1
|
Makowski M, Almendro-Vedia VG, Domingues MM, Franco OL, López-Montero I, Melo MN, Santos NC. Activity modulation of the Escherichia coli F 1F O ATP synthase by a designed antimicrobial peptide via cardiolipin sequestering. iScience 2023; 26:107004. [PMID: 37416464 PMCID: PMC10320169 DOI: 10.1016/j.isci.2023.107004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 02/13/2023] [Accepted: 05/26/2023] [Indexed: 07/08/2023] Open
Abstract
Most antimicrobial peptides (AMPs) exert their microbicidal activity through membrane permeabilization. The designed AMP EcDBS1R4 has a cryptic mechanism of action involving the membrane hyperpolarization of Escherichia coli, suggesting that EcDBS1R4 may hinder processes involved in membrane potential dissipation. We show that EcDBS1R4 can sequester cardiolipin, a phospholipid that interacts with several respiratory complexes of E. coli. Among these, F1FO ATP synthase uses membrane potential to fuel ATP synthesis. We found that EcDBS1R4 can modulate the activity of ATP synthase upon partition to membranes containing cardiolipin. Molecular dynamics simulations suggest that EcDBS1R4 alters the membrane environment of the transmembrane FO motor, impairing cardiolipin interactions with the cytoplasmic face of the peripheral stalk that binds the catalytic F1 domain to the FO domain. The proposed mechanism of action, targeting membrane protein function through lipid reorganization may open new venues of research on the mode of action and design of other AMPs.
Collapse
Affiliation(s)
- Marcin Makowski
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal
| | - Víctor G. Almendro-Vedia
- Instituto Pluridisciplinar, Universidad Complutense de Madrid, Ps Juan XXIII 1, 28040 Madrid, Spain
- Universidad Complutense de Madrid, Departamento de Química Física, 28040 Madrid, Spain
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
| | - Marco M. Domingues
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | - Octavio L. Franco
- Centro de Análises Proteômicas e Bioquímicas, Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, 71966-700 Federal District, Brazil
- S-Inova Biotech, Pós-graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, 79117-900 Mato Grosso do Sul, Brazil
| | - Iván López-Montero
- Instituto Pluridisciplinar, Universidad Complutense de Madrid, Ps Juan XXIII 1, 28040 Madrid, Spain
- Universidad Complutense de Madrid, Departamento de Química Física, 28040 Madrid, Spain
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
| | - Manuel N. Melo
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal
| | - Nuno C. Santos
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal
| |
Collapse
|
2
|
Alas CD, Haselwandter CA. Dependence of protein-induced lipid bilayer deformations on protein shape. Phys Rev E 2023; 107:024403. [PMID: 36932542 DOI: 10.1103/physreve.107.024403] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
Membrane proteins typically deform the surrounding lipid bilayer membrane, which can play an important role in the function, regulation, and organization of membrane proteins. Membrane elasticity theory provides a beautiful description of protein-induced lipid bilayer deformations, in which all physical parameters can be directly determined from experiments. While analytic solutions of protein-induced elastic bilayer deformations are most easily developed for proteins with approximately circular cross sections, structural biology has shown that membrane proteins come in a variety of distinct shapes, with often considerable deviations from a circular cross section. We develop here a boundary value method (BVM) that permits the construction of analytic solutions of protein-induced elastic bilayer deformations for protein shapes with arbitrarily large deviations from a circular cross section, for constant as well as variable boundary conditions along the bilayer-protein interface. We apply this BVM to protein-induced lipid bilayer thickness deformations. Our BVM reproduces available analytic solutions for proteins with circular cross section and yields, for proteins with noncircular cross section, excellent agreement with numerical, finite element solutions. On this basis, we formulate a simple analytic approximation of the bilayer thickness deformation energy associated with general protein shapes and show that, for modest deviations from rotational symmetry, this analytic approximation is in good agreement with BVM solutions. Using the BVM, we survey the dependence of protein-induced elastic bilayer thickness deformations on protein shape, and thus explore how the coupling of protein shape and bilayer thickness deformations affects protein oligomerization and transitions in protein conformational state.
