1
|
Lei Y, Ni R. Non-equilibrium dynamic hyperuniform states. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2024; 37:023004. [PMID: 39431432 DOI: 10.1088/1361-648x/ad83a0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 10/04/2024] [Indexed: 10/22/2024]
Abstract
Disordered hyperuniform structures are an exotic state of matter having suppressed density fluctuations at large length-scale similar to perfect crystals and quasicrystals but without any long range orientational order. In the past decade, an increasing number of non-equilibrium systems were found to have dynamic hyperuniform states, which have emerged as a new research direction coupling both non-equilibrium physics and hyperuniformity. Here we review the recent progress in understanding dynamic hyperuniform states found in various non-equilibrium systems, including the critical hyperuniformity in absorbing phase transitions, non-equilibrium hyperuniform fluids and the hyperuniform structures in phase separating systems via spinodal decomposition.
Collapse
Affiliation(s)
- Yusheng Lei
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore
| | - Ran Ni
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore
| |
Collapse
|
2
|
Mukherjee A, Tapader D, Hazra A, Pradhan P. Anomalous relaxation and hyperuniform fluctuations in center-of-mass conserving systems with broken time-reversal symmetry. Phys Rev E 2024; 110:024119. [PMID: 39295006 DOI: 10.1103/physreve.110.024119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 07/09/2024] [Indexed: 09/21/2024]
Abstract
We study the Oslo model, a paradigm for absorbing-phase transition, on a one-dimensional ring of L sites with a fixed global density ρ[over ¯]; we consider the system strictly above critical density ρ_{c}. Notably, microscopic dynamics conserve both mass and center of mass (CoM), but lack time-reversal symmetry. We show that, despite having highly constrained dynamics due to CoM conservation, the system exhibits diffusive relaxation away from criticality and superdiffusive relaxation near criticality. Furthermore, the CoM conservation severely restricts particle movement, causing the mobility-a transport coefficient analogous to the conductivity for charged particles-to vanish exactly. Indeed, the steady-state temporal growth of current fluctuation is qualitatively different from that observed in diffusive systems with a single conservation law. Remarkably, far from criticality where the relative density Δ=ρ[over ¯]-ρ_{c}≫ρ_{c}, the second cumulant, or the variance, 〈Q_{i}^{2}(T,Δ)〉_{c}, of current Q_{i} across the ith bond up to time T in the steady-state saturates as 〈Q_{i}^{2}〉_{c}≃Σ_{Q}^{2}(Δ)-constT^{-1/2}; near criticality, it grows subdiffusively as 〈Q_{i}^{2}〉_{c}∼T^{α}, with 0<α<1/2, and eventually saturates to Σ_{Q}^{2}(Δ). Interestingly, the asymptotic current fluctuation Σ_{Q}^{2}(Δ) is a nonmonotonic function of Δ: It diverges as Σ_{Q}^{2}(Δ)∼Δ^{2} for Δ≫ρ_{c} and Σ_{Q}^{2}(Δ)∼Δ^{-δ}, with δ>0, for Δ→0^{+}. Using a mass-conservation principle, we exactly determine the exponents δ=2(1-1/ν_{⊥})/ν_{⊥} and α=δ/zν_{⊥} via the correlation-length and dynamic exponents, ν_{⊥} and z, respectively. Finally, we show that in the steady state the self-diffusion coefficient D_{s}(ρ[over ¯]) of tagged particles is connected to activity through the relation D_{s}(ρ[over ¯])=a(ρ[over ¯])/ρ[over ¯].
Collapse
|
3
|
Backofen R, Altawil AYA, Salvalaglio M, Voigt A. Nonequilibrium hyperuniform states in active turbulence. Proc Natl Acad Sci U S A 2024; 121:e2320719121. [PMID: 38848299 PMCID: PMC11181138 DOI: 10.1073/pnas.2320719121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 05/04/2024] [Indexed: 06/09/2024] Open
Abstract
We demonstrate that the complex spatiotemporal structure in active fluids can feature characteristics of hyperuniformity. Using a hydrodynamic model, we show that the transition from hyperuniformity to nonhyperuniformity and antihyperuniformity depends on the strength of active forcing and can be related to features of active turbulence without and with scaling characteristics of inertial turbulence. Combined with identified signatures of Levy walks and nonuniversal diffusion in these systems, this allows for a biological interpretation and the speculation of nonequilibrium hyperuniform states in active fluids as optimal states with respect to robustness and strategies of evasion and foraging.
Collapse
Affiliation(s)
- Rainer Backofen
- Institute of Scientific Computing, Faculty of Mathematics, Technische Universität Dresden, Dresden01062
| | - Abdelrahman Y. A. Altawil
- Institute of Scientific Computing, Faculty of Mathematics, Technische Universität Dresden, Dresden01062
| | - Marco Salvalaglio
- Institute of Scientific Computing, Faculty of Mathematics, Technische Universität Dresden, Dresden01062
- Dresden Centre for Computational Materials Science, Technische Universität Dresden, 01062Dresden, Germany
| | - Axel Voigt
- Institute of Scientific Computing, Faculty of Mathematics, Technische Universität Dresden, Dresden01062
- Dresden Centre for Computational Materials Science, Technische Universität Dresden, 01062Dresden, Germany
- Center of Systems Biology Dresden, 01307Dresden, Germany
- Cluster of Excellence, Physics of Life, Technische Universität Dresden, 01307Dresden, Germany
| |
Collapse
|
4
|
Torquato S. Self-organized disordered vegetation patterns with hidden order in arid ecosystems. Proc Natl Acad Sci U S A 2023; 120:e2316879120. [PMID: 38011577 PMCID: PMC10710046 DOI: 10.1073/pnas.2316879120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023] Open
Affiliation(s)
- Salvatore Torquato
- Department of Chemistry, Princeton University, Princeton, NJ08544
- Department of Physics, Princeton University, Princeton, NJ08544
- Princeton Materials Institute, Princeton University, Princeton, NJ08544
- Program in Applied and Computational Mathematics, Princeton University, Princeton, NJ08544
| |
Collapse
|
5
|
Ge Z. The hidden order of Turing patterns in arid and semi-arid vegetation ecosystems. Proc Natl Acad Sci U S A 2023; 120:e2306514120. [PMID: 37816060 PMCID: PMC10589663 DOI: 10.1073/pnas.2306514120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 08/27/2023] [Indexed: 10/12/2023] Open
Abstract
Vegetation Turing patterns play a critical role in the ecological functioning of arid and semi-arid ecosystems. However, the long-range spatial features of these patterns have been neglected compared to short-range features like patch shape and spatial wavelength. Drawing inspiration from hyperuniform structures in material science, we find that the arid and semi-arid vegetation Turing pattern exhibits long-range dispersion similar to hyperuniformity. As the degree of hyperuniformity of the vegetation Turing pattern increases, so does the water-use efficiency of the vegetation. This finding supports previous studies that suggest that Turing patterns represent a spatially optimized self-organization of ecosystems for water acquisition. The degree of hyperuniformity of Turing-type ecosystems exhibits significant critical slowing down near the tipping point, indicating that these ecosystems have non-negligible transient dynamical behavior. Reduced rainfall not only decreases the resilience of the steady state of the ecosystem but also slows down the rate of spatial optimization of water-use efficiency in long transient regimes. We propose that the degree of hyperuniformity indicates the spatial resilience of Turing-type ecosystems after strong, short-term disturbances. Spatially heterogeneous disturbances that reduce hyperuniformity lead to longer recovery times than spatially homogeneous disturbances that maintain hyperuniformity.
Collapse
Affiliation(s)
- Zhenpeng Ge
- Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou310012, China
| |
Collapse
|
6
|
Shi W, Keeney D, Chen D, Jiao Y, Torquato S. Computational design of anisotropic stealthy hyperuniform composites with engineered directional scattering properties. Phys Rev E 2023; 108:045306. [PMID: 37978628 DOI: 10.1103/physreve.108.045306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 09/18/2023] [Indexed: 11/19/2023]
Abstract
Disordered hyperuniform materials are an emerging class of exotic amorphous states of matter that endow them with singular physical properties, including large isotropic photonic band gaps, superior resistance to fracture, and nearly optimal electrical and thermal transport properties, to name but a few. Here we generalize the Fourier-space-based numerical construction procedure for designing and generating digital realizations of isotropic disordered hyperuniform two-phase heterogeneous materials (i.e., composites) developed by Chen and Torquato [Acta Mater. 142, 152 (2018)1359-645410.1016/j.actamat.2017.09.053] to anisotropic microstructures with targeted spectral densities. Our generalized construction procedure explicitly incorporates the vector-dependent spectral density function χ[over ̃]_{_{V}}(k) of arbitrary form that is realizable. We demonstrate the utility of the procedure by generating a wide spectrum of anisotropic stealthy hyperuniform microstructures with χ[over ̃]_{_{V}}(k)=0 for k∈Ω, i.e., complete suppression of scattering in an "exclusion" region Ω around the origin in Fourier space. We show how different exclusion-region shapes with various discrete symmetries, including circular-disk, elliptical-disk, square, rectangular, butterfly-shaped, and lemniscate-shaped regions of varying size, affect the resulting statistically anisotropic microstructures as a function of the phase volume fraction. The latter two cases of Ω lead to directionally hyperuniform composites, which are stealthy hyperuniform only along certain directions and are nonhyperuniform along others. We find that while the circular-disk exclusion regions give rise to isotropic hyperuniform composite microstructures, the directional hyperuniform behaviors imposed by the shape asymmetry (or anisotropy) of certain exclusion regions give rise to distinct anisotropic structures and degree of uniformity in the distribution of the phases on intermediate and large length scales along different directions. Moreover, while the anisotropic exclusion regions impose strong constraints on the global symmetry of the resulting media, they can still possess structures at a local level that are nearly isotropic. Both the isotropic and anisotropic hyperuniform microstructures associated with the elliptical-disk, square, and rectangular Ω possess phase-inversion symmetry over certain range of volume fractions and a percolation threshold ϕ_{c}≈0.5. On the other hand, the directionally hyperuniform microstructures associated with the butterfly-shaped and lemniscate-shaped Ω do not possess phase-inversion symmetry and percolate along certain directions at much lower volume fractions. We also apply our general procedure to construct stealthy nonhyperuniform systems. Our construction algorithm enables one to control the statistical anisotropy of composite microstructures via the shape, size, and symmetries of Ω, which is crucial to engineering directional optical, transport, and mechanical properties of two-phase composite media.
