1
|
Network structure from a characterization of interactions in complex systems. Sci Rep 2022; 12:11742. [PMID: 35817803 PMCID: PMC9273794 DOI: 10.1038/s41598-022-14397-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/06/2022] [Indexed: 11/29/2022] Open
Abstract
Many natural and man-made complex dynamical systems can be represented by networks with vertices representing system units and edges the coupling between vertices. If edges of such a structural network are inaccessible, a widely used approach is to identify them with interactions between vertices, thereby setting up a functional network. However, it is an unsolved issue if and to what extent important properties of a functional network on the global and the local scale match those of the corresponding structural network. We address this issue by deriving functional networks from characterizing interactions in paradigmatic oscillator networks with widely-used time-series-analysis techniques for various factors that alter the collective network dynamics. Surprisingly, we find that particularly key constituents of functional networks—as identified with betweenness and eigenvector centrality—coincide with ground truth to a high degree, while global topological and spectral properties—clustering coefficient, average shortest path length, assortativity, and synchronizability—clearly deviate. We obtain similar concurrences for an empirical network. Our findings are of relevance for various scientific fields and call for conceptual and methodological refinements to further our understanding of the relationship between structure and function of complex dynamical systems.
Collapse
|
2
|
Forero-Ortiz E, Tirabassi G, Masoller C, Pons AJ. Inferring the connectivity of coupled chaotic oscillators using Kalman filtering. Sci Rep 2021; 11:22376. [PMID: 34789794 PMCID: PMC8599661 DOI: 10.1038/s41598-021-01444-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 10/21/2021] [Indexed: 11/09/2022] Open
Abstract
Inferring the interactions between coupled oscillators is a significant open problem in complexity science, with multiple interdisciplinary applications. While the Kalman filter (KF) technique is a well-known tool, widely used for data assimilation and parameter estimation, to the best of our knowledge, it has not yet been used for inferring the connectivity of coupled chaotic oscillators. Here we demonstrate that KF allows reconstructing the interaction topology and the coupling strength of a network of mutually coupled Rössler-like chaotic oscillators. We show that the connectivity can be inferred by considering only the observed dynamics of a single variable of the three that define the phase space of each oscillator. We also show that both the coupling strength and the network architecture can be inferred even when the oscillators are close to synchronization. Simulation results are provided to show the effectiveness and applicability of the proposed method.
Collapse
Affiliation(s)
- E Forero-Ortiz
- Departament de Física, Universitat Politècnica de Catalunya, St. Nebridi 22, 08222, Terrassa, Barcelona, Spain
| | - G Tirabassi
- Departament de Física, Universitat Politècnica de Catalunya, St. Nebridi 22, 08222, Terrassa, Barcelona, Spain
| | - C Masoller
- Departament de Física, Universitat Politècnica de Catalunya, St. Nebridi 22, 08222, Terrassa, Barcelona, Spain
| | - A J Pons
- Departament de Física, Universitat Politècnica de Catalunya, St. Nebridi 22, 08222, Terrassa, Barcelona, Spain.
| |
Collapse
|
3
|
Sysoev IV, Bezruchko BP. Noise robust approach to reconstruction of van der Pol-like oscillators and its application to Granger causality. CHAOS (WOODBURY, N.Y.) 2021; 31:083118. [PMID: 34470233 DOI: 10.1063/5.0056901] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 07/28/2021] [Indexed: 06/13/2023]
Abstract
Van der Pol oscillators and their generalizations are known to be a fundamental model in the theory of oscillations and their applications. Many objects of a different nature can be described using van der Pol-like equations under some circumstances; therefore, methods of reconstruction of such equations from experimental data can be of significant importance for tasks of model verification, indirect parameter estimation, coupling analysis, system classification, etc. The previously reported techniques were not applicable to time series with large measurement noise, which is usual in biological, climatological, and many other experiments. Here, we present a new approach based on the use of numerical integration instead of the differentiation and implicit approximation of a nonlinear dissipation function. We show that this new technique can work for noise levels up to 30% by standard deviation from the signal for different types of autonomous van der Pol-like systems and for ensembles of such systems, providing a new approach to the realization of the Granger-causality idea.
