1
|
Huisman M, Huerre A, Saha S, Crocker JC, Garbin V. Linking local microstructure to fracture location in a two-dimensional amorphous solid under isotropic strain. SOFT MATTER 2024. [PMID: 39479921 PMCID: PMC11525953 DOI: 10.1039/d4sm00486h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 10/19/2024] [Indexed: 11/02/2024]
Abstract
Brittle fracturing of materials is common in natural and industrial processes over a variety of length scales. Knowledge of individual particle dynamics is vital to obtain deeper insight into the atomistic processes governing crack propagation in such materials, yet it is challenging to obtain these details in experiments. We propose an experimental approach where isotropic dilational strain is applied to a densely packed monolayer of attractive colloidal microspheres, resulting in fracture. Using brightfield microscopy and particle tracking, we examine the microstructural evolution of the monolayer during fracturing. Furthermore, we propose and test a parameter termed Weakness that estimates the likelihood for particles to be on a crack line, based on a quantified representation of the microstructure in combination with a machine learning algorithm. Regions that are more prone to fracture exhibit an increased Weakness value, however the exact location of a crack depends on the nucleation site, which cannot be predicted a priori. An analysis of the microstructural features that most contribute to increased Weakness values suggests that local density is more important than orientational order. Our methodology and results provide a basis for further research on microscopic processes during the fracturing process.
Collapse
Affiliation(s)
- Max Huisman
- Department of Chemical Engineering, Delft University of Technology, Delft 2629 HZ, The Netherlands.
| | - Axel Huerre
- Laboratoire Matière et Systèmes Complexes, CNRS UMR 7057, Université Paris Cité, Paris, France
| | - Saikat Saha
- Department of Chemical Engineering, Delft University of Technology, Delft 2629 HZ, The Netherlands.
| | - John C Crocker
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, 220 South 33rd Street, Philadelphia, PA 19104-6393, USA
| | - Valeria Garbin
- Department of Chemical Engineering, Delft University of Technology, Delft 2629 HZ, The Netherlands.
| |
Collapse
|
2
|
Chaffee HK, Corona-Oceguera E, Couto CG, Anne AN, Rogers EL, Galper AL, Floyd CM, Venkatachalam A, Gerbode SJ. Hexagonal vortices enable faster colloidal crystal grain coarsening. Phys Rev E 2024; 110:014608. [PMID: 39161012 DOI: 10.1103/physreve.110.014608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 06/25/2024] [Indexed: 08/21/2024]
Abstract
We find that localized rotations of hexagonal clusters of particles occur during rapid dissolution of grain boundary loops in two-dimensional colloidal crystals. These particle vortices, or rotating "granules," are distinct from established models for grain boundary diffusion, which predict that a crystal grain enclosed within another crystal will dissolve at a constant rate. Our measurements of colloidal crystal experiments and Brownian dynamics simulations reveal grain boundary motion that is described by two distinct processes: slow dissolution due to the diffusion of individual particles, and rapid dissolution due to collective granule rotation. In the latter process, hexagonal clusters of particles rotate together in granules whose shape and position are determined by the underlying moiré pattern. Furthermore, these vortices guide cooperative strings of particles that move along the edges of the hexagonal granules. Including this vortex mechanism may improve models for grain coarsening in polycrystalline materials, ultimately offering improved predictions for the time evolution of material properties.
Collapse
|
3
|
Khushika, Laurson L, Jana PK. Reversible-to-irreversible transition of colloidal polycrystals under cyclic athermal quasistatic deformation. Phys Rev E 2023; 108:064612. [PMID: 38243495 DOI: 10.1103/physreve.108.064612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 11/29/2023] [Indexed: 01/21/2024]
Abstract
Cyclic loading on granular packings and amorphous media exhibits a transition from reversible elastic behavior to irreversible plasticity. The present study compares the irreversibility transition and microscopic details of colloidal polycrystals under oscillatory tensile-compressive and shear strain. Under both modes, the systems exhibit a reversible to irreversible transition. However, the strain amplitude at which the transition is observed is larger in the shear strain than in the tensile-compressive mode. The threshold strain amplitude is confirmed by analyzing the dynamical properties, such as mobility and atomic strain (von Mises shear strain and the volumetric strain). The structural changes are quantified using a hexatic order parameter. Under both modes of deformation, dislocations and grain boundaries in polycrystals disappear, and monocrystals are formed. We also recognize the dislocation motion through grains. The key difference is that strain accumulates diagonally in oscillatory tensile-compressive deformation, whereas in shear deformation, strain accumulation is along the x or y axis.
Collapse
Affiliation(s)
- Khushika
- Department of Chemistry, Birla Institute of Technology and Science, Pilani, Pilani Campus, Rajasthan 333031, India
| | - Lasse Laurson
- Computational Physics Laboratory, Tampere University, P.O. Box 692, FI-33014 Tampere, Finland
| | - Pritam Kumar Jana
- Department of Chemistry, Birla Institute of Technology and Science, Pilani, Pilani Campus, Rajasthan 333031, India
| |
Collapse
|
4
|
Gupta N, Jayaraman A. Computational approach for structure generation of anisotropic particles (CASGAP) with targeted distributions of particle design and orientational order. NANOSCALE 2023; 15:14958-14970. [PMID: 37656010 DOI: 10.1039/d3nr02425c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
The macroscopic properties of materials are governed by their microscopic structure which depends on the materials' composition (i.e., building blocks) and processing conditions. In many classes of synthetic, bioinspired, or natural soft and/or nanomaterials, one can find structural anisotropy in the microscopic structure due to anisotropic building blocks and/or anisotropic domains formed through the processing conditions. Experimental characterization and complementary physics-based or data-driven modeling of materials' structural anisotropy are critical for understanding structure-property relationships and enabling targeted design of materials with desired macroscopic properties. In this pursuit, to interpret experimentally obtained characterization results (e.g., scattering profiles) of soft materials with structural anisotropy using data-driven computational approaches, there is a need for creating real space three-dimensional structures of the designer soft materials with realistic physical features (e.g., dispersity in building block sizes) and anisotropy (i.e., aspect ratios of the building blocks, their orientational and positional order). These real space structures can then be used to compute and complement experimentally obtained characterization results or be used as initial configurations for physics-based simulations/calculations that can then provide training data for machine learning models. To address this need, we present a new computational approach called CASGAP - Computational Approach for Structure Generation of Anisotropic Particles - for generating any desired three dimensional real-space structure of anisotropic building blocks (modeled as particles) adhering to target distributions of particle shape, size, and positional and orientational order.