Collapse
Affiliation(s)
- Carlos D Alas
- Department of Physics and Astronomy and Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, California 90089, USA
| | - Christoph A Haselwandter
- Department of Physics and Astronomy and Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, California 90089, USA
| |
Collapse
|
3
|
Jiang Y, Thienpont B, Sapuru V, Hite RK, Dittman JS, Sturgis JN, Scheuring S. Membrane-mediated protein interactions drive membrane protein organization. Nat Commun 2022; 13:7373. [PMID: 36450733 PMCID: PMC9712761 DOI: 10.1038/s41467-022-35202-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 11/22/2022] [Indexed: 12/02/2022] Open
Abstract
The plasma membrane's main constituents, i.e., phospholipids and membrane proteins, are known to be organized in lipid-protein functional domains and supercomplexes. No active membrane-intrinsic process is known to establish membrane organization. Thus, the interplay of thermal fluctuations and the biophysical determinants of membrane-mediated protein interactions must be considered to understand membrane protein organization. Here, we used high-speed atomic force microscopy and kinetic and membrane elastic theory to investigate the behavior of a model membrane protein in oligomerization and assembly in controlled lipid environments. We find that membrane hydrophobic mismatch modulates oligomerization and assembly energetics, and 2D organization. Our experimental and theoretical frameworks reveal how membrane organization can emerge from Brownian diffusion and a minimal set of physical properties of the membrane constituents.
Collapse
Affiliation(s)
- Yining Jiang
- Biochemistry & Structural Biology, Cell & Developmental Biology, and Molecular Biology (BCMB) Program, Weill Cornell Graduate School of Biomedical Sciences, 1300 York Avenue, New York, NY 10065 USA ,grid.5386.8000000041936877XWeill Cornell Medicine, Department of Anesthesiology, 1300 York Avenue, New York, NY 10065 USA
| | - Batiste Thienpont
- grid.5399.60000 0001 2176 4817Laboratoire d’Ingénierie des Systèmes Macromoléculaires (LISM), Unité Mixte de Recherche (UMR) 7255, Centre National de la Recherche Scientifique (CNRS), Aix Marseille Université, Marseille, France
| | - Vinay Sapuru
- grid.51462.340000 0001 2171 9952Structural Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065 USA ,Physiology, Biophysics, and Systems Biology (PBSB) Program, Weill Cornell Graduate School of Biomedical Sciences, 1300 York Avenue, New York, NY 10065 USA
| | - Richard K. Hite
- grid.51462.340000 0001 2171 9952Structural Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065 USA
| | - Jeremy S. Dittman
- grid.5386.8000000041936877XWeill Cornell Medicine, Department of Biochemistry, 1300 York Avenue, New York, NY 10065 USA
| | - James N. Sturgis
- grid.5399.60000 0001 2176 4817Laboratoire d’Ingénierie des Systèmes Macromoléculaires (LISM), Unité Mixte de Recherche (UMR) 7255, Centre National de la Recherche Scientifique (CNRS), Aix Marseille Université, Marseille, France
| | - Simon Scheuring
- grid.5386.8000000041936877XWeill Cornell Medicine, Department of Anesthesiology, 1300 York Avenue, New York, NY 10065 USA ,grid.5386.8000000041936877XWeill Cornell Medicine, Department of Physiology and Biophysics, 1300 York Avenue, New York, NY 10065 USA ,grid.5386.8000000041936877XKavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY 14853 USA
| |
Collapse
|
4
|
Shrestha A, Kahraman O, Haselwandter CA. Mechanochemical coupling of lipid organization and protein function through membrane thickness deformations. Phys Rev E 2022; 105:054410. [PMID: 35706253 DOI: 10.1103/physreve.105.054410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 05/06/2022] [Indexed: 06/15/2023]
Abstract
Cell membranes are composed of a great variety of protein and lipid species with distinct unperturbed hydrophobic thicknesses. To achieve hydrophobic matching, the lipid bilayer tends to deform around membrane proteins so as to match the protein hydrophobic thickness at bilayer-protein interfaces. Such protein-induced distortions of the lipid bilayer hydrophobic thickness incur a substantial energy cost that depends critically on the bilayer-protein hydrophobic mismatch, while distinct conformational states of membrane proteins often show distinct hydrophobic thicknesses. As a result, hydrophobic interactions between membrane proteins and lipids can yield a rich interplay of lipid-protein organization and transitions in protein conformational state. We combine here the membrane elasticity theory of protein-induced lipid bilayer thickness deformations with the Landau-Ginzburg theory of lipid domain formation to systematically explore the coupling between local lipid organization, lipid and protein hydrophobic thickness, and protein-induced lipid bilayer thickness deformations in membranes with heterogeneous lipid composition. We allow for a purely mechanical coupling of lipid and protein composition through the energetics of protein-induced lipid bilayer thickness deformations as well as a chemical coupling driven by preferential interactions between particular lipid and protein species. We find that the resulting lipid-protein organization can endow membrane proteins with diverse and controlled mechanical environments that, via protein-induced lipid bilayer thickness deformations, can strongly influence protein function. The theoretical approach employed here provides a general framework for the quantitative prediction of how membrane thickness deformations influence the joint organization and function of lipids and proteins in cell membranes.