Collapse
Affiliation(s)
- Wenlong Shi
- Materials Science and Engineering, Arizona State University, Tempe, Arizona 85287, USA
| | - David Keeney
- Materials Science and Engineering, Arizona State University, Tempe, Arizona 85287, USA
| | - Duyu Chen
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, USA
| | - Yang Jiao
- Materials Science and Engineering, Arizona State University, Tempe, Arizona 85287, USA
- Department of Physics, Arizona State University, Tempe, Arizona 85287, USA
| | - Salvatore Torquato
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA
- Department of Physics, Princeton University, Princeton, New Jersey 08544, USA
- Princeton Institute of Materials, Princeton University, Princeton, New Jersey 08544, USA
- Program in Applied and Computational Mathematics, Princeton University, Princeton, New Jersey 08544, USA
| |
Collapse
|
7
|
Samarin A, Postnicov V, Karsanina MV, Lavrukhin EV, Gafurova D, Evstigneev NM, Khlyupin A, Gerke KM. Robust surface-correlation-function evaluation from experimental discrete digital images. Phys Rev E 2023; 107:065306. [PMID: 37464648 DOI: 10.1103/physreve.107.065306] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 04/18/2023] [Indexed: 07/20/2023]
Abstract
Correlation functions (CFs) are universal structural descriptors; surface-surface F_{ss} and surface-void F_{sv} CFs are a subset containing additional information about the interface between the phases. The description of the interface between pores and solids in porous media is of particular importance and recently Ma and Torquato [Phys. Rev. E 98, 013307 (2018)2470-004510.1103/PhysRevE.98.013307] proposed an elegant way to compute these functions for a wide variety of cases. However, their "continuous" approach is not always applicable to digital experimental 2D and 3D images of porous media as obtained using x-ray tomography or scanning electron microscopy due to nonsingularities in chemical composition or local solid material's density and partial volume effects. In this paper we propose to use edge-detecting filters to compute surface CFs in the "digital" fashion directly in the images. Computed this way, surface correlation functions are the same as analytically known for Poisson disks in case the resolution of the image is adequate. Based on the multiscale image analysis we developed a C_{0.5} criterion that can predict if the imaging resolution is enough to make an accurate evaluation of the surface CFs. We also showed that in cases when the input image contains all major features, but do not pass the C_{0.5} criterion, it is possible with the help of image magnification to sample CFs almost similar to those obtained for high-resolution image of the same structure with high C_{0.5}. The computational framework as developed here is open source and available within the CorrelationFunctions.jl package developed by our group. Our "digital" approach was applied to a wide variety of real porous media images of different quality. We discuss critical aspects of surface correlation functions computations as related to different applications. The developed methodology allows applying surface CFs to describe the structure of porous materials based on their experimental images and enhance stochastic reconstructions or super-resolution procedures, or serve as an efficient metrics in machine learning applications due to computationally effective GPU implementation.
Collapse
Affiliation(s)
- Aleksei Samarin
- Schmidt Institute of Physics of the Earth of Russian Academy of Sciences, Moscow 107031, Russia
- Computational Mathematics and Cybernetics, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Vasily Postnicov
- Schmidt Institute of Physics of the Earth of Russian Academy of Sciences, Moscow 107031, Russia
| | - Marina V Karsanina
- Schmidt Institute of Physics of the Earth of Russian Academy of Sciences, Moscow 107031, Russia
| | - Efim V Lavrukhin
- Schmidt Institute of Physics of the Earth of Russian Academy of Sciences, Moscow 107031, Russia
- Computational Mathematics and Cybernetics, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Dina Gafurova
- Oil and Gas Research Institute Russian Academy of Sciences (OGRI RAS) 3, Gubkina Street, Moscow 119333, Russian Federation
| | - Nikolay M Evstigneev
- Federal Research Center "Computer Science and Control" of the Russian Academy of Sciences, Moscow 117312, Russia
| | - Aleksey Khlyupin
- Schmidt Institute of Physics of the Earth of Russian Academy of Sciences, Moscow 107031, Russia
| | - Kirill M Gerke
- Schmidt Institute of Physics of the Earth of Russian Academy of Sciences, Moscow 107031, Russia
| |
Collapse
|
8
|
Mukherjee A, Pradhan P. Dynamic correlations in the conserved Manna sandpile. Phys Rev E 2023; 107:024109. [PMID: 36932496 DOI: 10.1103/physreve.107.024109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 01/20/2023] [Indexed: 02/11/2023]
Abstract
We study dynamic correlations for current and mass, as well as the associated power spectra, in the one-dimensional conserved Manna sandpile. We show that, in the thermodynamic limit, the variance of cumulative bond current up to time T grows subdiffusively as T^{1/2-μ} with the exponent μ≥0 depending on the density regimes considered and, likewise, the power spectra of current and mass at low frequency f varies as f^{1/2+μ} and f^{-3/2+μ}, respectively. Our theory predicts that, far from criticality, μ=0 and, near criticality, μ=(β+1)/2ν_{⊥}z>0 with β, ν_{⊥}, and z being the order parameter, correlation length, and dynamic exponents, respectively. The anomalous suppression of fluctuations near criticality signifies a "dynamic hyperuniformity," characterized by a set of fluctuation relations, in which current, mass, and tagged-particle displacement fluctuations are shown to have a precise quantitative relationship with the density-dependent activity (or its derivative). In particular, the relation, D_{s}(ρ[over ¯])=a(ρ[over ¯])/ρ[over ¯], between the self-diffusion coefficient D_{s}(ρ[over ¯]), activity a(ρ[over ¯]) and density ρ[over ¯] explains a previous simulation observation [Eur. Phys. J. B 72, 441 (2009)10.1140/epjb/e2009-00367-0] that, near criticality, the self-diffusion coefficient in the Manna sandpile has the same scaling behavior as the activity.
Collapse
Affiliation(s)
- Anirban Mukherjee
- Department of Physics of Complex Systems, S. N. Bose National Centre for Basic Sciences, Block-JD, Sector-III, Salt Lake, Kolkata 700106, India
| | - Punyabrata Pradhan
- Department of Physics of Complex Systems, S. N. Bose National Centre for Basic Sciences, Block-JD, Sector-III, Salt Lake, Kolkata 700106, India
| |
Collapse
|
9
|
Forrester PJ. A review of exact results for fluctuation formulas in random matrix theory. PROBABILITY SURVEYS 2023. [DOI: 10.1214/23-ps15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Affiliation(s)
- Peter J. Forrester
- School of Mathematics and Statistics, University of Melbourne, Victoria 3010, Australia
| |
Collapse
|
10
|
Dale JR, Sartor JD, Dennis RC, Corwin EI. Hyperuniform jammed sphere packings have anomalous material properties. Phys Rev E 2022; 106:024903. [PMID: 36109903 DOI: 10.1103/physreve.106.024903] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 07/26/2022] [Indexed: 06/15/2023]
Abstract
A spatial distribution is hyperuniform if it has local density fluctuations that vanish in the limit of long length scales. Hyperuniformity is a well known property of both crystals and quasicrystals. Of recent interest, however, is disordered hyperuniformity: the presence of hyperuniform scaling without long-range configurational order. Jammed granular packings have been proposed as an example of disordered hyperuniformity, but recent numerical investigation has revealed that many jammed systems instead exhibit a complex set of distinct behaviors at long, emergent length scales. We use the Voronoi tessellation as a tool to define a set of rescaling transformations that can impose hyperuniformity on an arbitrary weighted point process, and show that these transformations can be used in simulations to iteratively generate hyperuniform, mechanically stable packings of athermal soft spheres. These hyperuniform jammed packings display atypical mechanical properties, particularly in the low-frequency phononic excitations, which exhibit an isolated band of highly collective modes and a band gap around zero frequency.
Collapse
Affiliation(s)
- Jack R Dale
- Department of Physics and Materials Science Institute, University of Oregon, Eugene, Oregon 97403, USA
| | - James D Sartor
- Department of Physics and Materials Science Institute, University of Oregon, Eugene, Oregon 97403, USA
| | - R Cameron Dennis
- Department of Physics and Materials Science Institute, University of Oregon, Eugene, Oregon 97403, USA
| | - Eric I Corwin
- Department of Physics and Materials Science Institute, University of Oregon, Eugene, Oregon 97403, USA
| |
Collapse
|
11
|
Haimi A, Koliander G, Romero JL. Zeros of Gaussian Weyl-Heisenberg Functions and Hyperuniformity of Charge. JOURNAL OF STATISTICAL PHYSICS 2022; 187:22. [PMID: 35510086 PMCID: PMC9012733 DOI: 10.1007/s10955-022-02917-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 03/21/2022] [Indexed: 06/14/2023]
Abstract
We study Gaussian random functions on the complex plane whose stochastics are invariant under the Weyl-Heisenberg group (twisted stationarity). The theory is modeled on translation invariant Gaussian entire functions, but allows for non-analytic examples, in which case winding numbers can be either positive or negative. We calculate the first intensity of zero sets of such functions, both when considered as points on the plane, or as charges according to their phase winding. In the latter case, charges are shown to be in a certain average equilibrium independently of the particular covariance structure (universal screening). We investigate the corresponding fluctuations, and show that in many cases they are suppressed at large scales (hyperuniformity). This means that universal screening is empirically observable at large scales. We also derive an asymptotic expression for the charge variance. As a main application, we obtain statistics for the zero sets of the short-time Fourier transform of complex white noise with general windows, and also prove the following uncertainty principle: the expected number of zeros per unit area is minimized, among all window functions, exactly by generalized Gaussians. Further applications include poly-entire functions such as covariant derivatives of Gaussian entire functions.
Collapse
Affiliation(s)
- Antti Haimi
- Faculty of Mathematics, University of Vienna, Oskar-Morgenstern-Platz 1, 1090 Vienna, Austria
| | - Günther Koliander
- Acoustics Research Institute, Austrian Academy of Sciences, Wohllebengasse 12-14, 1040 Vienna, Austria
| | - José Luis Romero
- Faculty of Mathematics, University of Vienna, Oskar-Morgenstern-Platz 1, 1090 Vienna, Austria
- Acoustics Research Institute, Austrian Academy of Sciences, Wohllebengasse 12-14, 1040 Vienna, Austria
| |
Collapse
|
12
|
Gao Y, Jiao Y, Liu Y. Ultraefficient reconstruction of effectively hyperuniform disordered biphase materials via non-Gaussian random fields. Phys Rev E 2022; 105:045305. [PMID: 35590629 DOI: 10.1103/physreve.105.045305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 02/22/2022] [Indexed: 06/15/2023]
Abstract
Disordered hyperuniform systems are statistically isotropic and possess no Bragg peaks like liquids and glasses, yet they suppress large-scale density fluctuations in a similar manner as in perfect crystals. The unique hyperuniform long-range order in these systems endow them with nearly optimal transport, electronic, and mechanical properties. The concept of hyperuniformity was originally introduced for many-particle systems and has subsequently been generalized to biphase heterogeneous materials such as porous media, composites, polymers, and biological tissues for unconventional property discovery. Existing methods for rendering realizations of disordered hyperuniform biphase materials reconstruction typically employ stochastic optimization such as the simulated annealing approach, which requires many iterations. Here, we propose an explicit ultraefficient method for reconstructing effectively hyperuniform biphase materials, based on the second-order non-Gaussian random fields where no additional tuning step or iteration is needed. Both the effectively hyperuniform microstructure and the latent material property field can be simultaneously generated in a single reconstruction. Moreover, our method can also incorporate hierarchical uncertainties in the heterogeneous materials, including both uncertainties in the disordered material microstructure and material property variation within each phase. The efficiency and feasibility of the proposed reconstruction method are demonstrated via a wide spectrum of examples spanning from isotropic to anisotropic, effectively hyperuniform to nonhyperuniform, and antihyperuniform systems. Our ultraefficient reconstruction method can be readily incorporated into material design, probabilistic analysis, optimization, and discovery of novel disordered hyperuniform heterogeneous materials.