Collapse
Affiliation(s)
- Ilya V Sysoev
- Institute of Physics, Saratov State University, 83, Astrakhanskaya str., 410012 Saratov, Russia
| | - Boris P Bezruchko
- Institute of Physics, Saratov State University, 83, Astrakhanskaya str., 410012 Saratov, Russia
| |
Collapse
|
4
|
Cecchini G, Cestnik R, Pikovsky A. Impact of local network characteristics on network reconstruction. Phys Rev E 2021; 103:022305. [PMID: 33736016 DOI: 10.1103/physreve.103.022305] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 01/12/2021] [Indexed: 11/07/2022]
Abstract
When a network is inferred from data, two types of errors can occur: false positive and false negative conclusions about the presence of links. We focus on the influence of local network characteristics on the probability α of false positive conclusions, and on the probability β of false negative conclusions, in the case of networks of coupled oscillators. We demonstrate that false conclusion probabilities are influenced by local connectivity measures such as the shortest path length and the detour degree, which can also be estimated from the inferred network when the true underlying network is not known a priori. These measures can then be used for quantification of the confidence level of link conclusions, and for improving the network reconstruction via advanced concepts of link weights thresholding.
Collapse
Affiliation(s)
- Gloria Cecchini
- CSDC, Department of Physics and Astronomy, University of Florence, Sesto Fiorentino, Florence, Italy.,Institute of Physics and Astronomy, University of Potsdam, Campus Golm, Karl-Liebknecht-Straße 24/25, 14476 Potsdam-Golm, Germany
| | - Rok Cestnik
- Institute of Physics and Astronomy, University of Potsdam, Campus Golm, Karl-Liebknecht-Straße 24/25, 14476 Potsdam-Golm, Germany.,Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Van der Boechorststraat 7, 1081 BT Amsterdam, Netherlands
| | - Arkady Pikovsky
- Institute of Physics and Astronomy, University of Potsdam, Campus Golm, Karl-Liebknecht-Straße 24/25, 14476 Potsdam-Golm, Germany.,Department of Control Theory, Lobachevsky University of Nizhny Novgorod, Gagarin Av. 23, 603950, Nizhny Novgorod, Russia
| |
Collapse
|
5
|
Leguia MG, Levnajić Z, Todorovski L, Ženko B. Reconstructing dynamical networks via feature ranking. CHAOS (WOODBURY, N.Y.) 2019; 29:093107. [PMID: 31575127 DOI: 10.1063/1.5092170] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 08/08/2019] [Indexed: 06/10/2023]
Abstract
Empirical data on real complex systems are becoming increasingly available. Parallel to this is the need for new methods of reconstructing (inferring) the structure of networks from time-resolved observations of their node-dynamics. The methods based on physical insights often rely on strong assumptions about the properties and dynamics of the scrutinized network. Here, we use the insights from machine learning to design a new method of network reconstruction that essentially makes no such assumptions. Specifically, we interpret the available trajectories (data) as "features" and use two independent feature ranking approaches-Random Forest and RReliefF-to rank the importance of each node for predicting the value of each other node, which yields the reconstructed adjacency matrix. We show that our method is fairly robust to coupling strength, system size, trajectory length, and noise. We also find that the reconstruction quality strongly depends on the dynamical regime.