Collapse
Affiliation(s)
- Nitant Gupta
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy St, Newark, DE 19716, USA.
| | - Arthi Jayaraman
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy St, Newark, DE 19716, USA.
- Department of Materials Science and Engineering, University of Delaware, 201 Dupont Hall, Newark, DE 19716, USA
| |
Collapse
|
5
|
Kuk K, Abgarjan V, Gregel L, Zhou Y, Carrasco Fadanelli V, Buttinoni I, Karg M. Compression of colloidal monolayers at liquid interfaces: in situ vs. ex situ investigation. SOFT MATTER 2023; 19:175-188. [PMID: 36426847 DOI: 10.1039/d2sm01125e] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The assembly of colloidal particles at liquid/liquid or air/liquid interfaces is a versatile procedure to create microstructured monolayers and study their behavior under compression. When combined with soft and deformable particles such as microgels, compression is used to tune not only the interparticle distance but also the underlying microstructure of the monolayer. So far, the great majority of studies on microgel-laden interfaces are conducted ex situ after transfer to solid substrates, for example, via Langmuir-Blodgett deposition. This type of analysis relies on the stringent assumption that the microstructure is conserved during transfer and subsequent drying. In this work, we couple a Langmuir trough to a custom-built small-angle light scattering setup to monitor colloidal monolayers in situ during compression. By comparing the results with ex situ and in situ microscopy measurements, we conclude that Langmuir-Blodgett deposition can alter the structural properties of the colloidal monolayers significantly.
Collapse
Affiliation(s)
- Keumkyung Kuk
- Institut für Physikalische Chemie I: Kolloide und Nanooptik, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225, Düsseldorf, Germany.
| | - Vahan Abgarjan
- Institut für Physikalische Chemie I: Kolloide und Nanooptik, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225, Düsseldorf, Germany.
| | - Lukas Gregel
- Institut für Physikalische Chemie I: Kolloide und Nanooptik, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225, Düsseldorf, Germany.
| | - Yichu Zhou
- Institut für Physikalische Chemie I: Kolloide und Nanooptik, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225, Düsseldorf, Germany.
| | - Virginia Carrasco Fadanelli
- Institut für Experimentelle Physik der kondensierten Materie, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225, Düsseldorf, Germany
| | - Ivo Buttinoni
- Institut für Experimentelle Physik der kondensierten Materie, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225, Düsseldorf, Germany
| | - Matthias Karg
- Institut für Physikalische Chemie I: Kolloide und Nanooptik, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225, Düsseldorf, Germany.
| |
Collapse
|
6
|
Vialetto J, Ramakrishna SN, Isa L. In situ imaging of the three-dimensional shape of soft responsive particles at fluid interfaces by atomic force microscopy. SCIENCE ADVANCES 2022; 8:eabq2019. [PMID: 36351021 PMCID: PMC9645722 DOI: 10.1126/sciadv.abq2019] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 09/23/2022] [Indexed: 05/09/2023]
Abstract
The reconfiguration of individual soft and deformable particles upon adsorption at a fluid interface underpins many aspects of their dynamics and interactions, ultimately regulating the properties of monolayers of relevance for applications. In this work, we demonstrate that atomic force microscopy can be used for the in situ reconstruction of the three-dimensional conformation of model poly(N-isopropylacrylamide) microgels adsorbed at an oil-water interface. We image the particle topography from both sides of the interface to characterize its in-plane deformation and to visualize the occurrence of asymmetric swelling in the two fluids. In addition, the technique enables investigating different fluid phases and particle architectures, as well as studying the effect of temperature variations on particle conformation in situ. We envisage that these results open up an exciting range of possibilities to provide microscopic insights into the single-particle behavior of soft objects at fluid interfaces and into the resulting macroscopic material properties.
Collapse
Affiliation(s)
| | | | - Lucio Isa
- Laboratory for Soft Materials and Interfaces, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
| |
Collapse
|
7
|
Laal-Dehghani N, Christopher GF. Effects of Interfacial Shear on Particle Aggregation at an Oil/Water Interface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:9621-9630. [PMID: 35895899 DOI: 10.1021/acs.langmuir.2c01159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Using a Stokesian dynamics simulation, the microstructure of particle aggregates at an oil/water interface with an applied Couette flow is studied. The results of the aggregation are consistent with previously published experimental work demonstrating multiple regimes of behavior based on the relative strength of shear and capillary forces. In previous work, densification of aggregates at low shear rates was theorized to occur due to short time scale fragmentation/reaggregation of aggregates with rigid particle bonds. In simulations, densification is observed at low shear rates but occurs due to local reorganization of particles due to capillary torques over long time scales. Moderate shear rates create mobile bonds between particles at shorter time scales, allowing aggregates to fragment without reaggregation into smaller isolated clusters, consistent with prior experimental work. At the highest shear rates, aggregation is inhibited completely.
