1
|
Yardimci S, Gibaud T, Schwenger W, Sartucci M, Olmsted P, Urbach J, Dogic Z. Bonded straight and helical flagellar filaments form ultra-low-density glasses. Proc Natl Acad Sci U S A 2023; 120:e2215766120. [PMID: 37068256 PMCID: PMC10151462 DOI: 10.1073/pnas.2215766120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 02/21/2023] [Indexed: 04/19/2023] Open
Abstract
We study how the three-dimensional shape of rigid filaments determines the microscopic dynamics and macroscopic rheology of entangled semidilute Brownian suspensions. To control the filament shape we use bacterial flagella, which are microns-long helical or straight filaments assembled from flagellin monomers. We compare the dynamics of straight rods, helical filaments, and shape-diblock copolymers composed of seamlessly joined straight and helical segments. Caged by their neighbors, straight rods preferentially diffuse along their long axis, but exhibit significantly suppressed rotational diffusion. Entangled helical filaments escape their confining tube by corkscrewing through the dense obstacles created by other filaments. By comparison, the adjoining segments of the rod-helix shape-diblocks suppress both the translation and the corkscrewing dynamics. Consequently, the shape-diblock filaments become permanently jammed at exceedingly low densities. We also measure the rheological properties of semidilute suspensions and relate their mechanical properties to the microscopic dynamics of constituent filaments. In particular, rheology shows that an entangled suspension of shape rod-helix copolymers forms a low-density glass whose elastic modulus can be estimated by accounting for how shear deformations reduce the entropic degrees of freedom of constrained filaments. Our results demonstrate that the three-dimensional shape of rigid filaments can be used to design rheological properties of semidilute fibrous suspensions.
Collapse
Affiliation(s)
- Sevim Yardimci
- The Martin Fisher School of Physics, Brandeis University, Waltham, MA02454
- Single Molecule Imaging of Genome Duplication and Maintenance Laboratory, The Francis Crick Institute,NW1 1ATLondon, UK
| | - Thomas Gibaud
- The Martin Fisher School of Physics, Brandeis University, Waltham, MA02454
- Univ Lyon, Ens de Lyon, Univ Claude Bernard, CNRS, Laboratoire de Physique,F-69342Lyon, France
| | - Walter Schwenger
- The Martin Fisher School of Physics, Brandeis University, Waltham, MA02454
| | - Matthew R. Sartucci
- Department of Physics Institute for Soft Matter Synthesis and Metrology, Georgetown University, Washington, DC20057
| | - Peter D. Olmsted
- Department of Physics Institute for Soft Matter Synthesis and Metrology, Georgetown University, Washington, DC20057
| | - Jeffrey S. Urbach
- Department of Physics Institute for Soft Matter Synthesis and Metrology, Georgetown University, Washington, DC20057
| | - Zvonimir Dogic
- The Martin Fisher School of Physics, Brandeis University, Waltham, MA02454
- Department of Physics, University of California at Santa Barbara, Santa Barbara, CA93106
- Biomolecular Science and Engineering, University of California at Santa Barbara, Santa Barbara, CA93106
| |
Collapse
|
2
|
Abakumov S, Deschaume O, Bartic C, Lang C, Korculanin O, Dhont JKG, Lettinga MP. Uncovering Log Jamming in Semidilute Suspensions of Quasi-Ideal Rods. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00876] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Sergey Abakumov
- Laboratory for Molecular Imaging and Photonics, KU Leuven, B-3001 Leuven, Belgium
| | - Olivier Deschaume
- Laboratory for Soft Matter and Biophysics, KU Leuven, B-3001 Leuven, Belgium
| | - Carmen Bartic
- Laboratory for Soft Matter and Biophysics, KU Leuven, B-3001 Leuven, Belgium
| | - Christian Lang
- JCNS-4, Forschungzentrum Jülich, DE 85748 Jülich, Germany
| | | | | | - Minne Paul Lettinga
- Laboratory for Soft Matter and Biophysics, KU Leuven, B-3001 Leuven, Belgium
- IBI-4, Forschungzentrum Jülich, DE 52425 Jülich, Germany
| |
Collapse
|
3
|
Zhou F, Wang H, Zhang Z. Diffusion of Anisotropic Colloids in Periodic Arrays of Obstacles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:11866-11872. [PMID: 32927949 DOI: 10.1021/acs.langmuir.0c01884] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Colloidal suspensions in confined geometries exhibit rich diffusion dynamics governed by particle shapes and particle-confinement interactions. Here, we propose a colloidal system, consisting of ellipsoids in periodic array of obstacles, to investigate the confined diffusion of anisotropic colloids. From the obstacle density-dependent diffusion, we discover a decoupling of translational and rotational diffusion in which only rotational motion is localized while translational motion remains diffusive. Moreover, by evaluating the probability distributions of displacements, we found Brownian but non-Gaussian diffusion behaviors with increasing the obstacle densities, which originates from the shape anisotropy of the colloid and the multiplicity of the local configurations of the ellipsoids with respect to the obstacle. Our results suggest that the shape anisotropy and spatial confinements play a vital role in the diffusion dynamics. It is important for understanding the transportations of anisotropic objects in complex environments.
