1
|
Vinko SM, Vozda V, Andreasson J, Bajt S, Bielecki J, Burian T, Chalupsky J, Ciricosta O, Desjarlais MP, Fleckenstein H, Hajdu J, Hajkova V, Hollebon P, Juha L, Kasim MF, McBride EE, Muehlig K, Preston TR, Rackstraw DS, Roling S, Toleikis S, Wark JS, Zacharias H. Time-Resolved XUV Opacity Measurements of Warm Dense Aluminum. PHYSICAL REVIEW LETTERS 2020; 124:225002. [PMID: 32567902 DOI: 10.1103/physrevlett.124.225002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 05/02/2020] [Accepted: 05/22/2020] [Indexed: 06/11/2023]
Abstract
The free-free opacity in plasmas is fundamental to our understanding of energy transport in stellar interiors and for inertial confinement fusion research. However, theoretical predictions in the challenging dense plasma regime are conflicting and there is a dearth of accurate experimental data to allow for direct model validation. Here we present time-resolved transmission measurements in solid-density Al heated by an XUV free-electron laser. We use a novel functional optimization approach to extract the temperature-dependent absorption coefficient directly from an oversampled pool of single-shot measurements, and find a pronounced enhancement of the opacity as the plasma is heated to temperatures of order of the Fermi energy. Plasma heating and opacity enhancement are observed on ultrafast timescales, within the duration of the femtosecond XUV pulse. We attribute further rises in the opacity on ps timescales to melt and the formation of warm dense matter.
Collapse
Affiliation(s)
- S M Vinko
- Department of Physics, Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom
| | - V Vozda
- Charles University, Faculty of Mathematics and Physics, Institute of Physics, Ke Karlovu 5, CZ-121 16 Prague 2, Czech Republic
- Institute of Physics, Czech Academy of Sciences, Na Slovance 2, 18221 Prague 8, Czech Republic
| | - J Andreasson
- ELI Beamlines, Institute of Physics, Czech Academy of Sciences, Na Slovance 2, CZ-182 21 Prague 8, Czech Republic
- Chalmers University of Technology, Department of Physics, 41296 Göteborg, Sweden
| | - S Bajt
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - J Bielecki
- European XFEL GmbH, Holzkoppel 4, 22869 Schenefeld, Germany
| | - T Burian
- Institute of Physics, Czech Academy of Sciences, Na Slovance 2, 18221 Prague 8, Czech Republic
| | - J Chalupsky
- Institute of Physics, Czech Academy of Sciences, Na Slovance 2, 18221 Prague 8, Czech Republic
| | - O Ciricosta
- Department of Physics, Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom
| | - M P Desjarlais
- Pulsed Power Sciences Center, Sandia National Laboratories, Albuquerque, New Mexico 87185, USA
| | - H Fleckenstein
- Center for Free-Electron Laser Science, DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - J Hajdu
- ELI Beamlines, Institute of Physics, Czech Academy of Sciences, Na Slovance 2, CZ-182 21 Prague 8, Czech Republic
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3, Box 596, SE-75124 Uppsala, Sweden
| | - V Hajkova
- Institute of Physics, Czech Academy of Sciences, Na Slovance 2, 18221 Prague 8, Czech Republic
| | - P Hollebon
- Department of Physics, Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom
| | - L Juha
- Institute of Physics, Czech Academy of Sciences, Na Slovance 2, 18221 Prague 8, Czech Republic
| | - M F Kasim
- Department of Physics, Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom
| | - E E McBride
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - K Muehlig
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3, Box 596SE-751 24 Uppsala, Sweden
| | - T R Preston
- European XFEL GmbH, Holzkoppel 4, 22869 Schenefeld, Germany
| | - D S Rackstraw
- Department of Physics, Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom
| | - S Roling
- Universität Münster, Busso-Peus-Strasse 10, 48149 Münster, Germany
| | - S Toleikis
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - J S Wark
- Department of Physics, Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom
| | - H Zacharias