Collapse
Affiliation(s)
- Nader Laal-Dehghani
- Department of Mechanical Engineering, Texas Tech University, Lubbock, Texas 79409, United States
| | - Gordon F Christopher
- Department of Mechanical Engineering, Texas Tech University, Lubbock, Texas 79409, United States
| |
Collapse
|
8
|
Lobmeyer DM, Biswal SL. Grain boundary dynamics driven by magnetically induced circulation at the void interface of 2D colloidal crystals. SCIENCE ADVANCES 2022; 8:eabn5715. [PMID: 35658046 PMCID: PMC9166398 DOI: 10.1126/sciadv.abn5715] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The complexity of shear-induced grain boundary dynamics has been historically difficult to view at the atomic scale. Meanwhile, two-dimensional (2D) colloidal crystals have gained prominence as model systems to easily explore grain boundary dynamics at single-particle resolution but have fallen short at exploring these dynamics under shear. Here, we demonstrate how an inherent interfacial shear in 2D colloidal crystals drives microstructural evolution. By assembling paramagnetic particles into polycrystalline sheets using a rotating magnetic field, we generate a particle circulation at the interface of particle-free voids. This circulation shears the crystalline bulk, operating as both a source and sink for grain boundaries. Furthermore, we show that the Read-Shockley theory for hard-condensed matter predicts the misorientation angle and energy of shear-induced low-angle grain boundaries based on their regular defect spacing. Model systems containing shear provide an ideal platform to elucidate shear-induced grain boundary dynamics for use in engineering improved/advanced materials.
Collapse
|
9
|
Williams I, Oğuz EC, Löwen H, Poon WCK, Royall CP. The rheology of confined colloidal hard disks. J Chem Phys 2022; 156:184902. [DOI: 10.1063/5.0087444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Colloids may be treated as “big atoms” so that they are good models for atomic and molecular systems. Colloidal hard disks are, therefore, good models for 2d materials, and although their phase behavior is well characterized, rheology has received relatively little attention. Here, we exploit a novel, particle-resolved, experimental setup and complementary computer simulations to measure the shear rheology of quasi-hard-disk colloids in extreme confinement. In particular, we confine quasi-2d hard disks in a circular “corral” comprised of 27 particles held in optical traps. Confinement and shear suppress hexagonal ordering that would occur in the bulk and create a layered fluid. We measure the rheology of our system by balancing drag and driving forces on each layer. Given the extreme confinement, it is remarkable that our system exhibits rheological behavior very similar to unconfined 2d and 3d hard particle systems, characterized by a dynamic yield stress and shear-thinning of comparable magnitude. By quantifying particle motion perpendicular to shear, we show that particles become more tightly confined to their layers with no concomitant increase in density upon increasing the shear rate. Shear thinning is, therefore, a consequence of a reduction in dissipation due to weakening in interactions between layers as the shear rate increases. We reproduce our experiments with Brownian dynamics simulations with Hydrodynamic Interactions (HI) included at the level of the Rotne–Prager tensor. That the inclusion of HI is necessary to reproduce our experiments is evidence of their importance in transmission of momentum through the system.
Collapse
Affiliation(s)
- Ian Williams
- Department of Physics, University of Surrey, Guildford GU2 7XH, United Kingdom
- H.H. Wills Physics Laboratory, Tyndall Avenue, Bristol BS8 1TL, United Kingdom
- Centre for Nanoscience and Quantum Information, Tyndall Avenue, Bristol BS8 1FD, United Kingdom
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, United Kingdom
| | - Erdal C. Oğuz
- School of Mechanical Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
- The Sackler Center for Computational Molecular and Materials Science, Tel Aviv University, Tel Aviv 6997801, Israel
- School of Chemistry, Tel Aviv University, Tel Aviv 6997801, Israel
- Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Hartmut Löwen
- Institut für Theoretische Physik II, Heinrich-Heine-Universität, D-40225 Düsseldorf, Germany
| | - Wilson C. K. Poon
- SUPA and School of Physics and Astronomy, The University of Edinburgh, Peter Guthrie Tait Road, Edinburgh EH9 3FD, United Kingdom
| | - C. Patrick Royall
- H.H. Wills Physics Laboratory, Tyndall Avenue, Bristol BS8 1TL, United Kingdom
- Centre for Nanoscience and Quantum Information, Tyndall Avenue, Bristol BS8 1FD, United Kingdom
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, United Kingdom
- Gulliver UMR CNRS 7083, ESPCI Paris, Université PSL, 75005 Paris, France
| |
Collapse
|
10
|
Roach L, Hereu A, Lalanne P, Duguet E, Tréguer-Delapierre M, Vynck K, Drisko GL. Controlling disorder in self-assembled colloidal monolayers via evaporative processes. NANOSCALE 2022; 14:3324-3345. [PMID: 35174843 PMCID: PMC8900142 DOI: 10.1039/d1nr07814c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 01/12/2022] [Indexed: 04/14/2023]
Abstract
Monolayers of assembled nano-objects with a controlled degree of disorder hold interest in many optical applications, including photovoltaics, light emission, sensing, and structural coloration. Controlled disorder can be achieved through either top-down or bottom-up approaches, but the latter is more suited to large-scale, low-cost fabrication. Disordered colloidal monolayers can be assembled through evaporatively driven convective assembly, a bottom-up process with a wide range of parameters impacting particle placement. Motivated by the photonic applications of such monolayers, in this review we discuss the quantification of monolayer disorder, and the assembly methods that have been used to produce them. We review the impact of particle and solvent properties, as well as the use of substrate patterning, to create the desired spatial distributions of particles.
Collapse
Affiliation(s)
- Lucien Roach
- CNRS, Univ. Bordeaux, Bordeaux INP, ICMCB, UMR 5026, F-33600 Pessac, France.
| | - Adrian Hereu
- CNRS, Univ. Bordeaux, Bordeaux INP, ICMCB, UMR 5026, F-33600 Pessac, France.
| | - Philippe Lalanne
- IOGS, Univ. Bordeaux, CNRS, LP2N, UMR 5298, F-33400 Talence, France
| | - Etienne Duguet
- CNRS, Univ. Bordeaux, Bordeaux INP, ICMCB, UMR 5026, F-33600 Pessac, France.
| | | | - Kevin Vynck
- Univ. Claude Bernard Lyon 1, CNRS, iLM, UMR 5306, F-69622 Villeurbanne, France.
| | - Glenna L Drisko
- CNRS, Univ. Bordeaux, Bordeaux INP, ICMCB, UMR 5026, F-33600 Pessac, France.
