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, Iran.,School of Cognitive Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
| | - Peter A Tass
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
28
|
Bačić I, Klinshov V, Nekorkin V, Perc M, Franović I. Inverse stochastic resonance in a system of excitable active rotators with adaptive coupling. ACTA ACUST UNITED AC 2018. [DOI: 10.1209/0295-5075/124/40004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
29
|
Madadi Asl M, Valizadeh A, Tass PA. Propagation delays determine neuronal activity and synaptic connectivity patterns emerging in plastic neuronal networks. CHAOS (WOODBURY, N.Y.) 2018; 28:106308. [PMID: 30384625 DOI: 10.1063/1.5037309] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 08/01/2018] [Indexed: 06/08/2023]
Abstract
In plastic neuronal networks, the synaptic strengths are adapted to the neuronal activity. Specifically, spike-timing-dependent plasticity (STDP) is a fundamental mechanism that modifies the synaptic strengths based on the relative timing of pre- and postsynaptic spikes, taking into account the spikes' temporal order. In many studies, propagation delays were neglected to avoid additional dynamic complexity or computational costs. So far, networks equipped with a classic STDP rule typically rule out bidirectional couplings (i.e., either loops or uncoupled states) and are, hence, not able to reproduce fundamental experimental findings. In this review paper, we consider additional features, e.g., extensions of the classic STDP rule or additional aspects like noise, in order to overcome the contradictions between theory and experiment. In addition, we review in detail recent studies showing that a classic STDP rule combined with realistic propagation patterns is able to capture relevant experimental findings. In two coupled oscillatory neurons with propagation delays, bidirectional synapses can be preserved and potentiated. This result also holds for large networks of type-II phase oscillators. In addition, not only the mean of the initial distribution of synaptic weights, but also its standard deviation crucially determines the emergent structural connectivity, i.e., the mean final synaptic weight, the number of two-neuron loops, and the symmetry of the final connectivity pattern. The latter is affected by the firing rates, where more symmetric synaptic configurations emerge at higher firing rates. Finally, we discuss these findings in the context of the computational neuroscience-based development of desynchronizing brain stimulation techniques.
Collapse
Affiliation(s)
- Mojtaba Madadi Asl
- Department of Physics, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45195-1159, Iran
| | - Alireza Valizadeh
- Department of Physics, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45195-1159, Iran
| | - Peter A Tass
- Department of Neurosurgery, School of Medicine, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
30
|
Delay-Induced Multistability and Loop Formation in Neuronal Networks with Spike-Timing-Dependent Plasticity. Sci Rep 2018; 8:12068. [PMID: 30104713 PMCID: PMC6089910 DOI: 10.1038/s41598-018-30565-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 08/02/2018] [Indexed: 12/16/2022] Open
Abstract
Spike-timing-dependent plasticity (STDP) adjusts synaptic strengths according to the precise timing of pre- and postsynaptic spike pairs. Theoretical and computational studies have revealed that STDP may contribute to the emergence of a variety of structural and dynamical states in plastic neuronal populations. In this manuscript, we show that by incorporating dendritic and axonal propagation delays in recurrent networks of oscillatory neurons, the asymptotic connectivity displays multistability, where different structures emerge depending on the initial distribution of the synaptic strengths. In particular, we show that the standard deviation of the initial distribution of synaptic weights, besides its mean, determines the main properties of the emergent structural connectivity such as the mean final synaptic weight, the number of two-neuron loops and the symmetry of the final structure. We also show that the firing rates of the neurons affect the evolution of the network, and a more symmetric configuration of the synapses emerges at higher firing rates. We justify the network results based on a two-neuron framework and show how the results translate to large recurrent networks.
Collapse
|
31
|
Wang L, Wang Y, Fu WL, Cao LH. Modulation of neuronal dynamic range using two different adaptation mechanisms. Neural Regen Res 2017; 12:447-451. [PMID: 28469660 PMCID: PMC5399723 DOI: 10.4103/1673-5374.202931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The capability of neurons to discriminate between intensity of external stimulus is measured by its dynamic range. A larger dynamic range indicates a greater probability of neuronal survival. In this study, the potential roles of adaptation mechanisms (ion currents) in modulating neuronal dynamic range were numerically investigated. Based on the adaptive exponential integrate-and-fire model, which includes two different adaptation mechanisms, i.e. subthreshold and suprathreshold (spike-triggered) adaptation, our results reveal that the two adaptation mechanisms exhibit rather different roles in regulating neuronal dynamic range. Specifically, subthreshold adaptation acts as a negative factor that observably decreases the neuronal dynamic range, while suprathreshold adaptation has little influence on the neuronal dynamic range. Moreover, when stochastic noise was introduced into the adaptation mechanisms, the dynamic range was apparently enhanced, regardless of what state the neuron was in, e.g. adaptive or non-adaptive. Our model results suggested that the neuronal dynamic range can be differentially modulated by different adaptation mechanisms. Additionally, noise was a non-ignorable factor, which could effectively modulate the neuronal dynamic range.
Collapse
Affiliation(s)
- Lei Wang
- Neuroscience and Intelligent Media Institute, Communication University of China, Beijing, China
| | - Ye Wang
- Neuroscience and Intelligent Media Institute, Communication University of China, Beijing, China
| | - Wen-Long Fu
- Neuroscience and Intelligent Media Institute, Communication University of China, Beijing, China
| | - Li-Hong Cao
- Neuroscience and Intelligent Media Institute, Communication University of China, Beijing, China
| |
Collapse
|
32
|
Madadi Asl M, Valizadeh A, Tass PA. Dendritic and Axonal Propagation Delays Determine Emergent Structures of Neuronal Networks with Plastic Synapses. Sci Rep 2017; 7:39682. [PMID: 28045109 PMCID: PMC5206725 DOI: 10.1038/srep39682] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 11/25/2016] [Indexed: 11/09/2022] Open
Abstract
Spike-timing-dependent plasticity (STDP) modifies synaptic strengths based on the relative timing of pre- and postsynaptic spikes. The temporal order of spikes turned out to be crucial. We here take into account how propagation delays, composed of dendritic and axonal delay times, may affect the temporal order of spikes. In a minimal setting, characterized by neglecting dendritic and axonal propagation delays, STDP eliminates bidirectional connections between two coupled neurons and turns them into unidirectional connections. In this paper, however, we show that depending on the dendritic and axonal propagation delays, the temporal order of spikes at the synapses can be different from those in the cell bodies and, consequently, qualitatively different connectivity patterns emerge. In particular, we show that for a system of two coupled oscillatory neurons, bidirectional synapses can be preserved and potentiated. Intriguingly, this finding also translates to large networks of type-II phase oscillators and, hence, crucially impacts on the overall hierarchical connectivity patterns of oscillatory neuronal networks.
Collapse
Affiliation(s)
- Mojtaba Madadi Asl
- Institute for Advanced Studies in Basic Sciences (IASBS), Department of Physics, Zanjan, 45195-1159, Iran
| | - Alireza Valizadeh
- Institute for Advanced Studies in Basic Sciences (IASBS), Department of Physics, Zanjan, 45195-1159, Iran.,Institute for Research in Fundamental Sciences (IPM), School of Cognitive Sciences, Tehran, 19395-5746, Iran
| | - Peter A Tass
- Institute of Neuroscience and Medicine - Neuromodulation (INM-7), Research Center Jülich, Jülich, 52425, Germany.,Stanford University, Department of Neurosurgery, Stanford, CA, 94305, USA.,University of Cologne, Department of Neuromodulation, Cologne, 50937, Germany
| |
Collapse
|