1
|
Huang Z, Han X, Zhao Z, Yang H, Chen H, Gao HJ. Formation and Manipulation of Diatomic Rotors at the Symmetry-Breaking Surfaces of a Kagome Superconductor. NANO LETTERS 2024; 24:6023-6030. [PMID: 38739284 DOI: 10.1021/acs.nanolett.4c00762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
Construction of diatomic rotors, which is crucial for artificial nanomachines, remains challenging due to surface constraints and limited chemical design. Here we report the construction of diatomic Cr-Cs and Fe-Cs rotors where a Cr or Fe atom switches around a Cs atom at the Sb surface of the newly discovered kagome superconductor CsV3Sb5. The switching rate is controlled by the bias voltage between the rotor and scanning tunneling microscope (STM) tip. The spatial distribution of rates exhibits C2 symmetry, possibly linked to the symmetry-breaking charge orders of CsV3Sb5. We have expanded the rotor construction to include different transition metals (Cr, Fe, V) and alkali metals (Cs, K). Remarkably, designed configurations of rotors are achieved through STM manipulation. Rotor orbits and quantum states are precisely controlled by tuning the inter-rotor distance. Our findings establish a novel platform for the controlled fabrication of atomic motors on symmetry-breaking quantum materials, paving the way for advanced nanoscale devices.
Collapse
Affiliation(s)
- Zihao Huang
- Beijing National Center for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, PR China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, PR China
| | - Xianghe Han
- Beijing National Center for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, PR China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, PR China
| | - Zhen Zhao
- Beijing National Center for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, PR China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, PR China
| | - Haitao Yang
- Beijing National Center for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, PR China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, PR China
| | - Hui Chen
- Beijing National Center for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, PR China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, PR China
| | - Hong-Jun Gao
- Beijing National Center for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, PR China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, PR China
| |
Collapse
|
2
|
Bi L, Jamnuch S, Chen A, Do A, Balto KP, Wang Z, Zhu Q, Wang Y, Zhang Y, Tao AR, Pascal TA, Figueroa JS, Li S. Molecular-Scale Visualization of Steric Effects of Ligand Binding to Reconstructed Au(111) Surfaces. J Am Chem Soc 2024; 146:11764-11772. [PMID: 38625675 PMCID: PMC11066864 DOI: 10.1021/jacs.4c00002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 03/28/2024] [Accepted: 03/29/2024] [Indexed: 04/17/2024]
Abstract
Direct imaging of single molecules at nanostructured interfaces is a grand challenge with potential to enable new, precise material architectures and technologies. Of particular interest are the structural morphology and spectroscopic signatures of the adsorbed molecule, where modern probes are only now being developed with the necessary spatial and energetic resolution to provide detailed information at the molecule-surface interface. Here, we directly characterize the adsorption of individual m-terphenyl isocyanide ligands on a reconstructed Au(111) surface through scanning tunneling microscopy and inelastic electron tunneling spectroscopy. The site-dependent steric pressure of the various surface features alters the vibrational fingerprints of the m-terphenyl isocyanides, which are characterized with single-molecule precision through joint experimental and theoretical approaches. This study provides molecular-level insights into the steric-pressure-enabled surface binding selectivity as well as its effect on the chemical properties of individual surface-binding ligands.