| |
Collapse
|
11
|
Svetlizky I, Roichman Y. Spatial Crossover Between Far-From-Equilibrium and Near-Equilibrium Dynamics in Locally Driven Suspensions. PHYSICAL REVIEW LETTERS 2021; 127:038003. [PMID: 34328767 DOI: 10.1103/physrevlett.127.038003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 05/24/2021] [Accepted: 06/09/2021] [Indexed: 06/13/2023]
Abstract
We examine the response of a quasi-two-dimensional colloidal suspension to a localized circular driving induced by optical tweezers. This approach allows us to resolve over 3 orders of magnitude in the Péclet number (Pe) and provide a direct observation of a sharp spatial crossover from far- to near-thermal-equilibrium regions of the suspension. In particular, particles migrate from high to low Pe regions and form strongly inhomogeneous steady-state density profiles with an emerging length scale that does not depend on the particle density and is set by Pe≈1. We show that the phenomenological two phase fluid constitutive model is in line with our results.
Collapse
Affiliation(s)
- Ilya Svetlizky
- School of Chemistry, Tel-Aviv University, Tel-Aviv 6997801, Israel
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Yael Roichman
- School of Chemistry, Tel-Aviv University, Tel-Aviv 6997801, Israel
- School of Physics and Astronomy, Tel-Aviv University, Tel-Aviv 6997801, Israel
| |
Collapse
|
12
|
Teich EG, Galloway KL, Arratia PE, Bassett DS. Crystalline shielding mitigates structural rearrangement and localizes memory in jammed systems under oscillatory shear. SCIENCE ADVANCES 2021; 7:7/20/eabe3392. [PMID: 33980482 PMCID: PMC8115929 DOI: 10.1126/sciadv.abe3392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 03/23/2021] [Indexed: 05/06/2023]
Abstract
The nature of yield in amorphous materials under stress has yet to be fully elucidated. In particular, understanding how microscopic rearrangement gives rise to macroscopic structural and rheological signatures in disordered systems is vital for the prediction and characterization of yield and the study of how memory is stored in disordered materials. Here, we investigate the evolution of local structural homogeneity on an individual particle level in amorphous jammed two-dimensional (athermal) systems under oscillatory shear and relate this evolution to rearrangement, memory, and macroscale rheological measurements. We define the structural metric crystalline shielding, and show that it is predictive of rearrangement propensity and structural volatility of individual particles under shear. We use this metric to identify localized regions of the system in which the material's memory of its preparation is preserved. Our results contribute to a growing understanding of how local structure relates to dynamic response and memory in disordered systems.
Collapse
Affiliation(s)
- Erin G Teich
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - K Lawrence Galloway
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Paulo E Arratia
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Danielle S Bassett
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA.
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA
- Santa Fe Institute, Santa Fe, NM 87501, USA
| |
Collapse
|
13
|
Pokki J, Zisi I, Schulman E, Indana D, Chaudhuri O. Magnetic probe-based microrheology reveals local softening and stiffening of 3D collagen matrices by fibroblasts. Biomed Microdevices 2021; 23:27. [PMID: 33900463 PMCID: PMC8076128 DOI: 10.1007/s10544-021-00547-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Changes in extracellular matrix stiffness impact a variety of biological processes including cancer progression. However, cells also actively remodel the matrices they interact with, dynamically altering the matrix mechanics they respond to. Further, cells not only react to matrix stiffness, but also have a distinct reaction to matrix viscoelasticity. The impact of cell-driven matrix remodeling on matrix stiffness and viscoelasticity at the microscale remains unclear, as existing methods to measure mechanics are largely at the bulk scale or probe only the surface of matrices, and focus on stiffness. Yet, establishing the impact of the matrix remodeling at the microscale is crucial to obtaining an understanding of mechanotransduction in biological matrices, and biological matrices are not just elastic, but are viscoelastic. Here, we advanced magnetic probe-based microrheology to overcome its previous limitations in measuring viscoelasticity at the cell-size-scale spatial resolution within 3D cell cultures that have tissue-relevant stiffness levels up to a Young's modulus of 0.5 kPa. Our magnetic microrheometers exert controlled magnetic forces on magnetic microprobes within reconstituted extracellular matrices and detect microprobe displacement responses to measure matrix viscoelasticity and determine the frequency-dependent shear modulus (stiffness), the loss tangent, and spatial heterogeneity. We applied these tools to investigate how microscale viscoelasticity of collagen matrices is altered by fibroblast cells as they contract collagen gels, a process studied extensively at the macroscale. Interestingly, we found that fibroblasts first soften the matrix locally over the first 32 hours of culture, and then progressively stiffen the matrix thereafter. Fibroblast activity also progressively increased the matrix loss tangent. We confirmed that the softening is caused by matrix-metalloproteinase-mediated collagen degradation, whereas stiffening is associated with local alignment and densification of collagen fibers around the fibroblasts. This work paves the way for the use of measurement systems that quantify microscale viscoelasticity within 3D cell cultures for studies of cell-matrix interactions in cancer progression and other areas.
Collapse
Affiliation(s)
- Juho Pokki
- Department of Mechanical Engineering, Stanford University, Stanford, CA, USA. .,Department of Electrical Engineering and Automation, Aalto University, Espoo, Finland.
| | - Iliana Zisi
- Department of Mechanical Engineering, Stanford University, Stanford, CA, USA
| | - Ester Schulman
- Department of Mechanical Engineering, Stanford University, Stanford, CA, USA
| | - Dhiraj Indana
- Department of Mechanical Engineering, Stanford University, Stanford, CA, USA
| | - Ovijit Chaudhuri
- Department of Mechanical Engineering, Stanford University, Stanford, CA, USA
| |
Collapse
|
14
|
Correia EL, Brown N, Razavi S. Janus Particles at Fluid Interfaces: Stability and Interfacial Rheology. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:374. [PMID: 33540620 PMCID: PMC7913064 DOI: 10.3390/nano11020374] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 01/26/2021] [Accepted: 01/29/2021] [Indexed: 02/08/2023]
Abstract
The use of the Janus motif in colloidal particles, i.e., anisotropic surface properties on opposite faces, has gained significant attention in the bottom-up assembly of novel functional structures, design of active nanomotors, biological sensing and imaging, and polymer blend compatibilization. This review is focused on the behavior of Janus particles in interfacial systems, such as particle-stabilized (i.e., Pickering) emulsions and foams, where stabilization is achieved through the binding of particles to fluid interfaces. In many such applications, the interface could be subjected to deformations, producing compression and shear stresses. Besides the physicochemical properties of the particle, their behavior under flow will also impact the performance of the resulting system. This review article provides a synopsis of interfacial stability and rheology in particle-laden interfaces to highlight the role of the Janus motif, and how particle anisotropy affects interfacial mechanics.