- Universität Münster, Busso-Peus-Strasse 10, 48149 Münster, Germany
| |
Collapse
|
2
|
Kettle B, Gerstmayr E, Streeter MJV, Albert F, Baggott RA, Bourgeois N, Cole JM, Dann S, Falk K, Gallardo González I, Hussein AE, Lemos N, Lopes NC, Lundh O, Ma Y, Rose SJ, Spindloe C, Symes DR, Šmíd M, Thomas AGR, Watt R, Mangles SPD. Single-Shot Multi-keV X-Ray Absorption Spectroscopy Using an Ultrashort Laser-Wakefield Accelerator Source. PHYSICAL REVIEW LETTERS 2019; 123:254801. [PMID: 31922780 DOI: 10.1103/physrevlett.123.254801] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 10/16/2019] [Indexed: 06/10/2023]
Abstract
Single-shot absorption measurements have been performed using the multi-keV x rays generated by a laser-wakefield accelerator. A 200 TW laser was used to drive a laser-wakefield accelerator in a mode which produced broadband electron beams with a maximum energy above 1 GeV and a broad divergence of ≈15 mrad FWHM. Betatron oscillations of these electrons generated 1.2±0.2×10^{6} photons/eV in the 5 keV region, with a signal-to-noise ratio of approximately 300∶1. This was sufficient to allow high-resolution x-ray absorption near-edge structure measurements at the K edge of a titanium sample in a single shot. We demonstrate that this source is capable of single-shot, simultaneous measurements of both the electron and ion distributions in matter heated to eV temperatures by comparison with density functional theory simulations. The unique combination of a high-flux, large bandwidth, few femtosecond duration x-ray pulse synchronized to a high-power laser will enable key advances in the study of ultrafast energetic processes such as electron-ion equilibration.
Collapse
Affiliation(s)
- B Kettle
- The John Adams Institute for Accelerator Science, Imperial College London, London, SW7 2AZ, United Kingdom
| | - E Gerstmayr
- The John Adams Institute for Accelerator Science, Imperial College London, London, SW7 2AZ, United Kingdom
| | - M J V Streeter
- Physics Department, Lancaster University, Lancaster LA1 4YB, United Kingdom
| | - F Albert
- Lawrence Livermore National Laboratory (LLNL), Livermore, California 94550, USA
| | - R A Baggott
- The John Adams Institute for Accelerator Science, Imperial College London, London, SW7 2AZ, United Kingdom
| | - N Bourgeois
- Central Laser Facility, STFC Rutherford Appleton Laboratory, Didcot OX11 0QX, United Kingdom
| | - J M Cole
- The John Adams Institute for Accelerator Science, Imperial College London, London, SW7 2AZ, United Kingdom
| | - S Dann
- Physics Department, Lancaster University, Lancaster LA1 4YB, United Kingdom
| | - K Falk
- Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, 01328 Dresden, Germany
- Institute of Physics of the ASCR, Na Slovance 1999/2, 182 21 Prague, Czech Republic
- Technische Universität Dresden, 01062, Dresden, Germany
| | | | - A E Hussein
- Center for Ultrafast Optical Science, University of Michigan, Ann Arbor, Michigan 48109-2099, USA
| | - N Lemos
- Lawrence Livermore National Laboratory (LLNL), Livermore, California 94550, USA
| | - N C Lopes
- GoLP/Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, U.L., Lisboa 1049-001, Portugal
| | - O Lundh
- Department of Physics, Lund University, P.O. Box 118, S-22100, Lund, Sweden
| | - Y Ma
- Physics Department, Lancaster University, Lancaster LA1 4YB, United Kingdom
| | - S J Rose
- The John Adams Institute for Accelerator Science, Imperial College London, London, SW7 2AZ, United Kingdom
| | - C Spindloe
- Central Laser Facility, STFC Rutherford Appleton Laboratory, Didcot OX11 0QX, United Kingdom
| | - D R Symes
- Central Laser Facility, STFC Rutherford Appleton Laboratory, Didcot OX11 0QX, United Kingdom
| | - M Šmíd
- Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, 01328 Dresden, Germany
| | - A G R Thomas
- Physics Department, Lancaster University, Lancaster LA1 4YB, United Kingdom
- Center for Ultrafast Optical Science, University of Michigan, Ann Arbor, Michigan 48109-2099, USA
| | - R Watt