Collapse
Affiliation(s)
- Liya Bi
- Department
of Chemistry and Biochemistry, University
of California, San Diego, California 92093-0309, United States
- Program
in Materials Science and Engineering, University
of California, San Diego, California 92093-0418, United States
| | - Sasawat Jamnuch
- Department
of Nano and Chemical Engineering, University
of California, San Diego, California 92093-0448, United States
| | - Amanda Chen
- Department
of Nano and Chemical Engineering, University
of California, San Diego, California 92093-0448, United States
| | - Alexandria Do
- Program
in Materials Science and Engineering, University
of California, San Diego, California 92093-0418, United States
- Department
of Nano and Chemical Engineering, University
of California, San Diego, California 92093-0448, United States
| | - Krista P. Balto
- Department
of Chemistry and Biochemistry, University
of California, San Diego, California 92093-0309, United States
| | - Zhe Wang
- Institute
of Fundamental and Frontier Sciences, University
of Electronic Science and Technology of China, Chengdu 611731, China
| | - Qingyi Zhu
- Department
of Chemistry and Biochemistry, University
of California, San Diego, California 92093-0309, United States
| | - Yufei Wang
- Program
in Materials Science and Engineering, University
of California, San Diego, California 92093-0418, United States
- Department
of Nano and Chemical Engineering, University
of California, San Diego, California 92093-0448, United States
| | - Yanning Zhang
- Institute
of Fundamental and Frontier Sciences, University
of Electronic Science and Technology of China, Chengdu 611731, China
| | - Andrea R. Tao
- Department
of Chemistry and Biochemistry, University
of California, San Diego, California 92093-0309, United States
- Program
in Materials Science and Engineering, University
of California, San Diego, California 92093-0418, United States
- Department
of Nano and Chemical Engineering, University
of California, San Diego, California 92093-0448, United States
| | - Tod A. Pascal
- Program
in Materials Science and Engineering, University
of California, San Diego, California 92093-0418, United States
- Department
of Nano and Chemical Engineering, University
of California, San Diego, California 92093-0448, United States
| | - Joshua S. Figueroa
- Department
of Chemistry and Biochemistry, University
of California, San Diego, California 92093-0309, United States
- Program
in Materials Science and Engineering, University
of California, San Diego, California 92093-0418, United States
| | - Shaowei Li
- Department
of Chemistry and Biochemistry, University
of California, San Diego, California 92093-0309, United States
- Program
in Materials Science and Engineering, University
of California, San Diego, California 92093-0418, United States
| |
Collapse
|
3
|
Wu H, Li G, Hou J, Sotthewes K. Probing surface properties of organic molecular layers by scanning tunneling microscopy. Adv Colloid Interface Sci 2023; 318:102956. [PMID: 37393823 DOI: 10.1016/j.cis.2023.102956] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 06/21/2023] [Accepted: 06/23/2023] [Indexed: 07/04/2023]
Abstract
In view of the relevance of organic thin layers in many fields, the fundamentals, growth mechanisms, and dynamics of thin organic layers, in particular thiol-based self-assembled monolayers (SAMs) on Au(111) are systematically elaborated. From both theoretical and practical perspectives, dynamical and structural features of the SAMs are of great intrigue. Scanning tunneling microscopy (STM) is a remarkably powerful technique employed in the characterization of SAMs. Numerous research examples of investigation about the structural and dynamical properties of SAMs using STM, sometimes combined with other techniques, are listed in the review. Advanced options to enhance the time resolution of STM are discussed. Additionally, we elaborate on the extremely diverse dynamics of various SAMs, such as phase transitions and structural changes at the molecular level. In brief, the current review is expected to supply a better understanding and novel insights regarding the dynamical events happening in organic SAMs and how to characterize these processes.
Collapse
Affiliation(s)
- Hairong Wu
- State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum-Beijing, Beijing 102249, China; Unconventional Petroleum Research Institute, China University of Petroleum-Beijing, Beijing 102249, China.
| | - Genglin Li
- College of Science, China University of Petroleum-Beijing, Beijing 102249, China
| | - Jirui Hou
- State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum-Beijing, Beijing 102249, China; Unconventional Petroleum Research Institute, China University of Petroleum-Beijing, Beijing 102249, China
| | - Kai Sotthewes
- Physics of Interfaces and Nanomaterials, MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500AE Enschede, the Netherlands.