Collapse
Affiliation(s)
| | | | - Sepideh Razavi
- School of Chemical, Biological, and Materials Engineering, University of Oklahoma, 100 E. Boyd Street, Norman, OK 73019, USA; (E.L.C.); (N.B.)
| |
Collapse
|
15
|
Pattern detection in colloidal assembly: A mosaic of analysis techniques. Adv Colloid Interface Sci 2020; 284:102252. [PMID: 32971396 DOI: 10.1016/j.cis.2020.102252] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 08/27/2020] [Accepted: 08/28/2020] [Indexed: 01/19/2023]
Abstract
Characterization of the morphology, identification of patterns and quantification of order encountered in colloidal assemblies is essential for several reasons. First of all, it is useful to compare different self-assembly methods and assess the influence of different process parameters on the final colloidal pattern. In addition, casting light on the structures formed by colloidal particles can help to get better insight into colloidal interactions and understand phase transitions. Finally, the growing interest in colloidal assemblies in materials science for practical applications going from optoelectronics to biosensing imposes a thorough characterization of the morphology of colloidal assemblies because of the intimate relationship between morphology and physical properties (e.g. optical and mechanical) of a material. Several image analysis techniques developed to investigate images (acquired via scanning electron microscopy, digital video microscopy and other imaging methods) provide variegated and complementary information on the colloidal structures under scrutiny. However, understanding how to use such image analysis tools to get information on the characteristics of the colloidal assemblies may represent a non-trivial task, because it requires the combination of approaches drawn from diverse disciplines such as image processing, computational geometry and computational topology and their application to a primarily physico-chemical process. Moreover, the lack of a systematic description of such analysis tools makes it difficult to select the ones more suitable for the features of the colloidal assembly under examination. In this review we provide a methodical and extensive description of real-space image analysis tools by explaining their principles and their application to the investigation of two-dimensional colloidal assemblies with different morphological characteristics.
Collapse
|
16
|
Galloway KL, Jerolmack DJ, Arratia PE. Quantification of plasticity via particle dynamics above and below yield in a 2D jammed suspension. SOFT MATTER 2020; 16:4373-4382. [PMID: 32253419 DOI: 10.1039/c9sm02482d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The yield transition of amorphous materials is characterized by a swift increase of energy dissipation. The connection between particle dynamics, dissipation, and overall material rheology, however, has still not been elucidated. Here, we take a new approach relating trajectories to yielding, using a custom built interfacial stress rheometer, which allows for measurement of shear moduli (G',G'') of a dense athermal suspension's microstructure while simultaneously tracking particle trajectories undergoing cyclic shear. We find an increase in total area traced by particle trajectories as the system is stressed well below to well above yield. Trajectories may be placed into three categories: reversibly elastic paths; reversibly plastic paths, associated with smooth limit cycles; and irreversibly plastic paths, in which particles do not return to their original position. We find that above yield, reversibly plastic trajectories are predominantly found near to the shearing surface, whereas reversibly elastic paths are more prominent near the stationary wall. This spatial transition between particles acting as liquids to those acting as solids is characteristic of a 'melting front', which is observed to shift closer to the wall with increasing strain. We introduce a non-dimensional measure of plastic dissipation based on particle trajectories that scales linearly with strain amplitude both above and below yield, and that is unity at the rheological yield point. Surprisingly, this relation collapses for three systems of varying degrees of disorder.
Collapse
Affiliation(s)
- K Lawrence Galloway
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA 19104, USA. @seas.upenn.edu
| | - Douglas J Jerolmack
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA 19104, USA. @seas.upenn.edu and Department of Earth and Environmental Science, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Paulo E Arratia
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA 19104, USA. @seas.upenn.edu
| |
Collapse
|
17
|
Sarkar T, Chaudhuri P, Sain A. Poiseuille Flow of Soft Polycrystals in 2D Rough Channels. PHYSICAL REVIEW LETTERS 2020; 124:158003. [PMID: 32357064 DOI: 10.1103/physrevlett.124.158003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 07/10/2019] [Accepted: 03/16/2020] [Indexed: 06/11/2023]
Abstract
Polycrystals are partially ordered solids where crystalline order extends over mesoscopic length scales, namely, the grain size. We study the Poisuielle flow of such materials in a rough channel. In general, similar to yield stress fluids, three distinct dynamical states, namely, flowing, stick-slip, and jammed can be observed, with a yield threshold dependent on channel width. Importantly, the interplay between the finite channel width, and the intrinsic ordering scale (the grain size) leads to a new type of spatiotemporal heterogeneity. In wide channels, although the average flow profile remains pluglike, at the underlying granular level, there is vigorous grain remodeling activity resulting from the velocity heterogeneity among the grains. As the channel width approaches typical grain size, the flowing polycrystalline state breaks up into a spatially heterogeneous mixture of flowing liquid like patches and chunks of nearly static grains. Despite these static grains, the average velocity still shows a parabolic profile, dominated by the moving liquidlike patches. However, the solid-liquid front moves at nearly constant speed in the opposite direction of the external drive.