Collapse
Affiliation(s)
- Yi Gao
- School for Engineering of Matter, Transport & Energy, Arizona State University, Tempe, Arizona 85281, USA
| | - Yang Jiao
- School for Engineering of Matter, Transport & Energy, Arizona State University, Tempe, Arizona 85281, USA
| | - Yongming Liu
- School for Engineering of Matter, Transport & Energy, Arizona State University, Tempe, Arizona 85281, USA
| |
Collapse
|
13
|
Cocconi L, Salbreux G, Pruessner G. Scaling of entropy production under coarse graining in active disordered media. Phys Rev E 2022; 105:L042601. [PMID: 35590651 DOI: 10.1103/physreve.105.l042601] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 03/11/2022] [Indexed: 01/01/2023]
Abstract
Entropy production plays a fundamental role in the study of nonequilibrium systems by offering a quantitative handle on the degree of time-reversal symmetry breaking. It depends crucially on the degree of freedom considered as well as on the scale of description. How the entropy production at one resolution of the degrees of freedom is related to the entropy production at another resolution is a fundamental question which has recently attracted interest. This relationship is of particular relevance to coarse-grained and continuum descriptions of a given phenomenon. In this work, we derive the scaling of the entropy production under iterative coarse graining on the basis of the correlations of the underlying microscopic transition rates for noninteracting particles in active disordered media. Our approach unveils a natural criterion to distinguish equilibrium-like and genuinely nonequilibrium macroscopic phenomena based on the sign of the scaling exponent of the entropy production per mesostate.
Collapse
Affiliation(s)
- Luca Cocconi
- Department of Mathematics, Imperial College, SW7 2BX London, United Kingdom.,Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland.,The Francis Crick Institute, NW1 1AT London, United Kingdom
| | - Guillaume Salbreux
- Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland
| | - Gunnar Pruessner
- Department of Mathematics, Imperial College, SW7 2BX London, United Kingdom
| |
Collapse
|
14
|
Hyperuniformity and phase enrichment in vortex and rotor assemblies. Nat Commun 2022; 13:804. [PMID: 35145099 PMCID: PMC8831603 DOI: 10.1038/s41467-022-28375-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 01/17/2022] [Indexed: 11/30/2022] Open
Abstract
Ensembles of particles rotating in a two-dimensional fluid can exhibit chaotic dynamics yet develop signatures of hidden order. Such rotors are found in the natural world spanning vastly disparate length scales — from the rotor proteins in cellular membranes to models of atmospheric dynamics. Here we show that an initially random distribution of either driven rotors in a viscous membrane, or ideal vortices with minute perturbations, spontaneously self assemble into a distinct arrangement. Despite arising from drastically different physics, these systems share a Hamiltonian structure that sets geometrical conservation laws resulting in prominent structural states. We find that the rotationally invariant interactions isotropically suppress long-wavelength fluctuations — a hallmark of a disordered hyperuniform material. With increasing area fraction, the system orders into a hexagonal lattice. In mixtures of two co-rotating populations, the stronger population will gain order from the other and both will become phase enriched. Finally, we show that classical 2D point vortex systems arise as exact limits of the experimentally accessible microscopic membrane rotors, yielding a new system through which to study topological defects. Rotor-like dynamics is observed in many natural systems, from the rotor proteins in cellular membranes to atmospheric models. Here, the authors uncover geometrical conservation laws that limit distribution of driven rotors in a membrane or a soap film and allow to predict their structural states.
Collapse
|
15
|
Lachièze-Rey R. Diophantine Gaussian excursions and random walks. ELECTRON J PROBAB 2022. [DOI: 10.1214/22-ejp854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
16
|
Lemaître A. Stress hyperuniformity and transient oscillatory-exponential correlation decay as signatures of strength vs fragility in glasses. J Chem Phys 2021; 155:194501. [PMID: 34800950 DOI: 10.1063/5.0065613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We examine and compare the local stress autocorrelation in the inherent states of a fragile and a strong glass: the Kob-Andersen (KA) binary mixture and the Beest-Kramer-Santen model of silica. For both systems, local (domain-averaged) stress fluctuations asymptotically reach the normal inverse-volume decay in the large domain limit; accordingly, the real-space stress autocorrelation presents long-range power law tails. However, in the case of silica, local stress fluctuations display a high degree of hyperuniformity, i.e., their asymptotic (normal) decay is disproportionately smaller than their bond level amplitude. This property causes the asymptotic power law tails of the real-space stress autocorrelation to be swamped, up to very large distances (several nanometers), by an intermediate oscillatory-exponential decay regime. Similar contributions exist in the KA stress autocorrelation, but they never can be considered as dominating the power law decay and fully disappear when stress is coarse-grained beyond one interatomic distance. Our observations document that the relevance of power-law stress correlation may constitute a key discriminating feature between strong and fragile glasses. Meanwhile, they highlight that the notion of local stress in atomistic systems involves by necessity a choice of observation (coarse-graining) scale, the relevant value of which depends, in principle, on both the model and the phenomenon studied.
Collapse
Affiliation(s)
- Anaël Lemaître
- Navier, Ecole des Ponts, Univ Gustave Eiffel, CNRS, Marne-la-Vallée, France
| |
Collapse
|
17
|
Abstract
Transport properties of porous media are intimately linked to their pore-space microstructures. We quantify geometrical and topological descriptors of the pore space of certain disordered and ordered distributions of spheres, including pore-size functions and the critical pore radius δ_{c}. We focus on models of porous media derived from maximally random jammed sphere packings, overlapping spheres, equilibrium hard spheres, quantizer sphere packings, and crystalline sphere packings. For precise estimates of the percolation thresholds, we use a strict relation of the void percolation around sphere configurations to weighted bond percolation on the corresponding Voronoi networks. We use the Newman-Ziff algorithm to determine the percolation threshold using universal properties of the cluster size distribution. The critical pore radius δ_{c} is often used as the key characteristic length scale that determines the fluid permeability k. A recent study [Torquato, Adv. Wat. Resour. 140, 103565 (2020)10.1016/j.advwatres.2020.103565] suggested for porous media with a well-connected pore space an alternative estimate of k based on the second moment of the pore size 〈δ^{2}〉, which is easier to determine than δ_{c}. Here, we compare δ_{c} to the second moment of the pore size 〈δ^{2}〉, and indeed confirm that, for all porosities and all models considered, δ_{c}^{2} is to a good approximation proportional to 〈δ^{2}〉. However, unlike 〈δ^{2}〉, the permeability estimate based on δ_{c}^{2} does not predict the correct ranking of k for our models. Thus, we confirm 〈δ^{2}〉 to be a promising candidate for convenient and reliable estimates of the fluid permeability for porous media with a well-connected pore space. Moreover, we compare the fluid permeability of our models with varying degrees of order, as measured by the τ order metric. We find that (effectively) hyperuniform models tend to have lower values of k than their nonhyperuniform counterparts. Our findings could facilitate the design of porous media with desirable transport properties via targeted pore statistics.
Collapse
|
18
|
Nizam ÜS, Makey G, Barbier M, Kahraman SS, Demir E, Shafigh EE, Galioglu S, Vahabli D, Hüsnügil S, Güneş MH, Yelesti E, Ilday S. Dynamic evolution of hyperuniformity in a driven dissipative colloidal system. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:304002. [PMID: 33878751 DOI: 10.1088/1361-648x/abf9b8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 04/20/2021] [Indexed: 06/12/2023]
Abstract
Hyperuniformity is evolving to become a unifying concept that can help classify and characterize equilibrium and nonequilibrium states of matter. Therefore, understanding the extent of hyperuniformity in dissipative systems is critical. Here, we study the dynamic evolution of hyperuniformity in a driven dissipative colloidal system. We experimentally show and numerically verify that the hyperuniformity of a colloidal crystal is robust against various lattice imperfections and environmental perturbations. This robustness even manifests during crystal disassembly as the system switches between strong (class I), logarithmic (class II), weak (class III), and non-hyperuniform states. To aid analyses, we developed a comprehensive computational toolbox, enabling real-time characterization of hyperuniformity in real- and reciprocal-spaces together with the evolution of several order metric features, and measurements showing the effect of external perturbations on the spatiotemporal distribution of the particles. Our findings provide a new framework to understand the basic principles that drive a dissipative system to a hyperuniform state.
Collapse
Affiliation(s)
- Ü Seleme Nizam
- UNAM-National Nanotechnology Research Center & Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, 06800, Turkey
- Department of Physics, Boğaziçi University, İstanbul, 34342, Turkey
| | - Ghaith Makey
- UNAM-National Nanotechnology Research Center & Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, 06800, Turkey
- Department of Physics, Bilkent University, Ankara, 06800, Turkey
| | - Michaël Barbier
- UNAM-National Nanotechnology Research Center & Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, 06800, Turkey
| | - S Süleyman Kahraman
- Department of Physics, Middle East Technical University, Ankara, 06800, Turkey
| | - Esin Demir
- UNAM-National Nanotechnology Research Center & Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, 06800, Turkey
| | - Ehsan E Shafigh
- UNAM-National Nanotechnology Research Center & Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, 06800, Turkey
| | - Sezin Galioglu
- UNAM-National Nanotechnology Research Center & Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, 06800, Turkey
| | - Danial Vahabli
- Department of Physics, Middle East Technical University, Ankara, 06800, Turkey
| | - Sercan Hüsnügil
- Department of Physics, Bilkent University, Ankara, 06800, Turkey
| | - Muhammed H Güneş
- Department of Physics, Bilkent University, Ankara, 06800, Turkey
| | - Efe Yelesti
- Department of Physics, Bilkent University, Ankara, 06800, Turkey
| | - Serim Ilday
- UNAM-National Nanotechnology Research Center & Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, 06800, Turkey
| |
Collapse
|
19
|
Tapader D, Pradhan P, Dhar D. Density relaxation in conserved Manna sandpiles. Phys Rev E 2021; 103:032122. [PMID: 33862746 DOI: 10.1103/physreve.103.032122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 02/18/2021] [Indexed: 11/07/2022]
Abstract
We study relaxation of long-wavelength density perturbations in a one-dimensional conserved Manna sandpile. Far from criticality where correlation length ξ is finite, relaxation of density profiles having wave numbers k→0 is diffusive, with relaxation time τ_{R}∼k^{-2}/D with D being the density-dependent bulk-diffusion coefficient. Near criticality with kξ≳1, the bulk diffusivity diverges and the transport becomes anomalous; accordingly, the relaxation time varies as τ_{R}∼k^{-z}, with the dynamical exponent z=2-(1-β)/ν_{⊥}<2, where β is the critical order-parameter exponent and ν_{⊥} is the critical correlation-length exponent. Relaxation of initially localized density profiles on an infinite critical background exhibits a self-similar structure. In this case, the asymptotic scaling form of the time-dependent density profile is analytically calculated: we find that, at long times t, the width σ of the density perturbation grows anomalously, σ∼t^{w}, with the growth exponent ω=1/(1+β)>1/2. In all cases, theoretical predictions are in reasonably good agreement with simulations.