| |
Collapse
|
4
|
Christ A, Bode M, Leisegang M. Real-space resolved surface reactions: deprotonation and metalation of phthalocyanine. Phys Chem Chem Phys 2023; 25:7681-7687. [PMID: 36857662 DOI: 10.1039/d2cp05716f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Upon deposition on a surface, molecules can undergo a plethora of changes, such as reactions with adsorbates and surface atoms and catalytic decomposition. Since different reaction pathways may coexist, spatially averaging techniques can be insufficient for the characterization and distinction of all on-surface products. Here, we present a study of single phthalocyanine molecules on a Cu(111) surface which was performed using high-resolution low-temperature STM. Upon deposition of metal-free H2Pc, we can identify three distinct molecular species. A thorough investigation reveals that temperature-driven on-surface reactions partially convert H2Pc into H0Pc and CuPc. The individual species are differentiated by their topographic appearance and can unambiguously be identified by their STM-induced rotational behavior. While H2Pc shows a switching between two orientations at low energies, a third orientation can be observed above E > 800 meV, which is induced by tautomerization. Around the Fermi level, the rotational behavior is asymmetric, owing to the excitation of vibrational modes in unoccupied states whereas resonant tunneling occurs in occupied states. A two-step deprotonation of H2Pc confirms that the second species is H0Pc. By comparison with CuPc evaporated on Cu(111), we unambiguously reveal that the third species is indeed CuPc, which exhibits an exceptionally low threshold for rotational switching accompanied by an asymmetric behavior around the Fermi level. Varying the post-annealing temperature, we found a sharp threshold for the H2Pc → CuPc on-surface metalation at around 100 °C. In contrast, the competing process of thermal decomposition from H2Pc to H0Pc only increases weakly.
Collapse
Affiliation(s)
- Andreas Christ
- Physikalisches Institut, Experimentelle Physik II, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany.
| | - Matthias Bode
- Physikalisches Institut, Experimentelle Physik II, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany. .,Wilhelm Conrad Röntgen-Center for Complex Material Systems (RCCM), Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Markus Leisegang
- Physikalisches Institut, Experimentelle Physik II, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany.
| |
Collapse
|
5
|
Yu R, Yan GR, Liu YQ, Cui ZH. Two-layer molecular rotors: A zinc dimer rotating over planar hypercoordinate motifs. J Comput Chem 2023; 44:240-247. [PMID: 35470906 DOI: 10.1002/jcc.26871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/30/2022] [Accepted: 04/11/2022] [Indexed: 12/31/2022]
Abstract
Multi-layer molecular rotors represent a class of unique combination of topology and bonding, featuring a barrier-free rotation of one layer with respect to other layers. This emerging fluxional behavior has been found in a few doped boron clusters. Herein, we strongly enrich this intriguing family followed by an effective design strategy, summarized as essential factors: i) considerable electrostatic interactions originated from a strong charge transfer between layers; ii) the absence of strong covalent bonds between layers; and iii) fully delocalized σ/π electrons from at least one layer. We found that planar hypercoordinate motifs consisting of monocyclic boron rings and metals with σ + π dual aromaticity can be regarded as one promising layer, which can support the suspended X2 (X = Zn, Cd, Hg) dimers. By detailed investigations of thermodynamic and kinetic stabilities of 60 species, eventually, MB7 X2 - and MB8 X2 (X = Zn, Cd; M = Be, Ru, Os; Be works only for Zn-based cases) clusters were verified to be the global-minimum two-layer molecular rotors. Especially, their electronic structure analyses vividly confirm the practicability of the electronic structure requirements mentioned above for designing multi-layer molecular rotors.