Collapse
Affiliation(s)
- Ahis Shrestha
- Department of Physics and Astronomy and Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, California 90089, USA
| | - Osman Kahraman
- Department of Physics and Astronomy and Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, California 90089, USA
| | - Christoph A Haselwandter
- Department of Physics and Astronomy and Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, California 90089, USA
| |
Collapse
|
5
|
Gao J, Hou R, Li L, Hu J. Membrane-Mediated Interactions Between Protein Inclusions. Front Mol Biosci 2021; 8:811711. [PMID: 35004858 PMCID: PMC8727768 DOI: 10.3389/fmolb.2021.811711] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 11/30/2021] [Indexed: 11/13/2022] Open
Abstract
Integral or peripheral membrane proteins, or protein oligomers often get close to each other on cell membranes and carry out biological tasks in a collective manner. In addition to electrostatic and van der Waals interactions, those proteins also experience membrane-mediated interactions, which may be necessary for their functionality. The membrane-mediated interactions originate from perturbation of lipid membranes by the presence of protein inclusions, and have been the subject of intensive research in membrane biophysics. Here we review both theoretical and numerical studies of such interactions for membrane proteins and for nanoparticles bound to lipid membranes.
Collapse
Affiliation(s)
- Jie Gao
- Kuang Yaming Honors School, Nanjing University, Nanjing, China
| | - Ruihan Hou
- Kuang Yaming Honors School, Nanjing University, Nanjing, China
| | - Long Li
- State Key Laboratory of Nonlinear Mechanics (LNM) and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China
| | - Jinglei Hu
- Kuang Yaming Honors School, Nanjing University, Nanjing, China
| |
Collapse
|
6
|
Fu Y, Zeno WF, Stachowiak JC, Johnson ME. A continuum membrane model can predict curvature sensing by helix insertion. SOFT MATTER 2021; 17:10649-10663. [PMID: 34792524 PMCID: PMC8877990 DOI: 10.1039/d1sm01333e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Protein domains, such as ENTH (epsin N-terminal homology) and BAR (bin/amphiphysin/rvs), contain amphipathic helices that drive preferential binding to curved membranes. However, predicting how the physical parameters of these domains control this 'curvature sensing' behavior is challenging due to the local membrane deformations generated by the nanoscopic helix on the surface of a large sphere. We here use a deformable continuum model that accounts for the physical properties of the membrane and the helix insertion to predict curvature sensing behavior, with direct validation against multiple experimental datasets. We show that the insertion can be modeled as a local change to the membrane's spontaneous curvature, cins0, producing excellent agreement with the energetics extracted from experiments on ENTH binding to vesicles and cylinders, and of ArfGAP helices to vesicles. For small vesicles with high curvature, the insertion lowers the membrane energy by relieving strain on a membrane that is far from its preferred curvature of zero. For larger vesicles, however, the insertion has the inverse effect, de-stabilizing the membrane by introducing more strain. We formulate here an empirical expression that accurately captures numerically calculated membrane energies as a function of both basic membrane properties (bending modulus κ and radius R) as well as stresses applied by the inserted helix (cins0 and area Ains). We therefore predict how these physical parameters will alter the energetics of helix binding to curved vesicles, which is an essential step in understanding their localization dynamics during membrane remodeling processes.
Collapse
Affiliation(s)
- Yiben Fu
- T. C. Jenkins Department of Biophysics, The Johns Hopkins University, 3400 N. Charles St., Baltimore, Maryland 21218, USA.
| | - Wade F Zeno
- Mork Family Department of Chemical Engineering and Materials Science, The University of Southern California, Los Angeles, California, 90089, USA
| | - Jeanne C Stachowiak
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Margaret E Johnson
- T. C. Jenkins Department of Biophysics, The Johns Hopkins University, 3400 N. Charles St., Baltimore, Maryland 21218, USA.
| |
Collapse
|
7
|
Sarkar S, Čebron M, Brojan M, Košmrlj A. Method of image charges for describing deformation of bounded two-dimensional solids with circular inclusions. Phys Rev E 2021; 103:053004. [PMID: 34134231 DOI: 10.1103/physreve.103.053004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 03/17/2021] [Indexed: 02/04/2023]
Abstract
We present a method for predicting the linear response deformation of finite and semi-infinite 2D solid structures with circular holes and inclusions by employing the analogies with image charges and induction in electrostatics. Charges in electrostatics induce image charges near conductive boundaries and an external electric field induces polarization (dipoles, quadrupoles, and other multipoles) of conductive and dielectric objects. Similarly, charges in elasticity induce image charges near boundaries and external stress induces polarization (quadrupoles and other multipoles) inside holes and inclusions. Stresses generated by these induced elastic multipoles as well as stresses generated by their images near boundaries then lead to interactions between holes and inclusions and with their images, which induce additional polarization and thus additional deformation of holes and inclusions. We present a method that expands induced polarization in a series of elastic multipoles, which systematically takes into account the interactions of inclusions and holes with the external field, between them, and with their images. The results of our method for linear deformation of circular holes and inclusions near straight and curved boundaries show good agreement with both linear finite element simulations and experiments.