Collapse
Affiliation(s)
- Dhiraj Tapader
- Department of Theoretical Sciences, S. N. Bose National Centre for Basic Sciences, Block-JD, Sector-III, Salt Lake, Kolkata 700106, India
| | - Punyabrata Pradhan
- Department of Theoretical Sciences, S. N. Bose National Centre for Basic Sciences, Block-JD, Sector-III, Salt Lake, Kolkata 700106, India
| | - Deepak Dhar
- Department of Physics, Indian Institute of Science Education and Research, Pune, Dr. Homi Bhabha Road, Pashan, Pune 411008, India
| |
Collapse
|
20
|
Zheng Y, Parmar ADS, Pica Ciamarra M. Hidden Order Beyond Hyperuniformity in Critical Absorbing States. PHYSICAL REVIEW LETTERS 2021; 126:118003. [PMID: 33798360 DOI: 10.1103/physrevlett.126.118003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 02/01/2021] [Accepted: 02/24/2021] [Indexed: 06/12/2023]
Abstract
Disordered hyperuniformity is a description of hidden correlations in point distributions revealed by an anomalous suppression in fluctuations of local density at various coarse-graining length scales. In the absorbing phase of models exhibiting an active-absorbing state transition, this suppression extends up to a hyperuniform length scale that diverges at the critical point. Here, we demonstrate the existence of additional many-body correlations beyond hyperuniformity. These correlations are hidden in the higher moments of the probability distribution of the local density and extend up to a longer length scale with a faster divergence than the hyperuniform length on approaching the critical point. Our results suggest that a hidden order beyond hyperuniformity may generically be present in complex disordered systems.
Collapse
Affiliation(s)
- Yuanjian Zheng
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore
| | - Anshul D S Parmar
- Laboratoire Charles Coulomb (L2C), Universit de Montpellier, CNRS, 34095 Montpellier, France
| | - Massimo Pica Ciamarra
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore
- MajuLab, CNRS-UCA-SU-NUS-NTU International Joint Research Unit, Singapore
- CNR-SPIN, Dipartimento di Scienze Fisiche, Università di Napoli Federico II, I-80126 Napoli, Italy
| |
Collapse
|
21
|
Kim J, Torquato S. Characterizing the hyperuniformity of ordered and disordered two-phase media. Phys Rev E 2021; 103:012123. [PMID: 33601605 DOI: 10.1103/physreve.103.012123] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 12/24/2020] [Indexed: 11/07/2022]
Abstract
The hyperuniformity concept provides a unified means to classify all perfect crystals, perfect quasicrystals, and exotic amorphous states of matter according to their capacity to suppress large-scale density fluctuations. While the classification of hyperuniform point configurations has received considerable attention, much less is known about the classification of hyperuniform two-phase heterogeneous media, which include composites, porous media, foams, cellular solids, colloidal suspensions, and polymer blends. The purpose of this article is to begin such a program for certain two-dimensional models of hyperuniform two-phase media by ascertaining their local volume-fraction variances σ_{_{V}}^{2}(R) and the associated hyperuniformity order metrics B[over ¯]_{V}. This is a highly challenging task because the geometries and topologies of the phases are generally much richer and more complex than point-configuration arrangements, and one must ascertain a broadly applicable length scale to make key quantities dimensionless. Therefore, we purposely restrict ourselves to a certain class of two-dimensional periodic cellular networks as well as periodic and disordered or irregular packings of circular disks, some of which maximize their effective transport and elastic properties. Among the cellular networks considered, the honeycomb networks have minimal values of the hyperuniformity order metrics B[over ¯]_{V} across all volume fractions. On the other hand, for all packings of circular disks examined, the triangular-lattice packings have the smallest values of B[over ¯]_{V} for the possible range of volume fractions. Among all structures studied here, the triangular-lattice packing of circular disks have the minimal values of the order metric for almost all volume fractions. Our study provides a theoretical foundation for the establishment of hyperuniformity order metrics for general two-phase media and a basis to discover new hyperuniform two-phase systems with desirable bulk physical properties by inverse design procedures.
Collapse
Affiliation(s)
- Jaeuk Kim
- Department of Physics, Princeton University, Princeton, New Jersey 08544, USA
| | - Salvatore Torquato
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA; Department of Physics, Princeton University, Princeton, New Jersey 08544, USA; Princeton Institute for the Science and Technology of Materials, Princeton University, Princeton, New Jersey 08544, USA; and Program in Applied and Computational Mathematics, Princeton University, Princeton, New Jersey 08544, USA
| |
Collapse
|
22
|
|
23
|
Salvalaglio M, Bouabdellaoui M, Bollani M, Benali A, Favre L, Claude JB, Wenger J, de Anna P, Intonti F, Voigt A, Abbarchi M. Hyperuniform Monocrystalline Structures by Spinodal Solid-State Dewetting. PHYSICAL REVIEW LETTERS 2020; 125:126101. [PMID: 33016725 DOI: 10.1103/physrevlett.125.126101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 08/07/2020] [Indexed: 06/11/2023]
Abstract
Materials featuring anomalous suppression of density fluctuations over large length scales are emerging systems known as disordered hyperuniform. The underlying hidden order renders them appealing for several applications, such as light management and topologically protected electronic states. These applications require scalable fabrication, which is hard to achieve with available top-down approaches. Theoretically, it is known that spinodal decomposition can lead to disordered hyperuniform architectures. Spontaneous formation of stable patterns could thus be a viable path for the bottom-up fabrication of these materials. Here, we show that monocrystalline semiconductor-based structures, in particular Si_{1-x}Ge_{x} layers deposited on silicon-on-insulator substrates, can undergo spinodal solid-state dewetting featuring correlated disorder with an effective hyperuniform character. Nano- to micrometric sized structures targeting specific morphologies and hyperuniform character can be obtained, proving the generality of the approach and paving the way for technological applications of disordered hyperuniform metamaterials. Phase-field simulations explain the underlying nonlinear dynamics and the physical origin of the emerging patterns.
Collapse
Affiliation(s)
- Marco Salvalaglio
- Institute of Scientific Computing, TU Dresden, 01062 Dresden, Germany
- Dresden Center for Computational Materials Science (DCMS), TU Dresden, 01062 Dresden, Germany
| | | | - Monica Bollani
- Istituto di Fotonica e Nanotecnologie-Consiglio Nazionale delle Ricerche, Laboratory for Nanostructure Epitaxy and Spintronics on Silicon, Via Anzani 42, 22100 Como, Italy
| | - Abdennacer Benali
- Aix Marseille Univ, Université de Toulon, CNRS, IM2NP 13397, Marseille, France
| | - Luc Favre
- Aix Marseille Univ, Université de Toulon, CNRS, IM2NP 13397, Marseille, France
| | - Jean-Benoit Claude
- Aix Marseille Université, CNRS, Centrale Marseille, Institut Fresnel, 13013 Marseille, France
| | - Jerome Wenger
- Aix Marseille Université, CNRS, Centrale Marseille, Institut Fresnel, 13013 Marseille, France
| | - Pietro de Anna
- Institut des Sciences de la Terre, University of Lausanne, Lausanne 1015, Switzerland
| | | | - Axel Voigt
- Institute of Scientific Computing, TU Dresden, 01062 Dresden, Germany
- Dresden Center for Computational Materials Science (DCMS), TU Dresden, 01062 Dresden, Germany
| | - Marco Abbarchi
- Aix Marseille Univ, Université de Toulon, CNRS, IM2NP 13397, Marseille, France
| |
Collapse
|
24
|
Ma Z, Lomba E, Torquato S. Optimized Large Hyperuniform Binary Colloidal Suspensions in Two Dimensions. PHYSICAL REVIEW LETTERS 2020; 125:068002. [PMID: 32845658 DOI: 10.1103/physrevlett.125.068002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 07/15/2020] [Indexed: 06/11/2023]
Abstract
The creation of disordered hyperuniform materials with extraordinary optical properties (e.g., large complete photonic band gaps) requires a capacity to synthesize large samples that are effectively hyperuniform down to the nanoscale. Motivated by this challenge, we propose a feasible equilibrium fabrication protocol using binary paramagnetic colloidal particles confined in a 2D plane. The strong and long-ranged dipolar interaction induced by a tunable magnetic field is free from screening effects that attenuate long-ranged electrostatic interactions in charged colloidal systems. Specifically, we numerically find a family of optimal size ratios that makes the two-phase system effectively hyperuniform. We show that hyperuniformity is a general consequence of low isothermal compressibilities, which makes our protocol suitable to treat more general systems with other long-ranged interactions, dimensionalities, and/or polydispersity. Our methodology paves the way to synthesize large photonic hyperuniform materials that function in the visible to infrared range and hence may accelerate the discovery of novel photonic materials.
Collapse
Affiliation(s)
- Zheng Ma
- Department of Physics, Princeton University, Princeton, New Jersey 08544, USA
| | - Enrique Lomba
- Instituto de Química Física Rocasolano, CSIC, Calle Serrano 119, E-28006 Madrid, Spain
| | - Salvatore Torquato
- Department of Chemistry, Department of Physics, Princeton Institute for the Science and Technology of Materials, and Program in Applied and Computational Mathematics, Princeton University, Princeton, New Jersey 08544, USA
| |
Collapse
|
25
|
Gerasimenko YA, Vaskivskyi I, Litskevich M, Ravnik J, Vodeb J, Diego M, Kabanov V, Mihailovic D. Quantum jamming transition to a correlated electron glass in 1T-TaS 2. NATURE MATERIALS 2019; 18:1078-1083. [PMID: 31308513 DOI: 10.1038/s41563-019-0423-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 06/04/2019] [Indexed: 05/17/2023]
Abstract
Distinct many-body states may be created under non-equilibrium conditions through different ordering paths, even when their constituents are subjected to the same fundamental interactions. The phase-transition mechanism to such states remains poorly understood. Here, we show that controlled optical or electromagnetic perturbations can lead to an amorphous metastable state of strongly correlated electrons in a quasi-two-dimensional dichalcogenide. Scanning tunnelling microscopy reveals a hyperuniform pattern of localized charges, whereas multitip surface nanoscale conductivity measurements and tunnelling spectroscopy show an electronically gapless conducting state that is different from conventional Coulomb glasses and many-body localized systems. The state is stable up to room temperature and shows no signs of either local charge order or phase separation. The mechanism for its formation is attributed to a dynamical localization of electrons through mutual interactions. Theoretical calculations confirm the correlations between localized charges to be crucial for the state's unusual stability.