Collapse
Affiliation(s)
- Rui Yu
- Institute of Atomic and Molecular Physics, Jilin University, Changchun, China
| | - Gai-Ru Yan
- Institute of Atomic and Molecular Physics, Jilin University, Changchun, China
| | - Yu-Qian Liu
- Institute of Atomic and Molecular Physics, Jilin University, Changchun, China
| | - Zhong-Hua Cui
- Institute of Atomic and Molecular Physics, Jilin University, Changchun, China.,Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), Jilin University, Changchun, China
| |
Collapse
|
6
|
Li C, Homberg J, Weismann A, Berndt R. On-Surface Synthesis and Spectroscopy of Aluminum Phthalocyanine on Superconducting Lead. ACS NANO 2022; 16:16987-16995. [PMID: 36153959 DOI: 10.1021/acsnano.2c07106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Large ordered islands of aluminum phthalocyanine (AlPc) molecules, which are unstable in air, are synthesized from ClAlPc on Pb(100) via dechlorination. Low-temperature scanning tunneling microscopy reveals that isolated AlPc molecules lose their spin moment on superconducting Pb(100). Molecular magnetism, which is detected via Yu-Shiba-Rusinov (YSR) resonances, may be restored by surrounding a molecule with an array of neighbor molecules in artificial arrays or in a self-assembled monolayer. Unlike phthalocyanine (H2Pc) or lead phthalocyanine (PbPc) monolayers, where the YSR energy was found to depend strongly on the detailed configuration of the neighboring molecules, we find a similar magnetic moment on every second molecule for AlPc. In addition, YSR resonances lead to unusually high conductance peaks that are due to vibrational excitations. Twelve vibrational modes are resolved and discussed with respect to similar results from PbPc. The enhancement of the inelastic transitions is tentatively attributed to the large amplitude of the YSR resonances and the long lifetime of electrons in the molecular bound state. By assembling neighboring molecules into configurations that differ from those of the monolayer, the YSR energy may be fine-tuned, and a simple spin-state switching device is constructed.
Collapse
Affiliation(s)
- Chao Li
- Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität zu Kiel, 24098 Kiel, Germany
- Kiel Nano, Surface and Interface Science KiNSIS, Kiel University, 24098 Kiel, Germany
| | - Jan Homberg
- Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität zu Kiel, 24098 Kiel, Germany
- Kiel Nano, Surface and Interface Science KiNSIS, Kiel University, 24098 Kiel, Germany
| | - Alexander Weismann
- Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität zu Kiel, 24098 Kiel, Germany
- Kiel Nano, Surface and Interface Science KiNSIS, Kiel University, 24098 Kiel, Germany
| | - Richard Berndt
- Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität zu Kiel, 24098 Kiel, Germany
- Kiel Nano, Surface and Interface Science KiNSIS, Kiel University, 24098 Kiel, Germany
| |
Collapse
|
7
|
Atomically precise control of rotational dynamics in charged rare-earth complexes on a metal surface. Nat Commun 2022; 13:6305. [PMID: 36273005 PMCID: PMC9588029 DOI: 10.1038/s41467-022-33897-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 10/07/2022] [Indexed: 11/09/2022] Open
Abstract
Complexes containing rare-earth ions attract great attention for their technological applications ranging from spintronic devices to quantum information science. While charged rare-earth coordination complexes are ubiquitous in solution, they are challenging to form on materials surfaces that would allow investigations for potential solid-state applications. Here we report formation and atomically precise manipulation of rare-earth complexes on a gold surface. Although they are composed of multiple units held together by electrostatic interactions, the entire complex rotates as a single unit when electrical energy is supplied from a scanning tunneling microscope tip. Despite the hexagonal symmetry of the gold surface, a counterion at the side of the complex guides precise three-fold rotations and 100% control of their rotational directions is achieved using a negative electric field from the scanning probe tip. This work demonstrates that counterions can be used to control dynamics of rare-earth complexes on materials surfaces for quantum and nanomechanical applications. Rare-earth elements are vital to advanced technological applications ranging from spintronic devices to quantum information science. Here, the authors formed charged rare-earth complexes on a material surface and demonstrated atomically precise control on their rotational dynamics.
Collapse
|
8
|
Bao L, Huang L, Guo H, Gao HJ. Construction and physical properties of low-dimensional structures for nanoscale electronic devices. Phys Chem Chem Phys 2022; 24:9082-9117. [PMID: 35383791 DOI: 10.1039/d1cp05981e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Over the past decades, construction of nanoscale electronic devices with novel functionalities based on low-dimensional structures, such as single molecules and two-dimensional (2D) materials, has been rapidly developed. To investigate their intrinsic properties for versatile functionalities of nanoscale electronic devices, it is crucial to precisely control the structures and understand the physical properties of low-dimensional structures at the single atomic level. In this review, we provide a comprehensive overview of the construction of nanoelectronic devices based on single molecules and 2D materials and the investigation of their physical properties. For single molecules, we focus on the construction of single-molecule devices, such as molecular motors and molecular switches, by precisely controlling their self-assembled structures on metal substrates and charge transport properties. For 2D materials, we emphasize their spin-related electrical transport properties for spintronic device applications and the role that interfaces among 2D semiconductors, contact electrodes, and dielectric substrates play in the electrical performance of electronic, optoelectronic, and memory devices. Finally, we discuss the future research direction in this field, where we can expect a scientific breakthrough.