Collapse
Affiliation(s)
- Tanmoy Sarkar
- Department of Physics, Indian Institute of Technology, Bombay, Powai, Mumbai 400 076, India
| | - Pinaki Chaudhuri
- Institute of Mathematical Sciences, CIT Campus, Taramani, Chennai 600113, India
| | - Anirban Sain
- Department of Physics, Indian Institute of Technology, Bombay, Powai, Mumbai 400 076, India
| |
Collapse
|
18
|
Bera PK, Kandar AK, Krishnaswamy R, Sood AK. Experimental signatures of a nonequilibrium phase transition near the crossover point of a Langmuir monolayer. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2019; 31:504004. [PMID: 31491774 DOI: 10.1088/1361-648x/ab4235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We investigate the response of the two-dimensional (2D) continuous non-particulate film of surfactant sorbitan tristearate confined at the air-water interface under oscillatory shear deformation. The time dependence of various rheological parameters show critical-like behavior at a value of strain amplitude close to the crossover point of elastic ([Formula: see text]) and viscous ([Formula: see text]) shear moduli. Imposing oscillatory shear of different strain amplitudes ([Formula: see text]) above and below the crossover strain amplitude ([Formula: see text]) over a large number of cycles, we quantify the temporal dependence of interfacial viscous modulus, phase angle ([Formula: see text]) as well as higher harmonic components of stress. The number of shear cycles ([Formula: see text]) required for these quantities to reach the steady state value diverges near [Formula: see text]. The steady state values of the third harmonic ([Formula: see text]) show order parameter like behavior indicating the importance of higher order harmonics near the nonequilibrium transition. We further show that the energy dissipation per cycle per unit volume has a marked change near [Formula: see text], consistent with continuum level nonequilibrium shear-transformation-zone model of amorphous viscoplasticity.
Collapse
Affiliation(s)
- P K Bera
- Department of Physics, Indian Institute of Science, Bangalore, 560012, India
| | | | | | | |
Collapse
|
19
|
Carrasco-Fadanelli V, Castillo R. Measurement of the force between uncharged colloidal particles trapped at a flat air/water interface. SOFT MATTER 2019; 15:5815-5818. [PMID: 31305848 DOI: 10.1039/c9sm01051c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The radial attraction between microspheres straddling at the air/water interface (Bond number ≪1), whose origin is the irregular shape of the contact line and its concomitant distortion of the water surface, is measured using two light beams of a time-sharing optical tweezer. The colloidal particles used to make the measurements are microspheres made of hydrophobically covered silica to reduce the electrostatic interactions to a minimum. The measured radial force goes as a quadrupolar power law, r-n, with n = 5.02 ± 0.18 and n = 5.04 ± 0.18 for particles of 3 μm and 5 μm, respectively. In both cases, the electrostatic interaction is negligible.
Collapse
|
20
|
Maestro A. Tailoring the interfacial assembly of colloidal particles by engineering the mechanical properties of the interface. Curr Opin Colloid Interface Sci 2019. [DOI: 10.1016/j.cocis.2019.02.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
21
|
Feng X, Schlüter AD. Towards Macroscopic Crystalline 2D Polymers. Angew Chem Int Ed Engl 2018; 57:13748-13763. [DOI: 10.1002/anie.201803456] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 05/19/2018] [Indexed: 11/11/2022]
Affiliation(s)
- Xinliang Feng
- Center for Advancing Electronics Dresden & Department of Chemistry and Food ChemistryTechnische Universität Dresden 01069 Dresden Germany
| | | |
Collapse
|
22
|
Affiliation(s)
- Xinliang Feng
- Center for Advancing Electronics Dresden & Fakultät Chemie und LebensmittelchemieTechnische Universität Dresden 01069 Dresden Deutschland
| | | |
Collapse
|
23
|
Huerre A, De Corato M, Garbin V. Dynamic capillary assembly of colloids at interfaces with 10,000g accelerations. Nat Commun 2018; 9:3620. [PMID: 30190523 PMCID: PMC6127265 DOI: 10.1038/s41467-018-06049-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 08/14/2018] [Indexed: 11/08/2022] Open
Abstract
High-rate deformation of soft matter is an emerging area central to our understanding of far-from-equilibrium phenomena during shock, fracture, and phase change. Monolayers of colloidal particles are a convenient two-dimensional model system to visualise emergent behaviours in soft matter, but previous studies have been limited to slow deformations. Here we probe and visualise the evolution of a monolayer of colloids confined at a bubble surface during high-rate deformation driven by ultrasound. We observe the emergence of a transient network of strings, and use discrete particle simulations to show that it is caused by a delicate interplay of dynamic capillarity and hydrodynamic interactions between particles oscillating at high frequency. Remarkably for a colloidal system, we find evidence of inertial effects, caused by accelerations approaching 10,000g. These results also suggest that extreme deformation of soft matter offers new opportunities for pattern formation and dynamic self-assembly.
Collapse
Affiliation(s)
- Axel Huerre
- Department of Chemical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Marco De Corato
- Department of Chemical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Valeria Garbin
- Department of Chemical Engineering, Imperial College London, London, SW7 2AZ, UK.
| |
Collapse
|
24
|
Lotito V, Zambelli T. Pattern Formation in Binary Colloidal Assemblies: Hidden Symmetries in a Kaleidoscope of Structures. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:7827-7843. [PMID: 29886749 DOI: 10.1021/acs.langmuir.8b01411] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In this study, we present a detailed investigation of the morphology of binary colloidal structures formed by self-assembly at air/water interface of particles of two different sizes, with a size ratio such that the larger particles do not retain a hexagonal arrangement in the binary assembly. While the structure and symmetry of binary mixtures in which such hexagonal order is preserved has been thoroughly scrutinized, binary colloids in the regime of nonpreservation of the hexagonal order have not been examined with the same level of detail due also to the difficulty in finding analysis tools suitable to recognize hidden symmetries in seemingly amorphous and disordered arrangements. For this purpose, we resorted to a combination of different analysis tools based on computational geometry and computational topology to get a comprehensive picture of the morphology of the assemblies. By carrying out an extensive investigation of binary assemblies in this regime with variable concentration of smaller particles with respect to larger particles, we identify the main patterns that coexist in the apparently disordered assemblies and detect transitions in the symmetries upon increase in the number of small particles. As the concentration of small particles increases, large particle arrangements become more dilute and a transition from hexagonal to rhombic and square symmetries occurs, accompanied also by an increase in clusters of small particles; the relative weight of each specific symmetry can be controlled by varying the composition of the assemblies. The demonstration of the possibility to control the morphology of apparently disordered binary colloidal assemblies by varying experimental conditions and the definition of a route for the investigation of disordered assemblies are important for future studies of complex colloidal patterns to understand self-assembly mechanisms and to tailor the physical properties of colloidal assemblies.