Collapse
Affiliation(s)
- Siddhartha Sarkar
- Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - Matjaž Čebron
- Faculty of Mechanical Engineering, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Miha Brojan
- Faculty of Mechanical Engineering, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Andrej Košmrlj
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544, USA.,Princeton Institute for the Science and Technology of Materials, Princeton University, Princeton, New Jersey 08544, USA
| |
Collapse
|
8
|
Sarkar S, Čebron M, Brojan M, Košmrlj A. Elastic multipole method for describing deformation of infinite two-dimensional solids with circular inclusions. Phys Rev E 2021; 103:053003. [PMID: 34134329 DOI: 10.1103/physreve.103.053003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 03/17/2021] [Indexed: 02/06/2023]
Abstract
Elastic materials with holes and inclusions are important in a large variety of contexts ranging from construction material to biological membranes. More recently, they have also been exploited in mechanical metamaterials, where the geometry of highly deformable structures is responsible for their unusual properties, such as negative Poisson's ratio, mechanical cloaking, and tunable phononic band gaps. Understanding how such structures deform in response to applied external loads is thus crucial for designing novel mechanical metamaterials. Here we present a method for predicting the linear response of infinite 2D solid structures with circular holes and inclusions by employing analogies with electrostatics. Just like an external electric field induces polarization (dipoles, quadrupoles, and other multipoles) of conductive and dielectric objects, external stress induces elastic multipoles inside holes and inclusions. Stresses generated by these induced elastic multipoles then lead to interactions between holes and inclusions, which induce additional polarization and thus additional deformation of holes and inclusions. We present a method that expands the induced polarization in a series of elastic multipoles, which systematically takes into account the interactions of inclusions and holes with the external stress field and also between them. The results of our method show good agreement with both linear finite element simulations and experiments.
Collapse
Affiliation(s)
- Siddhartha Sarkar
- Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - Matjaž Čebron
- Faculty of Mechanical Engineering, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Miha Brojan
- Faculty of Mechanical Engineering, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Andrej Košmrlj
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544, USA.,Princeton Institute for the Science and Technology of Materials, Princeton University, Princeton, New Jersey 08544, USA
| |
Collapse
|
9
|
Shrestha A, Kahraman O, Haselwandter CA. Regulation of membrane proteins through local heterogeneity in lipid bilayer thickness. Phys Rev E 2020; 102:060401. [PMID: 33465991 DOI: 10.1103/physreve.102.060401] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 11/06/2020] [Indexed: 11/07/2022]
Abstract
Cell membranes show an intricate organization of lipids and membrane proteins into domains with distinct composition and hydrophobic thickness. Using mechanosensitive ion channels as a model system, we employ the membrane elasticity theory of lipid-protein interactions together with the Landau-Ginzburg theory of lipid domain formation to quantify protein-induced lipid bilayer thickness deformations in lipid bilayers with heterogeneous hydrophobic thickness. We show that protein-induced lipid bilayer thickness deformations yield, without any assumptions about preferential interactions between particular lipid and protein species, organization of lipids and membrane proteins according to their preferred hydrophobic thickness, and couple the conformational states of membrane proteins to the local membrane composition. Our calculations suggest that protein-induced lipid bilayer thickness deformations endow proteins in cell membranes with diverse and controlled mechanical environments that, in turn, allow targeted regulation of membrane proteins.