Collapse
Affiliation(s)
- Lihong Bao
- Institute of Physics & University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190, P. R. China. .,Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, P. R. China
| | - Li Huang
- Institute of Physics & University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190, P. R. China.
| | - Hui Guo
- Institute of Physics & University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190, P. R. China.
| | - Hong-Jun Gao
- Institute of Physics & University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190, P. R. China. .,Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, P. R. China
| |
Collapse
|
9
|
Lu S, Huang M, Huang G, Guo Q, Li H, Deng J, Zhang C, Yu Y. Two 'braking mechanisms' for tin phthalocyanine molecular rotors on dipolar iron oxide surfaces. NANOSCALE ADVANCES 2022; 4:1213-1219. [PMID: 36131761 PMCID: PMC9417875 DOI: 10.1039/d1na00588j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 11/10/2021] [Indexed: 06/15/2023]
Abstract
Manipulation of artificial molecular rotors/motors is a key issue in the field of molecular nanomachines. Here we assemble non-planar SnPc molecules on an FeO film to form two kinds of rotors with different apparent morphologies, rotational speeds and stabilities. Both kinds of rotors can switch to each other via external field stimulation and the switch depends on the polarity of the applied bias voltage. Furthermore, we reveal that the molecular fragment has a great influence on the motions of molecules. Combining scanning tunneling microscopy and DFT calculations, two braking mechanisms are addressed for molecular rotors. One is the transformation of adsorption configurations under the external electric field stimulus that enables the molecular rotor to stop/restart its rotation. The other is the introduction of embedded molecular fragments that act as a brake pad and can stop the molecular rotation. We find that the rotation can be recovered by separating the molecule from the fragments. Our study suggests a good system for manipulating molecular rotors' properties in nanophysics and has important value for the design of controllable molecular machines.
Collapse
Affiliation(s)
- Shuangzan Lu
- Department of Physics, Faculty of Physics and Electronic Sciences, Hubei University Wuhan 430062 China
- School of Physics and Technology, Wuhan University Wuhan 430072 China
| | - Min Huang
- Department of Physics, Faculty of Physics and Electronic Sciences, Hubei University Wuhan 430062 China
| | - Guodong Huang
- Department of Physics, Faculty of Physics and Electronic Sciences, Hubei University Wuhan 430062 China
| | - Qinmin Guo
- The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology Wuhan 430081 China
| | - Hongxing Li
- Hunan Provincial Key Laboratory of Flexible Electronic Materials Genome Engineering, Changsha University of Science and Technology Changsha 410114 China
| | - Jinghao Deng
- School of Physics and Technology, Wuhan University Wuhan 430072 China
| | - Chendong Zhang
- School of Physics and Technology, Wuhan University Wuhan 430072 China
| | - Yinghui Yu
- Department of Physics, Faculty of Physics and Electronic Sciences, Hubei University Wuhan 430062 China
| |
Collapse
|
10
|
Meier D, Adak AK, Knecht P, Reichert J, Mondal S, Suryadevara N, Kuppusamy SK, Eguchi K, Muntwiler MK, Allegretti F, Ruben M, Barth JV, Narasimhan S, Papageorgiou AC. Rotation in an Enantiospecific Self‐Assembled Array of Molecular Raffle Wheels. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202107708] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Dennis Meier