Collapse
Affiliation(s)
- Valeria Lotito
- Laboratory of Biosensors and Bioelectronics , Institute for Biomedical Engineering, ETH Zurich , Gloriastrasse 35 , 8092 Zurich , Switzerland
| | - Tomaso Zambelli
- Laboratory of Biosensors and Bioelectronics , Institute for Biomedical Engineering, ETH Zurich , Gloriastrasse 35 , 8092 Zurich , Switzerland
| |
Collapse
|
25
|
Cerbino R. Quantitative optical microscopy of colloids: The legacy of Jean Perrin. Curr Opin Colloid Interface Sci 2018. [DOI: 10.1016/j.cocis.2018.03.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
26
|
Thijssen JHJ, Vermant J. Interfacial rheology of model particles at liquid interfaces and its relation to (bicontinuous) Pickering emulsions. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2018; 30:023002. [PMID: 29165321 DOI: 10.1088/1361-648x/aa9c74] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Interface-dominated materials are commonly encountered in both science and technology, and typical examples include foams and emulsions. Conventionally stabilised by surfactants, emulsions can also be stabilised by micron-sized particles. These so-called Pickering-Ramsden (PR) emulsions have received substantial interest, as they are model arrested systems, rather ubiquitous in industry and promising templates for advanced materials. The mechanical properties of the particle-laden liquid-liquid interface, probed via interfacial rheology, have been shown to play an important role in the formation and stability of PR emulsions. However, the morphological processes which control the formation of emulsions and foams in mixing devices, such as deformation, break-up, and coalescence, are complex and diverse, making it difficult to identify the precise role of the interfacial rheological properties. Interestingly, the role of interfacial rheology in the stability of bicontinuous PR emulsions (bijels) has been virtually unexplored, even though the phase separation process which leads to the formation of these systems is relatively simple and the interfacial deformation processes can be better conceptualised. Hence, the aims of this topical review are twofold. First, we review the existing literature on the interfacial rheology of particle-laden liquid interfaces in rheometrical flows, focussing mainly on model latex suspensions consisting of polystyrene particles carrying sulfate groups, which have been most extensively studied to date. The goal of this part of the review is to identify the generic features of the rheology of such systems. Secondly, we will discuss the relevance of these results to the formation and stability of PR emulsions and bijels.
Collapse
Affiliation(s)
- J H J Thijssen
- SUPA School of Physics and Astronomy, The University of Edinburgh, Peter Guthrie Tait Road, Edinburgh EH9 3FD, United Kindom
| | | |
Collapse
|
27
|
Cash CE, Wang J, Martirossyan MM, Ludlow BK, Baptista AE, Brown NM, Weissler EJ, Abacousnac J, Gerbode SJ. Local Melting Attracts Grain Boundaries in Colloidal Polycrystals. PHYSICAL REVIEW LETTERS 2018; 120:018002. [PMID: 29350950 DOI: 10.1103/physrevlett.120.018002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Indexed: 06/07/2023]
Abstract
We find that laser-induced local melting attracts and deforms grain boundaries in 2D colloidal crystals. When a melted region in contact with the edge of a crystal grain recrystallizes, it deforms the grain boundary-this attraction is driven by the multiplicity of deformed grain boundary configurations. Furthermore, the attraction provides a method to fabricate artificial colloidal crystal grains of arbitrary shape, enabling new experimental studies of grain boundary dynamics and ultimately hinting at a novel approach for fabricating materials with designer microstructures.
Collapse
Affiliation(s)
- Caitlin E Cash
- Department of Physics, Harvey Mudd College, Claremont, California 91711, USA
| | - Jeremy Wang
- Department of Physics, Harvey Mudd College, Claremont, California 91711, USA
| | - Maya M Martirossyan
- Department of Physics, Harvey Mudd College, Claremont, California 91711, USA
| | - B Kemper Ludlow
- Department of Physics, Harvey Mudd College, Claremont, California 91711, USA
| | | | - Nina M Brown
- Department of Physics, Harvey Mudd College, Claremont, California 91711, USA
| | - Eli J Weissler
- Department of Physics, Harvey Mudd College, Claremont, California 91711, USA
| | - Jatin Abacousnac
- Department of Physics, Harvey Mudd College, Claremont, California 91711, USA
| | - Sharon J Gerbode
- Department of Physics, Harvey Mudd College, Claremont, California 91711, USA
| |
Collapse
|
28
|
Lazarev S, Besedin I, Zozulya AV, Meijer JM, Dzhigaev D, Gorobtsov OY, Kurta RP, Rose M, Shabalin AG, Sulyanova EA, Zaluzhnyy I, Menushenkov AP, Sprung M, Petukhov AV, Vartanyants IA. Ptychographic X-Ray Imaging of Colloidal Crystals. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:1702575. [PMID: 29171683 DOI: 10.1002/smll.201702575] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 09/08/2017] [Indexed: 05/21/2023]
Abstract
Ptychographic coherent X-ray imaging is applied to obtain a projection of the electron density of colloidal crystals, which are promising nanoscale materials for optoelectronic applications and important model systems. Using the incident X-ray wavefield reconstructed by mixed states approach, a high resolution and high contrast image of the colloidal crystal structure is obtained by ptychography. The reconstructed colloidal crystal reveals domain structure with an average domain size of about 2 µm. Comparison of the domains formed by the basic close-packed structures, allows us to conclude on the absence of pure hexagonal close-packed domains and confirms the presence of random hexagonal close-packed layers with predominantly face-centered cubic structure within the analyzed part of the colloidal crystal film. The ptychography reconstruction shows that the final structure is complicated and may contain partial dislocations leading to a variation of the stacking sequence in the lateral direction. As such in this work, X-ray ptychography is extended to high resolution imaging of crystalline samples.