Collapse
Affiliation(s)
- Ahis Shrestha
- Department of Physics & Astronomy and Department of Biological Sciences, University of Southern California, Los Angeles, California 90089, USA
| | - Osman Kahraman
- Department of Physics & Astronomy and Department of Biological Sciences, University of Southern California, Los Angeles, California 90089, USA
| | - Christoph A Haselwandter
- Department of Physics & Astronomy and Department of Biological Sciences, University of Southern California, Los Angeles, California 90089, USA
| |
Collapse
|
10
|
Barros M, Houlihan WJ, Paresi CJ, Brendel M, Rynearson KD, Lee CW, Prikhodko O, Cregger C, Chang G, Wagner SL, Gilchrist ML, Li YM. γ-Secretase Partitioning into Lipid Bilayers Remodels Membrane Microdomains after Direct Insertion. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:6569-6579. [PMID: 32432881 PMCID: PMC7887708 DOI: 10.1021/acs.langmuir.0c01178] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
γ-Secretase is a multisubunit complex that catalyzes intramembranous cleavage of transmembrane proteins. The lipid environment forms membrane microdomains that serve as spatio-temporal platforms for proteins to function properly. Despite substantial advances in the regulation of γ-secretase, the effect of the local membrane lipid microenvironment on the regulation of γ-secretase is poorly understood. Here, we characterized and quantified the partitioning of γ-secretase and its substrates, the amyloid precursor protein (APP) and Notch, into lipid bilayers using solid-supported model membranes. Notch substrate is preferentially localized in the liquid-disordered (Ld) lipid domains, whereas APP and γ-secretase partition as single or higher complex in both phases but highly favor the ordered phase, especially after recruiting lipids from the ordered phase, indicating that the activity and specificity of γ-secretase against these two substrates are modulated by membrane lateral organization. Moreover, time-elapse measurements reveal that γ-secretase can recruit specific membrane components from the cholesterol-rich Lo phase and thus creates a favorable lipid environment for substrate recognition and therefore activity. This work offers insight into how γ-secretase and lipid modulate each other and control its activity and specificity.
Collapse
Affiliation(s)
- Marilia Barros
- Chemical Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, United States
| | - William J Houlihan
- Department of Chemical Engineering and the Department of Biomedical Engineering, The City College of the City University of New York, New York, New York 10031, United States
| | - Chelsea J Paresi
- Chemical Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, United States
- Pharmacology Graduate Program, Weill Graduate School of Medical Sciences of Cornell University, New York, New York 10021, United States
| | - Matthew Brendel
- Molecular Cytology Core, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, United States
| | - Kevin D Rynearson
- Department of Neurosciences, University of California, San Diego, California 92093, United States
| | | | - Olga Prikhodko
- Department of Neurosciences, University of California, San Diego, California 92093, United States
| | - Cristina Cregger
- Department of Neurosciences, University of California, San Diego, California 92093, United States
| | | | - Steven L Wagner
- Department of Neurosciences, University of California, San Diego, California 92093, United States
- Research Biologist, VA San Diego Healthcare System, La Jolla, California 92161, United States
| | - M Lane Gilchrist
- Department of Chemical Engineering and the Department of Biomedical Engineering, The City College of the City University of New York, New York, New York 10031, United States
| | - Yue-Ming Li
- Chemical Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, United States
- Pharmacology Graduate Program, Weill Graduate School of Medical Sciences of Cornell University, New York, New York 10021, United States
| |
Collapse
|
11
|
Annexin B12 Trimer Formation is Governed by a Network of Protein-Protein and Protein-Lipid Interactions. Sci Rep 2020; 10:5301. [PMID: 32210350 PMCID: PMC7093510 DOI: 10.1038/s41598-020-62343-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 03/11/2020] [Indexed: 01/02/2023] Open
Abstract
Membrane protein oligomerization mediates a wide range of biological events including signal transduction, viral infection and membrane curvature induction. However, the relative contributions of protein-protein and protein-membrane interactions to protein oligomerization remain poorly understood. Here, we used the Ca2+-dependent membrane-binding protein ANXB12 as a model system to determine the relative contributions of protein-protein and protein-membrane interactions toward trimer formation. Using an EPR-based detection method, we find that some protein-protein interactions are essential for trimer formation. Surprisingly, these interactions are largely hydrophobic, and they do not include the previously identified salt bridges, which are less important. Interfering with membrane interaction by mutating selected Ca2+-ligands or by introducing Lys residues in the membrane-binding loops had variable, strongly position-dependent effects on trimer formation. The strongest effect was observed for the E226Q/E105Q mutant, which almost fully abolished trimer formation without preventing membrane interaction. These results indicate that lipids engage in specific, trimer-stabilizing interactions that go beyond simply providing a concentration-enhancing surface. The finding that protein-membrane interactions are just as important as protein-protein interactions in ANXB12 trimer formation raises the possibility that the formation of specific lipid contacts could be a more widely used driving force for membrane-mediated oligomerization of proteins in general.