Collapse
Affiliation(s)
- Marc G Leguia
- Faculty of Information Studies in Novo Mesto, Ljubljanska cesta 31a, SI-8000 Novo mesto, Slovenia
| | - Zoran Levnajić
- Faculty of Information Studies in Novo Mesto, Ljubljanska cesta 31a, SI-8000 Novo mesto, Slovenia
| | - Ljupčo Todorovski
- Department of Knowledge Technologies, Jožef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana, Slovenia
| | - Bernard Ženko
- Department of Knowledge Technologies, Jožef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
6
|
Zhang Z, Chen Y, Mi Y, Hu G. Reconstruction of dynamic networks with time-delayed interactions in the presence of fast-varying noises. Phys Rev E 2019; 99:042311. [PMID: 31108723 DOI: 10.1103/physreve.99.042311] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Indexed: 06/09/2023]
Abstract
Most complex social, biological and technological systems can be described by dynamic networks. Reconstructing network structures from measurable data is a fundamental problem in almost all interdisciplinary fields. Network nodes interact with each other and those interactions often have diversely distributed time delays. Accurate reconstruction of any targeted interaction to a node requires measured data of all its neighboring nodes together with information on the time delays of interactions from these neighbors. When networks are large, these data are often not available and time-delay factors are deeply hidden. Here we show that fast-varying noise can be of great help in solving these challenging problems. By computing suitable correlations, we can infer the intensity and time delay of any targeted interaction with the data of two related nodes (driving and driven nodes) only while all other nodes in the network are hidden. This method is analytically derived and fully justified by extensive numerical simulations.
Collapse
Affiliation(s)
- Zhaoyang Zhang
- Department of Physics, School of Physical Science and Technology, Ningbo University, Ningbo, Zhejiang 315211, China
- Business School, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Yang Chen
- Brainnetome Center and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Yuanyuan Mi
- Center for Neurointelligence, Chongqing University, Chongqing 400044, China
| | - Gang Hu
- Department of Physics, Beijing Normal University, 100875 Beijing, China
| |
Collapse
|
7
|
Leguia MG, Martínez CGB, Malvestio I, Campo AT, Rocamora R, Levnajić Z, Andrzejak RG. Inferring directed networks using a rank-based connectivity measure. Phys Rev E 2019; 99:012319. [PMID: 30780311 DOI: 10.1103/physreve.99.012319] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Indexed: 11/07/2022]
Abstract
Inferring the topology of a network using the knowledge of the signals of each of the interacting units is key to understanding real-world systems. One way to address this problem is using data-driven methods like cross-correlation or mutual information. However, these measures lack the ability to distinguish the direction of coupling. Here, we use a rank-based nonlinear interdependence measure originally developed for pairs of signals. This measure not only allows one to measure the strength but also the direction of the coupling. Our results for a system of coupled Lorenz dynamics show that we are able to consistently infer the underlying network for a subrange of the coupling strength and link density. Furthermore, we report that the addition of dynamical noise can benefit the reconstruction. Finally, we show an application to multichannel electroencephalographic recordings from an epilepsy patient.
Collapse
Affiliation(s)
- Marc G Leguia
- Faculty of Information Studies, 8000 Novo Mesto, Slovenia.,Department of Communication and Information Technologies, Universitat Pompeu Fabra, 08018 Barcelona, Spain
| | - Cristina G B Martínez
- Department of Communication and Information Technologies, Universitat Pompeu Fabra, 08018 Barcelona, Spain
| | - Irene Malvestio
- Department of Communication and Information Technologies, Universitat Pompeu Fabra, 08018 Barcelona, Spain.,Department of Physics and Astronomy, University of Florence, 50119 Sesto Fiorentino, Italy.,Institute for Complex Systems, CNR, 50119 Sesto Fiorentino, Italy
| | - Adrià Tauste Campo
- Center for Brain and Cognition, Department of Information and Communication Technologies, Universitat Pompeu Fabra, 08018 Barcelona, Spain.,Epilepsy Unit, Department of Neurology, IMIM Hospital del Mar, Universitat Pompeu Fabra, 08003 Barcelona, Spain.,Barcelonaβeta Brain Research Center, Pasqual Maragall Foundation, 08005 Barcelona, Spain
| | - Rodrigo Rocamora