Collapse
Affiliation(s)
- Sergey Lazarev
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, D-22607, Hamburg, Germany
- National Research Tomsk Polytechnic University (TPU), pr. Lenina 30, 634050, Tomsk, Russia
| | - Ilya Besedin
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, D-22607, Hamburg, Germany
- National Research Nuclear University, MEPhI (Moscow Engineering Physics Institute), Kashirskoe shosse 31, 115409, Moscow, Russia
| | - Alexey V Zozulya
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, D-22607, Hamburg, Germany
| | - Janne-Mieke Meijer
- Van't Hoff Laboratory for Physical and Colloid Chemistry, Debye Institute for Nanomaterial Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Dmitry Dzhigaev
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, D-22607, Hamburg, Germany
| | - Oleg Yu Gorobtsov
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, D-22607, Hamburg, Germany
| | - Ruslan P Kurta
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, D-22607, Hamburg, Germany
| | - Max Rose
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, D-22607, Hamburg, Germany
| | - Anatoly G Shabalin
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, D-22607, Hamburg, Germany
| | - Elena A Sulyanova
- Shubnikov Institute of Crystallography RAS, Leninskii pr. 59, 119333, Moscow, Russia
| | - IvanA Zaluzhnyy
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, D-22607, Hamburg, Germany
- National Research Nuclear University, MEPhI (Moscow Engineering Physics Institute), Kashirskoe shosse 31, 115409, Moscow, Russia
| | - Alexey P Menushenkov
- National Research Nuclear University, MEPhI (Moscow Engineering Physics Institute), Kashirskoe shosse 31, 115409, Moscow, Russia
| | - Michael Sprung
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, D-22607, Hamburg, Germany
| | - Andrei V Petukhov
- Van't Hoff Laboratory for Physical and Colloid Chemistry, Debye Institute for Nanomaterial Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
- Laboratory of Physical Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, Netherlands
| | - Ivan A Vartanyants
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, D-22607, Hamburg, Germany
- National Research Nuclear University, MEPhI (Moscow Engineering Physics Institute), Kashirskoe shosse 31, 115409, Moscow, Russia
| |
Collapse
|
29
|
Danov KD, Georgiev MT, Kralchevsky PA, Radulova GM, Gurkov TD, Stoyanov SD, Pelan EG. Hardening of particle/oil/water suspensions due to capillary bridges: Experimental yield stress and theoretical interpretation. Adv Colloid Interface Sci 2018; 251:80-96. [PMID: 29174116 DOI: 10.1016/j.cis.2017.11.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 11/11/2017] [Accepted: 11/12/2017] [Indexed: 01/19/2023]
Abstract
Suspensions of colloid particles possess the remarkable property to solidify upon the addition of minimal amount of a second liquid that preferentially wets the particles. The hardening is due to the formation of capillary bridges (pendular rings), which connect the particles. Here, we review works on the mechanical properties of such suspensions and related works on the capillary-bridge force, and present new rheological data for the weakly studied concentration range 30-55 vol% particles. The mechanical strength of the solidified capillary suspensions, characterized by the yield stress Y, is measured at the elastic limit for various volume fractions of the particles and the preferentially wetting liquid. A quantitative theoretical model is developed, which relates Y with the maximum of the capillary-bridge force, projected on the shear plane. A semi-empirical expression for the mean number of capillary bridges per particle is proposed. The model agrees very well with the experimental data and gives a quantitative description of the yield stress, which increases with the rise of interfacial tension and with the volume fractions of particles and capillary bridges, but decreases with the rise of particle radius and contact angle. The quantitative description of capillary force is based on the exact theory and numerical calculation of the capillary bridge profile at various bridge volumes and contact angles. An analytical formula for Y is also derived. The comparison of the theoretical and experimental strain at the elastic limit reveals that the fluidization of the capillary suspension takes place only in a deformation zone of thickness up to several hundred particle diameters, which is adjacent to the rheometer's mobile plate. The reported experimental results refer to water-continuous suspension with hydrophobic particles and oily capillary bridges. The comparison of data for bridges from soybean oil and hexadecane surprisingly indicate that the yield strength is greater for the suspension with soybean oil despite its lower interfacial tension against water. The result can be explained with the different contact angles of the two oils in agreement with the theoretical predictions. The results could contribute for a better understanding, quantitative prediction and control of the mechanical properties of three-phase capillary suspensions solid/liquid/liquid.
Collapse
|
30
|
Maestro A, Zaccone A. Nonaffine deformation and tunable yielding of colloidal assemblies at the air-water interface. NANOSCALE 2017; 9:18343-18351. [PMID: 29143840 DOI: 10.1039/c7nr06014a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Silica nanoparticles trapped at the air-water interface form a 2D solid state with amorphous order. We propose a theoretical model to describe how this solid-like state deforms under a shear strain ramp up to and beyond a yielding point which leads to plastic flow. The model accounts for all the particle-level and many-body physics of the system: nonaffine displacements, local connectivity and its evolution in terms of cage-breaking, and interparticle interactions mediated by the particle chemistry and colloidal forces. The model is able to reproduce experimental data with only two non-trivial fitting parameters: the relaxation time of the cage and the viscous relaxation time. The interparticle spring constant contains information about the strength of interparticle bonding which is tuned by the amount of surfactant that renders the particles hydrophobic and mutually attractive. This framework opens up the possibility of quantitatively tuning and rationally designing the mechanical response of colloidal assemblies at the air-water interface. Also, it provides a mechanistic explanation for the observed non-monotonic dependence of yield strain on surfactant concentration.
Collapse
Affiliation(s)
- Armando Maestro
- Cavendish Laboratory, University of Cambridge, CB3 0HE Cambridge, UK.
| | | |
Collapse
|