Collapse
|
12
|
Zhu L, Zhao W, Yan Y, Liao X, Bourtsalas A, Dan Y, Xiao H, Chen X. Interaction between mechanosensitive channels embedded in lipid membrane. J Mech Behav Biomed Mater 2019; 103:103543. [PMID: 31783284 DOI: 10.1016/j.jmbbm.2019.103543] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 10/07/2019] [Accepted: 11/15/2019] [Indexed: 11/27/2022]
Abstract
The study of the gating mechanism of mechanosensitive channels opens a window to the exploration of how different mechanical stimuli induce adaptive cellular behaviors of both the protein and the lipid, across different time and length scales. In this work, through a molecular dynamics-decorated finite element method (MDeFEM), the gating behavior of mechanosensitive channels of small conductance (MscS) in Escherichia coli (E. coli) is studied upon membrane stretch or global bending. The local membrane curvature around MscS is incorporated, as well as multiple MscL (mechanosensitive channels of large conductance) molecules in proximity to MscS. The local membrane curvature is found to delay MscS opening and diminishes moderately upon membrane stretching. Mimicking the insertion of lysophosphatidylcholine (LPC) molecules into the lipid, both downward and upward bending can active MscS, as long as the global membrane curvature radius reaches 34 nm. Based on the different MscS pore evolutions observed with the presence of one or more MscLs nearby, we propose that when coreconstituted, multiple MscL molecules tend to be located at the local membrane curvature zone around MscS. In another word, as MscL "swims around" in the lipid bilayer, it can be trapped by the membrane's local curvature. Collectively, the current study provides valuable insights into the interplay between mechanosensitive channels and lipid membrane at structural and physical levels, and specific predictions are proposed for further experimental investigations.
Collapse
Affiliation(s)
- Liangliang Zhu
- Shaanxi Institute of Energy and Chemical Engineering, School of Chemical Engineering, Northwest University, Xi'an, 710069, China; State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Wei Zhao
- Shaanxi Institute of Energy and Chemical Engineering, School of Chemical Engineering, Northwest University, Xi'an, 710069, China
| | - Yuan Yan
- Shaanxi Institute of Energy and Chemical Engineering, School of Chemical Engineering, Northwest University, Xi'an, 710069, China
| | - Xiangbiao Liao
- Earth Engineering Center, Center for Advanced Materials for Energy and Environment, Department of Earth and Environmental Engineering, Columbia University, New York, NY10027, USA
| | - Athanasios Bourtsalas
- Earth Engineering Center, Center for Advanced Materials for Energy and Environment, Department of Earth and Environmental Engineering, Columbia University, New York, NY10027, USA
| | - Yong Dan
- Shaanxi Institute of Energy and Chemical Engineering, School of Chemical Engineering, Northwest University, Xi'an, 710069, China.
| | - Hang Xiao
- Shaanxi Institute of Energy and Chemical Engineering, School of Chemical Engineering, Northwest University, Xi'an, 710069, China.
| | - Xi Chen
- Shaanxi Institute of Energy and Chemical Engineering, School of Chemical Engineering, Northwest University, Xi'an, 710069, China; Earth Engineering Center, Center for Advanced Materials for Energy and Environment, Department of Earth and Environmental Engineering, Columbia University, New York, NY10027, USA
| |
Collapse
|
13
|
Le Roux AL, Quiroga X, Walani N, Arroyo M, Roca-Cusachs P. The plasma membrane as a mechanochemical transducer. Philos Trans R Soc Lond B Biol Sci 2019; 374:20180221. [PMID: 31431176 PMCID: PMC6627014 DOI: 10.1098/rstb.2018.0221] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/22/2019] [Indexed: 12/20/2022] Open
Abstract
Cells are constantly submitted to external mechanical stresses, which they must withstand and respond to. By forming a physical boundary between cells and their environment that is also a biochemical platform, the plasma membrane (PM) is a key interface mediating both cellular response to mechanical stimuli, and subsequent biochemical responses. Here, we review the role of the PM as a mechanosensing structure. We first analyse how the PM responds to mechanical stresses, and then discuss how this mechanical response triggers downstream biochemical responses. The molecular players involved in PM mechanochemical transduction include sensors of membrane unfolding, membrane tension, membrane curvature or membrane domain rearrangement. These sensors trigger signalling cascades fundamental both in healthy scenarios and in diseases such as cancer, which cells harness to maintain integrity, keep or restore homeostasis and adapt to their external environment. This article is part of a discussion meeting issue 'Forces in cancer: interdisciplinary approaches in tumour mechanobiology'.