Collapse
Affiliation(s)
| | | | - Maksim Litskevich
- Department of Complex Matter, Jozef Stefan Institute, Ljubljana, Slovenia
- Laboratory for Topological Quantum Matter and Advanced Spectroscopy, Department of Physics, Princeton University, Princeton, NJ, USA
| | - Jan Ravnik
- Department of Complex Matter, Jozef Stefan Institute, Ljubljana, Slovenia
- Department of Physics, Faculty of Mathematics and Physics, University of Ljubljana, Ljubljana, Slovenia
| | - Jaka Vodeb
- Department of Complex Matter, Jozef Stefan Institute, Ljubljana, Slovenia
- Department of Physics, Faculty of Mathematics and Physics, University of Ljubljana, Ljubljana, Slovenia
| | - Michele Diego
- Department of Complex Matter, Jozef Stefan Institute, Ljubljana, Slovenia
| | - Viktor Kabanov
- Department of Complex Matter, Jozef Stefan Institute, Ljubljana, Slovenia
| | - Dragan Mihailovic
- CENN Nanocenter, Ljubljana, Slovenia.
- Department of Complex Matter, Jozef Stefan Institute, Ljubljana, Slovenia.
- Department of Physics, Faculty of Mathematics and Physics, University of Ljubljana, Ljubljana, Slovenia.
| |
Collapse
|
26
|
Castillo G, Mujica N, Sepúlveda N, Sobarzo JC, Guzmán M, Soto R. Hyperuniform states generated by a critical friction field. Phys Rev E 2019; 100:032902. [PMID: 31639897 DOI: 10.1103/physreve.100.032902] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Indexed: 06/10/2023]
Abstract
Hyperuniform states are an efficient way to fill up space for disordered systems. In these states the particle distribution is disordered at the short scale but becomes increasingly uniform when looked at large scales. Hyperuniformity appears in several systems, in static or quasistatic regimes, as well as close to transitions to absorbing states. Here, we show that a vibrated granular layer, at the critical point of the liquid-to-solid transition, displays dynamic hyperuniformity. Prior to the transition, patches of the solid phase form, with length scales and mean lifetimes that diverge critically at the transition point. When reducing the wave number, density fluctuations encounter increasingly more patches that block their propagation, resulting in a static structure factor that tends to zero for small wave numbers at the critical point, which is a signature of hyperuniformity. A simple model demonstrates that this coupling of a density field to a highly fluctuating scalar friction field gives rise to dynamic hyperuniform states. Finally, we show that the structure factor detects better the emergence of hyperuniformity, compared to the particle number variance.
Collapse
Affiliation(s)
- Gustavo Castillo
- Instituto de Ciencias de la Ingeniería, Universidad de O'Higgins, 2841959 Rancagua, Chile
| | - Nicolás Mujica
- Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, 8370449 Santiago, Chile
| | - Néstor Sepúlveda
- Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, 8370449 Santiago, Chile
| | - Juan Carlos Sobarzo
- Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, 8370449 Santiago, Chile
| | - Marcelo Guzmán
- Université de Lyon, ENS de Lyon, Université Claud Bernard Lyon 1, CNRS, Laboratoire de Physique, F-6934 Lyon, France
| | - Rodrigo Soto
- Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, 8370449 Santiago, Chile
| |
Collapse
|
27
|
Kim J, Torquato S. Methodology to construct large realizations of perfectly hyperuniform disordered packings. Phys Rev E 2019; 99:052141. [PMID: 31212467 DOI: 10.1103/physreve.99.052141] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Indexed: 01/26/2023]
Abstract
Disordered hyperuniform packings (or dispersions) are unusual amorphous two-phase materials that are endowed with exotic physical properties. Such hyperuniform systems are characterized by an anomalous suppression of volume-fraction fluctuations at infinitely long-wavelengths, compared to ordinary disordered materials. While there has been growing interest in such singular states of amorphous matter, a major obstacle has been an inability to produce large samples that are perfectly hyperuniform due to practical limitations of conventional numerical and experimental methods. To overcome these limitations, we introduce a general theoretical methodology to construct perfectly hyperuniform packings in d-dimensional Euclidean space R^{d}. Specifically, beginning with an initial general tessellation of space by disjoint cells that meets a "bounded-cell" condition, hard particles of general shape are placed inside each cell such that the local-cell particle packing fractions are identical to the global packing fraction. We prove that the constructed packings with a polydispersity in size are perfectly hyperuniform in the infinite-sample-size limit, regardless of particle shapes, positions, and numbers per cell. We use this theoretical formulation to devise an efficient and tunable algorithm to generate extremely large realizations of such packings. We employ two distinct initial tessellations: Voronoi as well as sphere tessellations. Beginning with Voronoi tessellations, we show that our algorithm can remarkably convert extremely large nonhyperuniform packings into hyperuniform ones in R^{2} and R^{3}. Implementing our theoretical methodology on sphere tessellations, we establish the hyperuniformity of the classical Hashin-Shtrikman multiscale coated-spheres structures, which are known to be two-phase media microstructures that possess optimal effective transport and elastic properties. A consequence of our work is a rigorous demonstration that packings that have identical tessellations can either be nonhyperuniform or hyperuniform by simply tuning local characteristics. It is noteworthy that our computationally designed hyperuniform two-phase systems can easily be fabricated via state-of-the-art methods, such as 2D photolithographic and 3D printing technologies. In addition, the tunability of our methodology offers a route for the discovery of novel disordered hyperuniform two-phase materials.
Collapse
Affiliation(s)
- Jaeuk Kim
- Department of Physics, Princeton University, Princeton, New Jersey 08544, USA
| | - Salvatore Torquato
- Department of Physics, Princeton University, Princeton, New Jersey 08544, USA.,Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA.,Princeton Institute for the Science and Technology of Materials, Princeton University, Princeton, New Jersey 08544, USA.,Program in Applied and Computational Mathematics, Princeton University, Princeton, New Jersey 08544, USA
| |
Collapse
|
28
|
Ma Z, Torquato S. Hyperuniformity of generalized random organization models. Phys Rev E 2019; 99:022115. [PMID: 30934260 DOI: 10.1103/physreve.99.022115] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Indexed: 11/07/2022]
Abstract
Studies of random organization models of monodisperse (i.e., identical) spherical particles have shown that a hyperuniform state is achievable when the system goes through an absorbing phase transition to a critical state. Here we investigate to what extent hyperuniformity is preserved when the model is generalized to particles with a size distribution and/or nonspherical shapes. We begin by examining binary disks in two dimensions and demonstrate that their critical states are hyperuniform as two-phase media, but not hyperuniform nor multihyperuniform as point patterns formed by the particle centroids. We further confirm the generality of our findings by studying particles with a continuous size distribution. Finally, to study the effect of rotational degrees of freedom, we extend our model to noncircular particles, namely, hard rectangles with various aspect ratios, including the hard-needle limit. Although these systems exhibit only short-range orientational order, hyperuniformity is still preserved. Our analysis reveals that the redistribution of the "mass" of the particles rather than the particle centroids is central to this dynamical process. The consideration of the "active volume fraction" of generalized random organization models may help to resolve which universality class they belong to and hence may lead to a deeper theoretical understanding of absorbing-state models. Our results suggest that general particle systems subject to random organization can be a robust way to fabricate a wide class of hyperuniform states of matter by tuning the structures via different particle-size and -shape distributions. This in turn potentially enables the creation of multifunctional hyperuniform materials with desirable optical, transport, and mechanical properties.
Collapse
Affiliation(s)
- Zheng Ma
- Department of Physics, Princeton University and Princeton, New Jersey 08544, USA
| | - Salvatore Torquato
- Department of Chemistry, Department of Physics, Princeton Institute for the Science and Technology of Materials, and Program in Applied and Computational Mathematics, Princeton University, Princeton, New Jersey 08544, USA
| |
Collapse
|
29
|
Middlemas TM, Stillinger FH, Torquato S. Hyperuniformity order metric of Barlow packings. Phys Rev E 2019; 99:022111. [PMID: 30934256 DOI: 10.1103/physreve.99.022111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Indexed: 06/09/2023]
Abstract
The concept of hyperuniformity has been a useful tool in the study of density fluctuations at large length scales in systems ranging across the natural and mathematical sciences. One can rank a large class of hyperuniform systems by their ability to suppress long-range density fluctuations through the use of a hyperuniformity order metric Λ[over ¯]. We apply this order metric to the Barlow packings, which are the infinitely degenerate densest packings of identical rigid spheres that are distinguished by their stacking geometries and include the commonly known fcc lattice and hcp crystal. The "stealthy stacking" theorem implies that these packings are all stealthy hyperuniform, a strong type of hyperuniformity, which involves the suppression of scattering up to a wave vector K. We describe the geometry of three classes of Barlow packings, two disordered classes and small-period packings. In addition, we compute a lower bound on K for all Barlow packings. We compute Λ[over ¯] for the aforementioned three classes of Barlow packings and find that, to a very good approximation, it is linear in the fraction of fcc-like clusters, taking values between those of least-ordered hcp and most-ordered fcc. This implies that the value of Λ[over ¯] of all Barlow packings is primarily controlled by the local cluster geometry. These results highlight the special nature of anisotropic stacking disorder, which provides impetus for future research on the development of anisotropic order metrics and hyperuniformity properties.
Collapse
Affiliation(s)
- T M Middlemas
- Department of Chemistry, Princeton University, New Jersey 08544, USA
| | - F H Stillinger
- Department of Chemistry, Princeton University, New Jersey 08544, USA
| | - S Torquato
- Department of Chemistry, Department of Physics, Princeton Institute for the Science and Technology of Materials, and Program in Applied and Computational Mathematics, Princeton University, New Jersey 08544, USA
| |
Collapse
|
30
|
Cinacchi G, Torquato S. Hard convex lens-shaped particles: metastable, glassy and jammed states. SOFT MATTER 2018; 14:8205-8218. [PMID: 30283973 DOI: 10.1039/c8sm01519h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We generate and study dense positionally and/or orientationally disordered, including jammed, monodisperse packings of hard convex lens-shaped particles (lenses). Relatively dense isotropic fluid configurations of lenses of various aspect ratios are slowly compressed via a Monte Carlo method based procedure. Under this compression protocol, while 'flat' lenses form a nematic fluid phase (where particles are positionally disordered but orientationally ordered) and 'globular' lenses form a plastic solid phase (where particles are positionally ordered but orientationally disordered), 'intermediate', neither 'flat' nor 'globular', lenses do not form either mesophase. In general, a crystal solid phase (where particles are both positionally and orientationally ordered) does not spontaneously form during lengthy numerical simulation runs. In correspondence to those volume fractions at which a transition to the crystal solid phase would occur in equilibrium, a 'downturn' is observed in the inverse compressibility factor versus volume fraction curve beyond which this curve behaves essentially linearly. This allows us to estimate the volume fraction at jamming of the dense non-crystalline packings so generated. These packings are nematic for 'flat' lenses and plastic for 'globular' lenses, while they are robustly isotropic for 'intermediate' lenses, as confirmed by the calculation of the τ order metric, among other quantities. The structure factors S(k) of the corresponding jammed states tend to zero as the wavenumber k goes to zero, indicating they are effectively hyperuniform (i.e., their infinite-wavelength density fluctuations are anomalously suppressed). Among all possible lens shapes, 'intermediate' lenses with aspect ratio around 2/3 are special because they are those that reach the highest volume fractions at jamming while being positionally and orientationally disordered and these volume fractions are as high as those reached by nematic jammed states of 'flat' lenses and plastic jammed states of 'globular' lenses. All of their attributes, taken together, make such 'intermediate' lens packings particularly good glass-forming materials.