- Epilepsy Unit, Department of Neurology, IMIM Hospital del Mar, Universitat Pompeu Fabra, 08003 Barcelona, Spain.,Faculty of Health and Life Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Zoran Levnajić
- Faculty of Information Studies, 8000 Novo Mesto, Slovenia.,Institute Jozef Stefan, 1000 Ljubljana, Slovenia
| | - Ralph G Andrzejak
- Department of Communication and Information Technologies, Universitat Pompeu Fabra, 08018 Barcelona, Spain.,Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, 08028 Barcelona, Spain
| |
Collapse
|
8
|
Dale R, Bhat HS. Equations of mind: Data science for inferring nonlinear dynamics of socio-cognitive systems. COGN SYST RES 2018. [DOI: 10.1016/j.cogsys.2018.06.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
9
|
Cecchini G, Schelter B. Analytical approach to network inference: Investigating degree distribution. Phys Rev E 2018; 98:022311. [PMID: 30253503 DOI: 10.1103/physreve.98.022311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Indexed: 06/08/2023]
Abstract
When the network is reconstructed, two types of errors can occur: false positive and false negative errors about the presence or absence of links. In this paper, the influence of these two errors on the vertex degree distribution is analytically analyzed. Moreover, an analytic formula of the density of the biased vertex degree distribution is found. In the inverse problem, we find a reliable procedure to reconstruct analytically the density of the vertex degree distribution of any network based on the inferred network and estimates for the false positive and false negative errors based on, e.g., simulation studies.
Collapse
Affiliation(s)
- Gloria Cecchini
- Institute for Complex Systems and Mathematical Biology, University of Aberdeen, Meston Building, Meston Walk, Aberdeen, AB24 3UE, United Kingdom and Institute of Physics and Astronomy, University of Potsdam, Campus Golm, Karl-Liebknecht-Straße 24/25, D-14476, Potsdam-Golm, Germany
| | - Björn Schelter
- Institute for Complex Systems and Mathematical Biology, University of Aberdeen, Meston Building, Meston Walk, Aberdeen, AB24 3UE, United Kingdom
| |
Collapse
|
10
|
Malvestio I, Kreuz T, Andrzejak RG. Robustness and versatility of a nonlinear interdependence method for directional coupling detection from spike trains. Phys Rev E 2017; 96:022203. [PMID: 28950642 DOI: 10.1103/physreve.96.022203] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Indexed: 06/07/2023]
Abstract
The detection of directional couplings between dynamics based on measured spike trains is a crucial problem in the understanding of many different systems. In particular, in neuroscience it is important to assess the connectivity between neurons. One of the approaches that can estimate directional coupling from the analysis of point processes is the nonlinear interdependence measure L. Although its efficacy has already been demonstrated, it still needs to be tested under more challenging and realistic conditions prior to an application to real data. Thus, in this paper we use the Hindmarsh-Rose model system to test the method in the presence of noise and for different spiking regimes. We also examine the influence of different parameters and spike train distances. Our results show that the measure L is versatile and robust to various types of noise, and thus suitable for application to experimental data.
Collapse
Affiliation(s)
- Irene Malvestio
- Department of Information and Communication Technologies, Universitat Pompeu Fabra, 08018 Barcelona, Spain
- Department of Physics and Astronomy, University of Florence, 50119 Sesto Fiorentino, Italy
- Institute for Complex Systems, CNR, 50119 Sesto Fiorentino, Italy
| | - Thomas Kreuz
- Institute for Complex Systems, CNR, 50119 Sesto Fiorentino, Italy
| | - Ralph G Andrzejak
- Department of Information and Communication Technologies, Universitat Pompeu Fabra, 08018 Barcelona, Spain
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
| |
Collapse
|
11
|
Cestnik R, Rosenblum M. Reconstructing networks of pulse-coupled oscillators from spike trains. Phys Rev E 2017; 96:012209. [PMID: 29347231 DOI: 10.1103/physreve.96.012209] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Indexed: 11/07/2022]
Abstract
We present an approach for reconstructing networks of pulse-coupled neuronlike oscillators from passive observation of pulse trains of all nodes. It is assumed that units are described by their phase response curves and that their phases are instantaneously reset by incoming pulses. Using an iterative procedure, we recover the properties of all nodes, namely their phase response curves and natural frequencies, as well as strengths of all directed connections.