- Physics Department E20 Technical University of Munich (TUM) James Franck Strasse 1 85748 Garching Germany
| | - Abhishek K. Adak
- Theoretical Sciences Unit & School of Advanced Materials Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur Bangalore 560054 India
| | - Peter Knecht
- Physics Department E20 Technical University of Munich (TUM) James Franck Strasse 1 85748 Garching Germany
| | - Joachim Reichert
- Physics Department E20 Technical University of Munich (TUM) James Franck Strasse 1 85748 Garching Germany
| | - Sourav Mondal
- Theoretical Sciences Unit & School of Advanced Materials Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur Bangalore 560054 India
| | - Nithin Suryadevara
- Institute of Nanotechnology Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Senthil Kumar Kuppusamy
- Institute for Quantum Materials and Technologies Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Keitaro Eguchi
- Physics Department E20 Technical University of Munich (TUM) James Franck Strasse 1 85748 Garching Germany
| | | | - Francesco Allegretti
- Physics Department E20 Technical University of Munich (TUM) James Franck Strasse 1 85748 Garching Germany
| | - Mario Ruben
- Institute of Nanotechnology Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
- Institute for Quantum Materials and Technologies Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
- Centre Européen de Sciences Quantiques (CESQ) Institut de Science et d'Ingénierie Supramoléculaires (ISIS) 8 allée Gaspard Monge, BP 70028 67083 Strasbourg Cedex France
| | - Johannes V. Barth
- Physics Department E20 Technical University of Munich (TUM) James Franck Strasse 1 85748 Garching Germany
| | - Shobhana Narasimhan
- Theoretical Sciences Unit & School of Advanced Materials Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur Bangalore 560054 India
| | - Anthoula C. Papageorgiou
- Physics Department E20 Technical University of Munich (TUM) James Franck Strasse 1 85748 Garching Germany
| |
Collapse
|
11
|
Meier D, Adak AK, Knecht P, Reichert J, Mondal S, Suryadevara N, Kuppusamy SK, Eguchi K, Muntwiler MK, Allegretti F, Ruben M, Barth JV, Narasimhan S, Papageorgiou AC. Rotation in an Enantiospecific Self-Assembled Array of Molecular Raffle Wheels. Angew Chem Int Ed Engl 2021; 60:26932-26938. [PMID: 34555241 PMCID: PMC9299480 DOI: 10.1002/anie.202107708] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 09/21/2021] [Indexed: 11/09/2022]
Abstract
Tailored nano-spaces can control enantioselective adsorption and molecular motion. We report on the spontaneous assembly of a dynamic system-a rigid kagome network with each pore occupied by a guest molecule-employing solely 2,6-bis(1H-pyrazol-1-yl)pyridine-4-carboxylic acid on Ag(111). The network cavity snugly hosts the chemically modified guest, bestows enantiomorphic adsorption and allows selective rotational motions. Temperature-dependent scanning tunnelling microscopy studies revealed distinct anchoring orientations of the guest unit switching with a 0.95 eV thermal barrier. H-bonding between the guest and the host transiently stabilises the rotating guest, as the flapper on a raffle wheel. Density functional theory investigations unravel the detailed molecular pirouette of the guest and how the energy landscape is determined by H-bond formation and breakage. The origin of the guest's enantiodirected, dynamic anchoring lies in the specific interplay of the kagome network and the silver surface.