Collapse
Affiliation(s)
- Giorgio Cinacchi
- Departamento de Física Teórica de la Materia Condensada, Instituto de Física de la Materia Condensada (IFIMAC), Instituto de Ciencias de Materiales "Nicolás Cabrera", Universidad Autónoma de Madrid, Ciudad Universitaria de Cantoblanco, E-28049 Madrid, Spain.
| | - Salvatore Torquato
- Department of Chemistry, Department of Physics, Institute for the Science and Technology of Materials, Program for Applied and Computational Mathematics, Princeton University, Princeton, New Jersey 08544, USA.
| |
Collapse
|
31
|
Affiliation(s)
- Anaël Lemaître
- Laboratoire Navier, UMR 8205, École des Ponts, IFSTTAR, CNRS, UPE, Champs-sur-Marne, France
| |
Collapse
|
32
|
Lemberskiy G, Fieremans E, Veraart J, Deng FM, Rosenkrantz AB, Novikov DS. Characterization of prostate microstructure using water diffusion and NMR relaxation. FRONTIERS IN PHYSICS 2018; 6:91. [PMID: 30568939 PMCID: PMC6296484 DOI: 10.3389/fphy.2018.00091] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
For many pathologies, early structural tissue changes occur at the cellular level, on the scale of micrometers or tens of micrometers. Magnetic resonance imaging (MRI) is a powerful non-invasive imaging tool used for medical diagnosis, but its clinical hardware is incapable of reaching the cellular length scale directly. In spite of this limitation, microscopic tissue changes in pathology can potentially be captured indirectly, from macroscopic imaging characteristics, by studying water diffusion. Here we focus on water diffusion and NMR relaxation in the human prostate, a highly heterogeneous organ at the cellular level. We present a physical picture of water diffusion and NMR relaxation in the prostate tissue, that is comprised of a densely-packed cellular compartment (composed of stroma and epithelium), and a luminal compartment with almost unrestricted water diffusion. Transverse NMR relaxation is used to identify fast and slow T 2 components, corresponding to these tissue compartments, and to disentangle the luminal and cellular compartment contributions to the temporal evolution of the overall water diffusion coefficient. Diffusion in the luminal compartment falls into the short-time surface-to-volume (S/V) limit, indicating that only a small fraction of water molecules has time to encounter the luminal walls of healthy tissue; from the S/V ratio, the average lumen diameter averaged over three young healthy subjects is measured to be 217.7±188.7 μm. Conversely, the diffusion in the cellular compartment is highly restricted and anisotropic, consistent with the fibrous character of the stromal tissue. Diffusion transverse to these fibers is well described by the random permeable barrier model (RPBM), as confirmed by the dynamical exponent ϑ = 1/2 for approaching the long-time limit of diffusion, and the corresponding structural exponent p = -1 in histology. The RPBM-derived fiber diameter and membrane permeability were 19.8±8.1 μm and 0.044±0.045 μm/ms, respectively, in agreement with known values from tissue histology and membrane biophysics. Lastly, we revisited 38 prostate cancer cases from a recently published study, and found the same dynamical exponent ϑ = 1/2 of diffusion in tumors and benign regions. Our results suggest that a multi-parametric MRI acquisition combined with biophysical modeling may be a powerful non-invasive complement to prostate cancer grading, potentially foregoing biopsies.
Collapse
Affiliation(s)
- Gregory Lemberskiy
- Center for Biomedical Imaging, Department of Radiology, NYU School of Medicine, New York, NY, USA; Sackler Institute of Graduate Biomedical Sciences, NYU School of Medicine, New York, NY, USA
| | - Els Fieremans
- Center for Biomedical Imaging, Department of Radiology, NYU School of Medicine, New York, NY, USA,
| | - Jelle Veraart
- Center for Biomedical Imaging, Department of Radiology, NYU School of Medicine, New York, NY, USA,
| | - Fang-Ming Deng
- Department of Pathology, New York University Langone Medical Center, New York, NY New York, NY, USA;
| | - Andrew B Rosenkrantz
- Department of Radiology, New York University Langone Medical Center, New York, NY New York, NY, USA;
| | - Dmitry S Novikov
- Center for Biomedical Imaging, Department of Radiology, NYU School of Medicine, New York, NY, USA,
| |
Collapse
|
33
|
Torquato S, Chen D. Multifunctional hyperuniform cellular networks: optimality, anisotropy and disorder. ACTA ACUST UNITED AC 2018. [DOI: 10.1088/2399-7532/aaca91] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
34
|
Ma Z, Torquato S. Precise algorithms to compute surface correlation functions of two-phase heterogeneous media and their applications. Phys Rev E 2018; 98:013307. [PMID: 30110871 DOI: 10.1103/physreve.98.013307] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Indexed: 11/07/2022]
Abstract
The quantitative characterization of the microstructure of random heterogeneous media in d-dimensional Euclidean space R^{d} via a variety of n-point correlation functions is of great importance, since the respective infinite set determines the effective physical properties of the media. In particular, surface-surface F_{ss} and surface-void F_{sv} correlation functions (obtainable from radiation scattering experiments) contain crucial interfacial information that enables one to estimate transport properties of the media (e.g., the mean survival time and fluid permeability) and complements the information content of the conventional two-point correlation function. However, the current technical difficulty involved in sampling surface correlation functions has been a stumbling block in their widespread use. We first present a concise derivation of the small-r behaviors of these functions, which are linked to the mean curvature of the system. Then we demonstrate that one can reduce the computational complexity of the problem, without sacrificing accuracy, by extracting the necessary interfacial information from a cut of the d-dimensional statistically homogeneous and isotropic system with an infinitely long line. Accordingly, we devise algorithms based on this idea and test them for two-phase media in continuous and discrete spaces. Specifically for the exact benchmark model of overlapping spheres, we find excellent agreement between numerical and exact results. We compute surface correlation functions and corresponding local surface-area variances for a variety of other model microstructures, including hard spheres in equilibrium, decorated "stealthy" patterns, as well as snapshots of evolving pattern formation processes (e.g., spinodal decomposition). It is demonstrated that the precise determination of surface correlation functions provides a powerful means to characterize a wide class of complex multiphase microstructures.
Collapse
Affiliation(s)
- Zheng Ma
- Department of Physics, Princeton University, Princeton, New Jersey 08544, USA
| | - Salvatore Torquato
- Department of Chemistry, Department of Physics, Princeton Institute for the Science and Technology of Materials, and Program in Applied and Computational Mathematics, Princeton University, Princeton, New Jersey 08544, USA
| |
Collapse
|
35
|
Di Battista D, Ancora D, Zacharakis G, Ruocco G, Leonetti M. Hyperuniformity in amorphous speckle patterns. OPTICS EXPRESS 2018; 26:15594-15608. [PMID: 30114818 DOI: 10.1364/oe.26.015594] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 05/17/2018] [Indexed: 06/08/2023]
Abstract
Hyperuniform structures possess the ability to confine and drive light, although their fabrication is extremely challenging. Here we demonstrate that speckle patterns obtained by a superposition of randomly arranged sources of Bessel beams can be used to generate hyperunifrom scalar fields. By exploiting laser light tailored with a spatial filter, we experimentally produce (without requiring any computational power) a speckle pattern possessing maxima at locations corresponding to a hyperuniform distribution. By properly filtering out intensity fluctuation from the same speckle pattern, it is possible to retrieve an intensity profile satisfying the hyperuniformity requirements. Our findings are supported by extensive numerical simulations.
Collapse
|
36
|
Liquid foam templating - A route to tailor-made polymer foams. Adv Colloid Interface Sci 2018; 256:276-290. [PMID: 29728156 DOI: 10.1016/j.cis.2018.03.010] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 03/24/2018] [Accepted: 03/25/2018] [Indexed: 12/11/2022]
Abstract
Solid foams with pore sizes between a few micrometres and a few millimetres are heavily exploited in a wide range of established and emerging applications. While the optimisation of foam applications requires a fine control over their structural properties (pore size distribution, pore opening, foam density, …), the great complexity of most foaming processes still defies a sound scientific understanding and therefore explicit control and prediction of these parameters. We therefore need to improve our understanding of existing processes and also develop new fabrication routes which we understand and which we can exploit to tailor-make new porous materials. One of these new routes is liquid templating in general and liquid foam templating in particular, to which this review article is dedicated. While all solid foams are generated from an initially liquid(-like) state, the particular notion of liquid foam templating implies the specific condition that the liquid foam has time to find its "equilibrium structure" before it is solidified. In other words, the characteristic time scales of the liquid foam's stability and its solidification are well separated, allowing to build on the vast know-how on liquid foams established over the last 20 years. The dispersed phase of the liquid foam determines the final pore size and pore size distribution, while the continuous phase contains the precursors of the desired porous scaffold. We review here the three key challenges which need to be addressed by this approach: (1) the control of the structure of the liquid template, (2) the matching of the time scales between the stability of the liquid template and solidification, and (3) the preservation of the structure of the template throughout the process. Focusing on the field of polymer foams, this review gives an overview of recent research on the properties of liquid foam templates and summarises a key set of studies in the emerging field of liquid foam templating. It finishes with an outlook on future developments. Occasional references to non-polymeric foams are given if the analogy provides specific insight into a physical phenomenon.
Collapse
|
37
|
Dupré M, Hsu L, Kanté B. On the design of random metasurface based devices. Sci Rep 2018; 8:7162. [PMID: 29740043 PMCID: PMC5940824 DOI: 10.1038/s41598-018-25488-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 04/23/2018] [Indexed: 11/21/2022] Open
Abstract
Metasurfaces are generally designed by placing scatterers in periodic or pseudo-periodic grids. We propose and discuss design rules for functional metasurfaces with randomly placed anisotropic elements that randomly sample a well-defined phase function. By analyzing the focusing performance of random metasurface lenses as a function of their density and the density of the phase-maps used to design them, we find that the performance of 1D metasurfaces is mostly governed by their density while 2D metasurfaces strongly depend on both the density and the near-field coupling configuration of the surface. The proposed approach is used to design all-polarization random metalenses at near infrared frequencies. Challenges, as well as opportunities of random metasurfaces compared to periodic ones are discussed. Our results pave the way to new approaches in the design of nanophotonic structures and devices from lenses to solar energy concentrators.