Collapse
Affiliation(s)
- Fang Zhou
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Huaguang Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Zexin Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, Soochow University, Suzhou 215006, China
- Institute for Advanced Study, Soochow University, Suzhou 215006, China
| |
Collapse
|
4
|
Karimi H, Setare MR, Moradian A. Rod separation by sawtooth channel. Phys Rev E 2020; 102:012610. [PMID: 32794973 DOI: 10.1103/physreve.102.012610] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 07/09/2020] [Indexed: 06/11/2023]
Abstract
By applying entropic barriers, we present a rod separation mechanism that induces the movement of rods of different sizes in the opposite directions. This mechanism is based on the combination of the saw-tooth channel, a static force, and an oscillating driving force. The asymmetric shape of the channel and the elongated shape of the rod causesa complicated interaction effect between the rods and the channel walls which reduces the accessible configuration space for the rods and leads to entropic free-energy effects.
Collapse
Affiliation(s)
- H Karimi
- Department of Science, University of Kurdistan, Sanandaj, Iran
| | - M R Setare
- Department of Science, University of Kurdistan, Sanandaj, Iran
| | - A Moradian
- Department of Science, Campus of Bijar, University of Kurdistan, Bijar, Iran
| |
Collapse
|
5
|
Yang X, Zhu Q, Liu C, Wang W, Li Y, Marchesoni F, Hänggi P, Zhang HP. Diffusion of colloidal rods in corrugated channels. Phys Rev E 2019; 99:020601. [PMID: 30934353 DOI: 10.1103/physreve.99.020601] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Indexed: 06/09/2023]
Abstract
In many natural and artificial devices diffusive transport takes place in confined geometries with corrugated boundaries. Such boundaries cause both entropic and hydrodynamic effects, which have been studied only for the case of spherical particles. Here we experimentally investigate the diffusion of particles of elongated shape confined in a corrugated quasi-two-dimensional channel. The elongated shape causes complex excluded-volume interactions between particles and channel walls which reduce the accessible configuration space and lead to novel entropic free-energy effects. The extra rotational degree of freedom also gives rise to a complex diffusivity matrix that depends on both the particle location and its orientation. We further show how to extend the standard Fick-Jacobs theory to incorporate combined hydrodynamic and entropic effects, so as, for instance, to accurately predict experimentally measured mean first passage times along the channel. Our approach can be used as a generic method to describe translational diffusion of anisotropic particles in corrugated channels.