Collapse
Affiliation(s)
- Rok Cestnik
- Department of Physics and Astronomy, University of Potsdam, Karl-Liebknecht-Strasse 24/25, D-14476 Potsdam-Golm, Germany.,Department of Human Movement Sciences, MOVE Research Institute Amsterdam, Vrije Universiteit Amsterdam, van der Boechorststraat 9, Amsterdam, Netherlands
| | - Michael Rosenblum
- Department of Physics and Astronomy, University of Potsdam, Karl-Liebknecht-Strasse 24/25, D-14476 Potsdam-Golm, Germany.,The Research Institute of Supercomputing, Lobachevsky National Research State University of Nizhny Novgorod, Russia
| |
Collapse
|
12
|
Ching ESC, Tam HC. Reconstructing links in directed networks from noisy dynamics. Phys Rev E 2017; 95:010301. [PMID: 28208378 DOI: 10.1103/physreve.95.010301] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Indexed: 06/06/2023]
Abstract
We address the long-standing challenge of how to reconstruct links in directed networks from measurements, and present a general method that makes use of a noise-induced relation between network structure and both the time-lagged covariance of measurements taken at two different times and the covariance of measurements taken at the same time. When the coupling functions have certain additional properties, we can further reconstruct the weights of the links.
Collapse
Affiliation(s)
- Emily S C Ching
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - H C Tam
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong
| |
Collapse
|
13
|
Sysoev IV, Ponomarenko VI, Kulminskiy DD, Prokhorov MD. Recovery of couplings and parameters of elements in networks of time-delay systems from time series. Phys Rev E 2016; 94:052207. [PMID: 27967060 DOI: 10.1103/physreve.94.052207] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Indexed: 06/06/2023]
Abstract
We propose a method for the recovery of coupling architecture and the parameters of elements in networks consisting of coupled oscillators described by delay-differential equations. For each oscillator in the network, we introduce an objective function characterizing the distance between the points of the reconstructed nonlinear function. The proposed method is based on the minimization of this objective function and the separation of the recovered coupling coefficients into significant and insignificant coefficients. The efficiency of the method is shown for chaotic time series generated by model equations of diffusively coupled time-delay systems and for experimental chaotic time series gained from coupled electronic oscillators with time-delayed feedback.
Collapse
Affiliation(s)
- I V Sysoev
- Saratov Branch of Kotel'nikov Institute of Radio Engineering and Electronics of Russian Academy of Sciences, Zelyonaya Street, 38, Saratov 410019, Russia
- Saratov State University, Astrakhanskaya Street, 83, Saratov 410012, Russia
| | - V I Ponomarenko
- Saratov Branch of Kotel'nikov Institute of Radio Engineering and Electronics of Russian Academy of Sciences, Zelyonaya Street, 38, Saratov 410019, Russia
- Saratov State University, Astrakhanskaya Street, 83, Saratov 410012, Russia
| | - D D Kulminskiy
- Saratov Branch of Kotel'nikov Institute of Radio Engineering and Electronics of Russian Academy of Sciences, Zelyonaya Street, 38, Saratov 410019, Russia
- Saratov State University, Astrakhanskaya Street, 83, Saratov 410012, Russia
| | - M D Prokhorov
- Saratov Branch of Kotel'nikov Institute of Radio Engineering and Electronics of Russian Academy of Sciences, Zelyonaya Street, 38, Saratov 410019, Russia
| |
Collapse
|