Collapse
Affiliation(s)
- Matthieu Dupré
- UC San Diego, Department of Electrical and Computer Engineering, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Liyi Hsu
- UC San Diego, Department of Electrical and Computer Engineering, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Boubacar Kanté
- UC San Diego, Department of Electrical and Computer Engineering, 9500 Gilman Drive, La Jolla, CA, 92093, USA.
| |
Collapse
|
38
|
Wilts BD, Sheng X, Holler M, Diaz A, Guizar-Sicairos M, Raabe J, Hoppe R, Liu SH, Langford R, Onelli OD, Chen D, Torquato S, Steiner U, Schroer CG, Vignolini S, Sepe A. Evolutionary-Optimized Photonic Network Structure in White Beetle Wing Scales. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1702057. [PMID: 28640543 DOI: 10.1002/adma.201702057] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 05/19/2017] [Indexed: 05/21/2023]
Abstract
Most studies of structural color in nature concern periodic arrays, which through the interference of light create color. The "color" white however relies on the multiple scattering of light within a randomly structured medium, which randomizes the direction and phase of incident light. Opaque white materials therefore must be much thicker than periodic structures. It is known that flying insects create "white" in extremely thin layers. This raises the question, whether evolution has optimized the wing scale morphology for white reflection at a minimum material use. This hypothesis is difficult to prove, since this requires the detailed knowledge of the scattering morphology combined with a suitable theoretical model. Here, a cryoptychographic X-ray tomography method is employed to obtain a full 3D structural dataset of the network morphology within a white beetle wing scale. By digitally manipulating this 3D representation, this study demonstrates that this morphology indeed provides the highest white retroreflection at the minimum use of material, and hence weight for the organism. Changing any of the network parameters (within the parameter space accessible by biological materials) either increases the weight, increases the thickness, or reduces reflectivity, providing clear evidence for the evolutionary optimization of this morphology.
Collapse
Affiliation(s)
- Bodo D Wilts
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers, 4, CH-1700, Fribourg, Switzerland
| | - Xiaoyuan Sheng
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers, 4, CH-1700, Fribourg, Switzerland
- Department of Physics, University of Cambridge, JJ Thompson Avenue, CB3 0HE, Cambridge, UK
| | - Mirko Holler
- Swiss Light Source, Paul Scherrer Institute, CH-5232, Villigen, Switzerland
| | - Ana Diaz
- Swiss Light Source, Paul Scherrer Institute, CH-5232, Villigen, Switzerland
| | | | - Jörg Raabe
- Swiss Light Source, Paul Scherrer Institute, CH-5232, Villigen, Switzerland
| | - Robert Hoppe
- Institute of Structural Physics, Technische Universität Dresden, 01062, Dresden, Germany
| | - Shu-Hao Liu
- Department of Physics, University of Cambridge, JJ Thompson Avenue, CB3 0HE, Cambridge, UK
| | - Richard Langford
- Department of Physics, University of Cambridge, JJ Thompson Avenue, CB3 0HE, Cambridge, UK
| | - Olimpia D Onelli
- Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW, Cambridge, UK
| | - Duyu Chen
- Department of Chemistry, Princeton University, Princeton, NJ, 08544, USA
| | - Salvatore Torquato
- Department of Chemistry, Princeton University, Princeton, NJ, 08544, USA
| | - Ullrich Steiner
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers, 4, CH-1700, Fribourg, Switzerland
| | - Christian G Schroer
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
- Department of Physics, Universität Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany
| | - Silvia Vignolini
- Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW, Cambridge, UK
| | - Alessandro Sepe
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers, 4, CH-1700, Fribourg, Switzerland
| |
Collapse
|
39
|
Chen D, Lomba E, Torquato S. Binary mixtures of charged colloids: a potential route to synthesize disordered hyperuniform materials. Phys Chem Chem Phys 2018; 20:17557-17562. [DOI: 10.1039/c8cp02616e] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A new route to fabricate large samples of 2D disordered hyperuniform materials via self-assembly of mixtures of charged colloids.
Collapse
Affiliation(s)
- Duyu Chen
- Department of Chemistry
- Princeton University, Princeton
- USA
| | - Enrique Lomba
- Department of Chemistry
- Princeton University, Princeton
- USA
- Instituto de Química Física Rocasolano
- CSIC
| | - Salvatore Torquato
- Department of Chemistry
- Princeton University, Princeton
- USA
- Department of Physics
- Princeton University
| |
Collapse
|
40
|
Carollo F, Garrahan JP, Lesanovsky I, Pérez-Espigares C. Fluctuating hydrodynamics, current fluctuations, and hyperuniformity in boundary-driven open quantum chains. Phys Rev E 2017; 96:052118. [PMID: 29347714 DOI: 10.1103/physreve.96.052118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Indexed: 06/07/2023]
Abstract
We consider a class of either fermionic or bosonic noninteracting open quantum chains driven by dissipative interactions at the boundaries and study the interplay of coherent transport and dissipative processes, such as bulk dephasing and diffusion. Starting from the microscopic formulation, we show that the dynamics on large scales can be described in terms of fluctuating hydrodynamics. This is an important simplification as it allows us to apply the methods of macroscopic fluctuation theory to compute the large deviation (LD) statistics of time-integrated currents. In particular, this permits us to show that fermionic open chains display a third-order dynamical phase transition in LD functions. We show that this transition is manifested in a singular change in the structure of trajectories: while typical trajectories are diffusive, rare trajectories associated with atypical currents are ballistic and hyperuniform in their spatial structure. We confirm these results by numerically simulating ensembles of rare trajectories via the cloning method, and by exact numerical diagonalization of the microscopic quantum generator.
Collapse
Affiliation(s)
- Federico Carollo
- School of Physics and Astronomy, Centre for the Mathematics and Theoretical Physics of Quantum Non-Equilibrium Systems, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Juan P Garrahan
- School of Physics and Astronomy, Centre for the Mathematics and Theoretical Physics of Quantum Non-Equilibrium Systems, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Igor Lesanovsky
- School of Physics and Astronomy, Centre for the Mathematics and Theoretical Physics of Quantum Non-Equilibrium Systems, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Carlos Pérez-Espigares
- School of Physics and Astronomy, Centre for the Mathematics and Theoretical Physics of Quantum Non-Equilibrium Systems, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| |
Collapse
|
41
|
Zhang G, Stillinger FH, Torquato S. Classical many-particle systems with unique disordered ground states. Phys Rev E 2017; 96:042146. [PMID: 29347605 DOI: 10.1103/physreve.96.042146] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Indexed: 06/07/2023]
Abstract
Classical ground states (global energy-minimizing configurations) of many-particle systems are typically unique crystalline structures, implying zero enumeration entropy of distinct patterns (aside from trivial symmetry operations). By contrast, the few previously known disordered classical ground states of many-particle systems are all high-entropy (highly degenerate) states. Here we show computationally that our recently proposed "perfect-glass" many-particle model [Sci. Rep. 6, 36963 (2016)10.1038/srep36963] possesses disordered classical ground states with a zero entropy: a highly counterintuitive situation . For all of the system sizes, parameters, and space dimensions that we have numerically investigated, the disordered ground states are unique such that they can always be superposed onto each other or their mirror image. At low energies, the density of states obtained from simulations matches those calculated from the harmonic approximation near a single ground state, further confirming ground-state uniqueness. Our discovery provides singular examples in which entropy and disorder are at odds with one another. The zero-entropy ground states provide a unique perspective on the celebrated Kauzmann-entropy crisis in which the extrapolated entropy of a supercooled liquid drops below that of the crystal. We expect that our disordered unique patterns to be of value in fields beyond glass physics, including applications in cryptography as pseudorandom functions with tunable computational complexity.
Collapse
Affiliation(s)
- G Zhang
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA
| | - F H Stillinger
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA
| | - S Torquato
- Department of Chemistry, Department of Physics, Princeton Institute for the Science and Technology of Materials, and Program in Applied and Computational Mathematics, Princeton University, Princeton, New Jersey 08544, USA
| |
Collapse
|
42
|
Xu Y, Chen S, Chen PE, Xu W, Jiao Y. Microstructure and mechanical properties of hyperuniform heterogeneous materials. Phys Rev E 2017; 96:043301. [PMID: 29347523 DOI: 10.1103/physreve.96.043301] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Indexed: 06/07/2023]
Abstract
A hyperuniform random heterogeneous material is one in which the local volume fraction fluctuations in an observation window decay faster than the reciprocal window volume as the window size increases. Recent studies show that this class of materials are endowed with superior physical properties such as large isotropic photonic band gaps and optimal transport properties. Here we employ a stochastic optimization procedure to systematically generate realizations of hyperuniform heterogeneous materials with controllable short-range order, which is partially quantified using the two-point correlation function S_{2}(r) associated with the phase of interest. Specifically, our procedure generalizes the widely used Yeong-Torquato reconstruction procedure by including an additional constraint for hyperuniformity, i.e., the volume integral of the autocovariance function χ(r)=S_{2}(r)-ϕ^{2} over the whole space is zero. In addition, we only require the reconstructed S_{2} to match the target function up to a certain cutoff distance γ, in order to give the system sufficient degrees of freedom to satisfy the hyperuniform condition. By systematically increasing the γ value for a given S_{2}, one can produce a spectrum of hyperuniform heterogeneous materials with varying degrees of partial short-range order compatible with the specified S_{2}. The mechanical performance including both elastic and brittle fracture behaviors of the generated hyperuniform materials is analyzed using a volume-compensated lattice-particle method. For the purpose of comparison, the corresponding nonhyperuniform materials with the same short-range order (i.e., with S_{2} constrained up to the same γ value) are also constructed and their mechanical performance is analyzed. Here we consider two specific S_{2} including the positive exponential decay function and the correlation function associated with an equilibrium hard-sphere system. For the constructed systems associated with these two specific functions, we find that although the hyperuniform materials are softer than their nonhyperuniform counterparts, the former generally possess a significantly higher brittle fracture strength than the latter. This superior mechanical behavior is attributed to the lower degree of stress concentration in the material resulting from the hyperuniform microstructure, which is crucial to crack initiation and propagation.
Collapse
Affiliation(s)
- Yaopengxiao Xu
- Materials Science and Engineering, Arizona State University, Tempe, Arizona 85287, USA
| | - Shaohua Chen
- Materials Science and Engineering, Arizona State University, Tempe, Arizona 85287, USA
| | - Pei-En Chen
- Mechanical Engineering, Arizona State University, Tempe, Arizona 85287, USA
| | - Wenxiang Xu
- Institute of Soft Matter Mechanics, College of Mechanics and Materials, Hohai University, Nanjing 211100, People's Republic of China
| | - Yang Jiao
- Materials Science and Engineering, Arizona State University, Tempe, Arizona 85287, USA
| |
Collapse
|
43
|
Chremos A, Douglas JF. Solution properties of star polyelectrolytes having a moderate number of arms. J Chem Phys 2017; 147:044906. [PMID: 28764357 PMCID: PMC5702915 DOI: 10.1063/1.4995534] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We investigate polyelectrolyte stars having a moderate number of arms by molecular dynamics simulations of a coarse-grained model over a range of polyelectrolyte concentrations, where both the counter-ions and solvent are treated explicitly. This class of polymeric materials is found to exhibit rather distinct static and dynamic properties from linear and highly branched star polyelectrolyte solutions emphasized in past studies. Moderately branched polymers are particle-like in many of their properties, while at the same time they exhibit large fluctuations in size and shape as in the case of linear chain polymers. Correspondingly, these fluctuations suppress crystallization at high polymer concentrations, leading apparently to an amorphous rather than crystalline solid state at high polyelectrolyte concentrations. We quantify the onset of this transition by measuring the polymer size and shape fluctuations of our model star polyelectrolytes and the static and dynamic structure factor of these solutions over a wide range of polyelectrolyte concentration. Our findings for star polyelectrolytes are similar to those of polymer-grafted nanoparticles having a moderate grafting density, which is natural given the soft and highly deformable nature of both of these "particles."