Collapse
Affiliation(s)
- Xiang Yang
- School of Physics and Astronomy and Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai, China
| | - Qian Zhu
- School of Physics and Astronomy and Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai, China
| | - Chang Liu
- School of Physics and Astronomy and Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai, China
| | - Wei Wang
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, China
| | - Yunyun Li
- Center for Phononics and Thermal Energy Science, School of Physics Science and Engineering, Tongji University, Shanghai, China
| | - Fabio Marchesoni
- Center for Phononics and Thermal Energy Science, School of Physics Science and Engineering, Tongji University, Shanghai, China
- Dipartimento di Fisica, Università di Camerino, I-62032 Camerino, Italy
| | - Peter Hänggi
- Institut für Physik, Universität Augsburg, D-86135 Augsburg, Germany
- Nanosystems Initiative Munich, Schellingstrasse 4, D-80799 München, Germany
| | - H P Zhang
- School of Physics and Astronomy and Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai, China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing, China
| |
Collapse
|
6
|
Leitmann S, Höfling F, Franosch T. Dynamically crowded solutions of infinitely thin Brownian needles. Phys Rev E 2018; 96:012118. [PMID: 29347251 DOI: 10.1103/physreve.96.012118] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Indexed: 11/07/2022]
Abstract
We study the dynamics of solutions of infinitely thin needles up to densities deep in the semidilute regime by Brownian dynamics simulations. For high densities, these solutions become strongly entangled and the motion of a needle is essentially restricted to a one-dimensional sliding in a confining tube composed of neighboring needles. From the density-dependent behavior of the orientational and translational diffusion, we extract the long-time transport coefficients and the geometry of the confining tube. The sliding motion within the tube becomes visible in the non-Gaussian parameter of the translational motion as an extended plateau at intermediate times and in the intermediate scattering function as an algebraic decay. This transient dynamic arrest is also corroborated by the local exponent of the mean-square displacements perpendicular to the needle axis. Moreover, the probability distribution of the displacements perpendicular to the needle becomes strongly non-Gaussian; rather, it displays an exponential distribution for large displacements. On the other hand, based on the analysis of higher-order correlations of the orientation we find that the rotational motion becomes diffusive again for strong confinement. At coarse-grained time and length scales, the spatiotemporal dynamics of the needle for the high entanglement is captured by a single freely diffusing phantom needle with long-time transport coefficients obtained from the needle in solution. The time-dependent dynamics of the phantom needle is also assessed analytically in terms of spheroidal wave functions. The dynamic behavior of the needle in solution is found to be identical to needle Lorentz systems, where a tracer needle explores a quenched disordered array of other needles.
Collapse
Affiliation(s)
- Sebastian Leitmann
- Institut für Theoretische Physik, Universität Innsbruck, Technikerstraße 21A, A-6020 Innsbruck, Austria
| | - Felix Höfling
- Fachbereich Mathematik und Informatik, Freie Universität Berlin, Arnimallee 6, 14195 Berlin, Germany
| | - Thomas Franosch
- Institut für Theoretische Physik, Universität Innsbruck, Technikerstraße 21A, A-6020 Innsbruck, Austria
| |
Collapse
|
7
|
Leitmann S, Höfling F, Franosch T. Tube Concept for Entangled Stiff Fibers Predicts Their Dynamics in Space and Time. PHYSICAL REVIEW LETTERS 2016; 117:097801. [PMID: 27610885 DOI: 10.1103/physrevlett.117.097801] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Indexed: 06/06/2023]
Abstract
We study dynamically crowded solutions of stiff fibers deep in the semidilute regime, where the motion of a single constituent becomes increasingly confined to a narrow tube. The spatiotemporal dynamics for wave numbers resolving the motion in the confining tube becomes accessible in Brownian dynamics simulations upon employing a geometry-adapted neighbor list. We demonstrate that in such crowded environments the intermediate scattering function, characterizing the motion in space and time, can be predicted quantitatively by simulating a single freely diffusing phantom needle only, yet with very unusual diffusion coefficients.
Collapse
Affiliation(s)
- Sebastian Leitmann
- Institut für Theoretische Physik, Universität Innsbruck, Technikerstraße 21A, A-6020 Innsbruck, Austria
| | - Felix Höfling
- Fachbereich Mathematik und Informatik, Freie Universität Berlin, Arnimallee 6, 14195 Berlin, Germany
| | - Thomas Franosch
- Institut für Theoretische Physik, Universität Innsbruck, Technikerstraße 21A, A-6020 Innsbruck, Austria
| |
Collapse
|