Collapse
Affiliation(s)
- Anabel-Lise Le Roux
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST), Barcelona 08028, Spain
| | - Xarxa Quiroga
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST), Barcelona 08028, Spain
| | - Nikhil Walani
- LaCàN, Universitat Politècnica de Catalunya-BarcelonaTech, Spain
| | - Marino Arroyo
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST), Barcelona 08028, Spain
- LaCàN, Universitat Politècnica de Catalunya-BarcelonaTech, Spain
| | - Pere Roca-Cusachs
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST), Barcelona 08028, Spain
- Department of Biomedical Sciences, Universitat de Barcelona, Barcelona 08036, Spain
| |
Collapse
|
14
|
Kahraman O, Haselwandter CA. Supramolecular organization of membrane proteins with anisotropic hydrophobic thickness. SOFT MATTER 2019; 15:4301-4310. [PMID: 31070658 DOI: 10.1039/c9sm00358d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Experiments have revealed that membrane proteins often self-assemble into locally ordered clusters. Such membrane protein lattices can play key roles in the functional organization of cell membranes. Membrane protein organization can be driven, at least in part, by bilayer-mediated elastic interactions between membrane proteins. For membrane proteins with anisotropic hydrophobic thickness, bilayer-mediated protein interactions are inherently directional. Here we establish general relations between anisotropy in membrane protein hydrophobic thickness and supramolecular membrane protein organization. We show that protein symmetry is distinctively reflected in the energy landscape of bilayer-mediated protein interactions, favoring characteristic lattice architectures of membrane protein clusters. We find that, in the presence of thermal fluctuations, anisotropy in protein hydrophobic thickness can induce membrane proteins to form mesh-like structures dividing the membrane into compartments. Our results help to elucidate the physical principles and mechanisms underlying the functional organization of cell membranes.
Collapse
Affiliation(s)
- Osman Kahraman
- Department of Physics & Astronomy and Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | | |
Collapse
|
15
|
Nash A, Rhodes J. Simulations of CYP51A from Aspergillus fumigatus in a model bilayer provide insights into triazole drug resistance. Med Mycol 2019; 56:361-373. [PMID: 28992260 PMCID: PMC5895076 DOI: 10.1093/mmy/myx056] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 07/14/2017] [Indexed: 11/26/2022] Open
Abstract
Azole antifungal drugs target CYP51A in Aspergillus fumigatus by binding with the active site of the protein, blocking ergosterol biosynthesis. Resistance to azole antifungal drugs is now common, with a leucine to histidine amino acid substitution at position 98 the most frequent, predominantly conferring resistance to itraconazole, although cross-resistance has been reported in conjunction with other mutations. In this study, we create a homology model of CYP51A using a recently published crystal structure of the paralog protein CYP51B. The derived structures, wild type, and L98H mutant are positioned within a lipid membrane bilayer and subjected to molecular dynamics simulations in order improve the accuracy of both models. The structural analysis from our simulations suggests a decrease in active site surface from the formation of hydrogen bonds between the histidine substitution and neighboring polar side chains, potentially preventing the binding of azole drugs. This study yields a biologically relevant structure and set of dynamics of the A. fumigatus Lanosterol 14 alpha-demethylase enzyme and provides further insight into azole antifungal drug resistance.
Collapse
Affiliation(s)
- Anthony Nash
- Department of Chemistry, University College London, London, United Kingdom
| | - Johanna Rhodes
- Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdom
| |
Collapse
|
16
|
Membrane Curvature and Tension Control the Formation and Collapse of Caveolar Superstructures. Dev Cell 2019; 48:523-538.e4. [DOI: 10.1016/j.devcel.2018.12.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 07/24/2018] [Accepted: 12/14/2018] [Indexed: 01/13/2023]
|
17
|
Directed Supramolecular Organization of N-BAR Proteins through Regulation of H0 Membrane Immersion Depth. Sci Rep 2018; 8:16383. [PMID: 30401832 PMCID: PMC6219572 DOI: 10.1038/s41598-018-34273-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 10/11/2018] [Indexed: 11/12/2022] Open
Abstract
Many membrane remodeling events rely on the ability of curvature-generating N-BAR membrane proteins to organize into distinctive supramolecular configurations. Experiments have revealed a conformational switch in N-BAR proteins resulting in vesicular or tubular membrane shapes, with shallow membrane immersion of the H0 amphipathic helices of N-BAR proteins on vesicles but deep H0 immersion on tubes. We develop here a minimal elastic model of the local thinning of the lipid bilayer resulting from H0 immersion. Our model predicts that the observed conformational switch in N-BAR proteins produces a corresponding switch in the bilayer-mediated N-BAR interactions due to the H0 helices. In agreement with experiments, we find that bilayer-mediated H0 interactions oppose N-BAR multimerization for the shallow H0 membrane immersion depths measured on vesicles, but promote self-assembly of supramolecular N-BAR chains for the increased H0 membrane immersion depths measured on tubes. Finally, we consider the possibility that bilayer-mediated H0 interactions might contribute to the concerted structural reorganization of N-BAR proteins suggested by experiments. Our results indicate that the membrane immersion depth of amphipathic protein helices may provide a general molecular control parameter for membrane organization.