Collapse
Affiliation(s)
- Alexandros Chremos
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| | - Jack F Douglas
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| |
Collapse
|
44
|
Kwon S, Kim JM. Hyperuniformity of initial conditions and critical decay of a diffusive epidemic process belonging to the Manna class. Phys Rev E 2017; 96:012146. [PMID: 29347137 DOI: 10.1103/physreve.96.012146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Indexed: 06/07/2023]
Abstract
For a fixed-energy Manna sandpile model belonging to a Manna class in one dimension (d=1), we recently showed that the critical decay is different for random and regular initial conditions (ICs). Compared with previous results of natural IC for several models, we suggested for the Manna class that the critical decay depends on the characteristics of the three ICs. But the dependence on the random and regular ICs was shown only for a single model. In this work, we study the critical decay for the random and regular ICs for another model of the Manna class in d=1, a diffusive epidemic process. It is shown that the critical decay exponent agrees with the previous result for each IC, which verifies that IC dependence is a common feature of the Manna class. In addition, for the random and regular ICs, we measure the variance σ^{2}(r) of total particle density in a region of size r by increasing r up to system size and investigate its temporal evolution toward the value σ_{q}^{2}(r) of the quasisteady state at criticality. In d=1,σ^{2}(r) scales as σ^{2}(r)∼r^{-ψ} with ψ=1 for random distributions and 1<ψ≤2 for hyperuniform ones. The temporal evolution shows that σ^{2}(r) of the two ICs differently relax toward σ_{q}^{2}(r) and the regular IC becomes a hyperuniform distribution of ψ=2 in the beginning of the evolution. We estimate ψ=1.45(3) for both the quasisteady state and absorbing states, so the quasisteady state is also as hyperuniform as absorbing states. The hyperuniformity of the quasisteady state shows that the natural IC also should be hyperuniform as much as the quasisteady state, because the natural IC is obtained from particle configurations close to the quasisteady state. Consequently, the different ψ of the three ICs suggest that σ^{2}(r) can classify the characteristics of the three ICs in a unified way and the different degree of hyperuniformity of the ICs provides another explanation for the observed IC-dependent critical decay in a point of view of initial fluctuations and correlations.
Collapse
Affiliation(s)
- Sungchul Kwon
- Department of Physics, Soongsil University, Seoul 156-743, Korea
| | - Jin Min Kim
- Department of Physics, Soongsil University, Seoul 156-743, Korea
| |
Collapse
|
45
|
Lin C, Steinhardt PJ, Torquato S. Hyperuniformity variation with quasicrystal local isomorphism class. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2017; 29:204003. [PMID: 28345537 DOI: 10.1088/1361-648x/aa6944] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Hyperuniformity is the suppression of long-wavelength density fluctuations, relative to typical structurally disordered systems. In this paper, we examine how the degree of hyperuniformity [[Formula: see text]] in quasicrystals depends on the local isomorphism class. By studying the continuum of pentagonal quasicrystal tilings obtained by direct projection from a five-dimensional hypercubic lattice, we find that [Formula: see text] is dominantly determined by the local distribution of vertex environments (e.g. as measured by Voronoi cells) but also exhibits a non-negligible dependence on the restorability. We show that the highest degree of hyperuniformity [smallest [Formula: see text]] corresponds to the Penrose local isomorphism class. The difference in the degree of hyperuniformity is expected to affect physical characteristics, such as transport properties.
Collapse
Affiliation(s)
- C Lin
- Department of Physics, Princeton University, Princeton, NJ 08544, United States of America
| | | | | |
Collapse
|
46
|
Chremos A, Douglas JF. Particle localization and hyperuniformity of polymer-grafted nanoparticle materials. ANNALEN DER PHYSIK 2017; 529:1600342. [PMID: 28690334 PMCID: PMC5497478 DOI: 10.1002/andp.201600342] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Accepted: 01/16/2017] [Indexed: 05/28/2023]
Abstract
The properties of materials largely reflect the degree and character of the localization of the molecules comprising them so that the study and characterization of particle localization has central significance in both fundamental science and material design. Soft materials are often comprised of deformable molecules and many of their unique properties derive from the distinct nature of particle localization. We study localization in a model material composed of soft particles, hard nanoparticles with grafted layers of polymers, where the molecular characteristics of the grafted layers allow us to "tune" the softness of their interactions. Soft particles are particular interesting because spatial localization can occur such that density fluctuations on large length scales are suppressed, while the material is disordered at intermediate length scales; such materials are called "disordered hyperuniform". We use molecular dynamics simulation to study a liquid composed of polymer-grafted nanoparticles (GNP), which exhibit a reversible self-assembly into dynamic polymeric GNP structures below a temperature threshold, suggesting a liquid-gel transition. We calculate a number of spatial and temporal correlations and we find a significant suppression of density fluctuations upon cooling at large length scales, making these materials promising for the practical fabrication of "hyperuniform" materials.
Collapse
Affiliation(s)
- Alexandros Chremos
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| | | |
Collapse
|
47
|
Goldfriend T, Diamant H, Witten TA. Screening, Hyperuniformity, and Instability in the Sedimentation of Irregular Objects. PHYSICAL REVIEW LETTERS 2017; 118:158005. [PMID: 28452533 DOI: 10.1103/physrevlett.118.158005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Indexed: 06/07/2023]
Abstract
We study the overdamped sedimentation of non-Brownian objects of irregular shape using fluctuating hydrodynamics. The anisotropic response of the objects to flow, caused by their tendency to align with gravity, directly suppresses concentration and velocity fluctuations. This allows the suspension to avoid the anomalous fluctuations predicted for suspensions of symmetric spheroids. The suppression of concentration fluctuations leads to a correlated, hyperuniform structure. For certain object shapes, the anisotropic response may act in the opposite direction, destabilizing uniform sedimentation.
Collapse
Affiliation(s)
- Tomer Goldfriend
- Raymond & Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv 69978, Israel
| | - Haim Diamant
- Raymond & Beverly Sackler School of Chemistry, Tel Aviv University, Tel Aviv 69978, Israel
| | - Thomas A Witten
- Department of Physics and James Franck Institute, University of Chicago, Chicago, Illinois 60637, USA
| |
Collapse
|
48
|
Zhang G, Stillinger FH, Torquato S. Transport, geometrical, and topological properties of stealthy disordered hyperuniform two-phase systems. J Chem Phys 2016; 145:244109. [DOI: 10.1063/1.4972862] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
49
|
Torquato S. Disordered hyperuniform heterogeneous materials. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2016; 28:414012. [PMID: 27545746 DOI: 10.1088/0953-8984/28/41/414012] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Disordered hyperuniform many-body systems are distinguishable states of matter that lie between a crystal and liquid: they are like perfect crystals in the way they suppress large-scale density fluctuations and yet are like liquids or glasses in that they are statistically isotropic with no Bragg peaks. These systems play a vital role in a number of fundamental and applied problems: glass formation, jamming, rigidity, photonic and electronic band structure, localization of waves and excitations, self-organization, fluid dynamics, quantum systems, and pure mathematics. Much of what we know theoretically about disordered hyperuniform states of matter involves many-particle systems. In this paper, we derive new rigorous criteria that disordered hyperuniform two-phase heterogeneous materials must obey and explore their consequences. Two-phase heterogeneous media are ubiquitous; examples include composites and porous media, biological media, foams, polymer blends, granular media, cellular solids, and colloids. We begin by obtaining some results that apply to hyperuniform two-phase media in which one phase is a sphere packing in d-dimensional Euclidean space [Formula: see text]. Among other results, we rigorously establish the requirements for packings of spheres of different sizes to be 'multihyperuniform'. We then consider hyperuniformity for general two-phase media in [Formula: see text]. Here we apply realizability conditions for an autocovariance function and its associated spectral density of a two-phase medium, and then incorporate hyperuniformity as a constraint in order to derive new conditions. We show that some functional forms can immediately be eliminated from consideration and identify other forms that are allowable. Specific examples and counterexamples are described. Contact is made with well-known microstructural models (e.g. overlapping spheres and checkerboards) as well as irregular phase-separation and Turing-type patterns. We also ascertain a family of autocovariance functions (or spectral densities) that are realizable by disordered hyperuniform two-phase media in any space dimension, and present select explicit constructions of realizations. These studies provide insight into the nature of disordered hyperuniformity in the context of heterogeneous materials and have implications for the design of such novel amorphous materials.
Collapse
Affiliation(s)
- Salvatore Torquato
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA. Department of Physics, Princeton University, Princeton, NJ 08544, USA. Princeton Institute for the Science and Technology of Materials, Princeton, NJ 08544, USA. Program in Applied and Computational Mathematics, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
50
|
Klatt MA, Torquato S. Characterization of maximally random jammed sphere packings. II. Correlation functions and density fluctuations. Phys Rev E 2016; 94:022152. [PMID: 27627291 DOI: 10.1103/physreve.94.022152] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Indexed: 06/06/2023]
Abstract
In the first paper of this series, we introduced Voronoi correlation functions to characterize the structure of maximally random jammed (MRJ) sphere packings across length scales. In the present paper, we determine a variety of different correlation functions that arise in rigorous expressions for the effective physical properties of MRJ sphere packings and compare them to the corresponding statistical descriptors for overlapping spheres and equilibrium hard-sphere systems. Such structural descriptors arise in rigorous bounds and formulas for effective transport properties, diffusion and reactions constants, elastic moduli, and electromagnetic characteristics. First, we calculate the two-point, surface-void, and surface-surface correlation functions, for which we derive explicit analytical formulas for finite hard-sphere packings. We show analytically how the contact Dirac delta function contribution to the pair correlation function g_{2}(r) for MRJ packings translates into distinct functional behaviors of these two-point correlation functions that do not arise in the other two models examined here. Then we show how the spectral density distinguishes the MRJ packings from the other disordered systems in that the spectral density vanishes in the limit of infinite wavelengths; i.e., these packings are hyperuniform, which means that density fluctuations on large length scales are anomalously suppressed. Moreover, for all model systems, we study and compute exclusion probabilities and pore size distributions, as well as local density fluctuations. We conjecture that for general disordered hard-sphere packings, a central limit theorem holds for the number of points within an spherical observation window. Our analysis links problems of interest in material science, chemistry, physics, and mathematics. In the third paper of this series, we will evaluate bounds and estimates of a host of different physical properties of the MRJ sphere packings that are based on the structural characteristics analyzed in this paper.
Collapse
Affiliation(s)
- Michael A Klatt
- Karlsruhe Institute of Technology (KIT), Institute of Stochastics, Englerstraße 2, 76131 Karlsruhe, Germany
| | - Salvatore Torquato
- Department of Chemistry, Department of Physics, Princeton Institute for the Science and Technology of Materials, and Program in Applied and Computational Mathematics, Princeton University, Princeton, New Jersey 08544, USA
| |
Collapse
|