- The John Adams Institute for Accelerator Science, Imperial College London, London, SW7 2AZ, United Kingdom
| | - S P D Mangles
- The John Adams Institute for Accelerator Science, Imperial College London, London, SW7 2AZ, United Kingdom
| |
Collapse
|
3
|
Hollebon P, Ciricosta O, Desjarlais MP, Cacho C, Spindloe C, Springate E, Turcu ICE, Wark JS, Vinko SM. Ab initio simulations and measurements of the free-free opacity in aluminum. Phys Rev E 2019; 100:043207. [PMID: 31770899 DOI: 10.1103/physreve.100.043207] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Indexed: 06/10/2023]
Abstract
The free-free opacity in dense systems is a property that both tests our fundamental understanding of correlated many-body systems, and is needed to understand the radiative properties of high energy-density plasmas. Despite its importance, predictive calculations of the free-free opacity remain challenging even in the condensed matter phase for simple metals. Here we show how the free-free opacity can be modelled at finite-temperatures via time-dependent density functional theory, and illustrate the importance of including local field corrections, core polarization, and self-energy corrections. Our calculations for ground-state Al are shown to agree well with experimental opacity measurements performed on the Artemis laser facility across a wide range of extreme ultraviolet wavelengths. We extend our calculations across the melt to the warm-dense matter regime, finding good agreement with advanced plasma models based on inverse bremsstrahlung at temperatures above 10 eV.
Collapse
Affiliation(s)
- P Hollebon
- Department of Physics, Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom
| | - O Ciricosta
- Department of Physics, Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom
| | - M P Desjarlais
- Pulsed Power Sciences Center, Sandia National Laboratories, Albuquerque, New Mexico 87185, USA
| | - C Cacho
- Central Laser Facility, STFC Rutherford Appleton Laboratory, Didcot OX11 0QX, United Kingdom
| | - C Spindloe
- Central Laser Facility, STFC Rutherford Appleton Laboratory, Didcot OX11 0QX, United Kingdom
| | - E Springate
- Central Laser Facility, STFC Rutherford Appleton Laboratory, Didcot OX11 0QX, United Kingdom
| | - I C E Turcu
- Central Laser Facility, STFC Rutherford Appleton Laboratory, Didcot OX11 0QX, United Kingdom
| | - J S Wark
- Department of Physics, Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom
| | - S M Vinko
- Department of Physics, Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom
| |
Collapse
|
4
|
Dacasa H, Coudert-Alteirac H, Guo C, Kueny E, Campi F, Lahl J, Peschel J, Wikmark H, Major B, Malm E, Alj D, Varjú K, Arnold CL, Dovillaire G, Johnsson P, L'Huillier A, Maclot S, Rudawski P, Zeitoun P. Single-shot extreme-ultraviolet wavefront measurements of high-order harmonics. OPTICS EXPRESS 2019; 27:2656-2670. [PMID: 30732300 DOI: 10.1364/oe.27.002656] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 12/19/2018] [Indexed: 06/09/2023]
Abstract
We perform wavefront measurements of high-order harmonics using an extreme-ultraviolet (XUV) Hartmann sensor and study how their spatial properties vary with different generation parameters, such as pressure in the nonlinear medium, fundamental pulse energy and duration as well as beam size. In some conditions, excellent wavefront quality (up to λ/11) was obtained. The high throughput of the intense XUV beamline at the Lund Laser Centre allows us to perform single-shot measurements of both the full harmonic beam generated in argon and individual harmonics selected by multilayer mirrors. We theoretically analyze the relationship between the spatial properties of the fundamental and those of the generated high-order harmonics, thus gaining insight into the fundamental mechanisms involved in high-order harmonic generation (HHG).
Collapse
|
5
|
Optimization and Characterization of High-Harmonic Generation for Probing Solid Density Plasmas. PHOTONICS 2017. [DOI: 10.3390/photonics4020025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|