Collapse
|
18
|
Abstract
Besides direct protein-protein interactions, indirect interactions mediated by membranes play an important role for the assembly and cooperative function of proteins in membrane shaping and adhesion. The intricate shapes of biological membranes are generated by proteins that locally induce membrane curvature. Indirect curvature-mediated interactions between these proteins arise because the proteins jointly affect the bending energy of the membranes. These curvature-mediated interactions are attractive for crescent-shaped proteins and are a driving force in the assembly of the proteins during membrane tubulation. Membrane adhesion results from the binding of receptor and ligand proteins that are anchored in the apposing membranes. The binding of these proteins strongly depends on nanoscale shape fluctuations of the membranes, leading to a fluctuation-mediated binding cooperativity. A length mismatch between receptor-ligand complexes in membrane adhesion zones causes repulsive curvature-mediated interactions that are a driving force for the length-based segregation of proteins during membrane adhesion.
Collapse
Affiliation(s)
- Thomas R Weikl
- Department of Theory and Bio-Systems, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany;
| |
Collapse
|
19
|
Dasgupta S, Auth T, Gompper G. Nano- and microparticles at fluid and biological interfaces. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2017; 29:373003. [PMID: 28608781 PMCID: PMC7104866 DOI: 10.1088/1361-648x/aa7933] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 04/12/2017] [Accepted: 06/13/2017] [Indexed: 05/05/2023]
Abstract
Systems with interfaces are abundant in both technological applications and biology. While a fluid interface separates two fluids, membranes separate the inside of vesicles from the outside, the interior of biological cells from the environment, and compartmentalize cells into organelles. The physical properties of interfaces are characterized by interface tension, those of membranes are characterized by bending and stretching elasticity. Amphiphilic molecules like surfactants that are added to a system with two immiscible fluids decrease the interface tension and induce a bending rigidity. Lipid bilayer membranes of vesicles can be stretched or compressed by osmotic pressure; in biological cells, also the presence of a cytoskeleton can induce membrane tension. If the thickness of the interface or the membrane is small compared with its lateral extension, both can be described using two-dimensional mathematical surfaces embedded in three-dimensional space. We review recent work on the interaction of particles with interfaces and membranes. This can be micrometer-sized particles at interfaces that stabilise emulsions or form colloidosomes, as well as typically nanometer-sized particles at membranes, such as viruses, parasites, and engineered drug delivery systems. In both cases, we first discuss the interaction of single particles with interfaces and membranes, e.g. particles in external fields, non-spherical particles, and particles at curved interfaces, followed by interface-mediated interaction between two particles, many-particle interactions, interface and membrane curvature-induced phenomena, and applications.
Collapse
Affiliation(s)
- S Dasgupta
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore
- Institut Curie, CNRS, UMR 168, 75005 Paris, France
- Present address: Department of Physics, University of Toronto, Toronto, Ontario M5S1A7, Canada
| | - T Auth
- Theoretical Soft Matter and Biophysics, Institute of Complex Systems and Institute for Advanced Simulation, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - G Gompper
- Theoretical Soft Matter and Biophysics, Institute of Complex Systems and Institute for Advanced Simulation, Forschungszentrum Jülich, 52425 Jülich, Germany
| |
Collapse
|
20
|
Surovtsev NV, Dmitriev AA, Dzuba SA. Normal vibrational modes of phospholipid bilayers observed by low-frequency Raman scattering. Phys Rev E 2017; 95:032412. [PMID: 28415343 DOI: 10.1103/physreve.95.032412] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Indexed: 06/07/2023]
Abstract
Low-frequency Raman spectra of multilamellar vesicles made either of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) or 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) have been studied in a wide temperature range. Below 0^{∘}C two peaks are found at frequencies around 8-9 and 14-17cm^{-1} and attributed to the normal vibrational modes of the phospholipid bilayer, which are determined by the bilayer thickness and stiffness (elastic modulus). The spectral positions of the peaks depend on the temperature and the bilayer composition. It is suggested that the ratio of the intensities of the first and second peaks can serve as a measure of the interleaflet elastic coupling. The addition of cholesterol to the phospholipid bilayer leads to peak shift and broadening, which may be assigned to the composition heterogeneities commonly attributed to the lipid raft formation.
Collapse
Affiliation(s)
- N V Surovtsev
- Institute of Automation and Electrometry, Russian Academy of Sciences, Novosibirsk 630090, Russia
- Novosibirsk State University, Novosibirsk 630090, Russia
| | - A A Dmitriev
- Institute of Automation and Electrometry, Russian Academy of Sciences, Novosibirsk 630090, Russia
- Novosibirsk State University, Novosibirsk 630090, Russia
- Institute of Chemical Kinetics and Combustion, Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - S A Dzuba
- Novosibirsk State University, Novosibirsk 630090, Russia
- Institute of Chemical Kinetics and Combustion, Russian Academy of Sciences, Novosibirsk 630090, Russia
| |
Collapse
|