Collapse
Affiliation(s)
- Dennis Meier
- Physics Department E20Technical University of Munich (TUM)James Franck Strasse 185748GarchingGermany
| | - Abhishek K. Adak
- Theoretical Sciences Unit & School of Advanced MaterialsJawaharlal Nehru Centre for Advanced Scientific Research, JakkurBangalore560054India
| | - Peter Knecht
- Physics Department E20Technical University of Munich (TUM)James Franck Strasse 185748GarchingGermany
| | - Joachim Reichert
- Physics Department E20Technical University of Munich (TUM)James Franck Strasse 185748GarchingGermany
| | - Sourav Mondal
- Theoretical Sciences Unit & School of Advanced MaterialsJawaharlal Nehru Centre for Advanced Scientific Research, JakkurBangalore560054India
| | - Nithin Suryadevara
- Institute of NanotechnologyKarlsruhe Institute of Technology (KIT)Hermann-von-Helmholtz-Platz 176344Eggenstein-LeopoldshafenGermany
| | - Senthil Kumar Kuppusamy
- Institute for Quantum Materials and TechnologiesKarlsruhe Institute of Technology (KIT)Hermann-von-Helmholtz-Platz 176344Eggenstein-LeopoldshafenGermany
| | - Keitaro Eguchi
- Physics Department E20Technical University of Munich (TUM)James Franck Strasse 185748GarchingGermany
| | | | - Francesco Allegretti
- Physics Department E20Technical University of Munich (TUM)James Franck Strasse 185748GarchingGermany
| | - Mario Ruben
- Institute of NanotechnologyKarlsruhe Institute of Technology (KIT)Hermann-von-Helmholtz-Platz 176344Eggenstein-LeopoldshafenGermany
- Institute for Quantum Materials and TechnologiesKarlsruhe Institute of Technology (KIT)Hermann-von-Helmholtz-Platz 176344Eggenstein-LeopoldshafenGermany
- Centre Européen de Sciences Quantiques (CESQ)Institut de Science et d'Ingénierie Supramoléculaires (ISIS)8 allée Gaspard Monge, BP 7002867083Strasbourg CedexFrance
| | - Johannes V. Barth
- Physics Department E20Technical University of Munich (TUM)James Franck Strasse 185748GarchingGermany
| | - Shobhana Narasimhan
- Theoretical Sciences Unit & School of Advanced MaterialsJawaharlal Nehru Centre for Advanced Scientific Research, JakkurBangalore560054India
| | - Anthoula C. Papageorgiou
- Physics Department E20Technical University of Munich (TUM)James Franck Strasse 185748GarchingGermany
| |
Collapse
|
12
|
Hamer S, von Glasenapp J, Röhricht F, Li C, Berndt R, Herges R. Azimuthal Dipolar Rotor Arrays on Surfaces. Chemistry 2021; 27:17452-17458. [PMID: 34664752 PMCID: PMC9298050 DOI: 10.1002/chem.202103237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Indexed: 11/18/2022]
Abstract
A set of dipolar molecular rotor compounds was designed, synthesized and adsorbed as self-assembled 2D arrays on Ag(111) surfaces. The title molecules are constructed from three building blocks: (a) 4,8,12-trioxatriangulene (TOTA) platforms that are known to physisorb on metal surfaces such as Au(111) and Ag(111), (b) phenyl groups attached to the central carbon atom that function as pivot joints to reduce the barrier to rotation, (c) pyridine and pyridazine units as small dipolar units on top. Theoretical calculations and scanning tunneling microscopy (STM) investigations hint at the fact that the dipoles of neighboring rotors interact through space through pairs of energetically favorable head-to-tail arrangements.
Collapse
Affiliation(s)
- Sebastian Hamer
- Otto-Diels-Institut für Organische ChemieKiel UniversityOtto-Hahn-Platz 424098KielGermany
| | | | - Fynn Röhricht
- Otto-Diels-Institut für Organische ChemieKiel UniversityOtto-Hahn-Platz 424098KielGermany
| | - Chao Li
- Institut für Experimentelle und Angewandte PhysikKiel UniversityLeibnizstrasse 1924098KielGermany
| | - Richard Berndt
- Institut für Experimentelle und Angewandte PhysikKiel UniversityLeibnizstrasse 1924098KielGermany
| | - Rainer Herges
- Otto-Diels-Institut für Organische ChemieKiel UniversityOtto-Hahn-Platz 424098KielGermany
| |
Collapse
|
13
|
Tao L, Zhang Y, Du S. Structures and electronic properties of functional molecules on metal substrates: From single molecule to self‐assemblies. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2021. [DOI: 10.1002/wcms.1591] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Lei Tao
- Institute of Physics and University of Chinese Academy of Sciences Chinese Academy of Sciences Beijing China
| | - Yu‐yang Zhang
- Institute of Physics and University of Chinese Academy of Sciences Chinese Academy of Sciences Beijing China
- CAS Center for Excellence in Topological Quantum Computation Beijing China
| | - Shixuan Du
- Institute of Physics and University of Chinese Academy of Sciences Chinese Academy of Sciences Beijing China
- CAS Center for Excellence in Topological Quantum Computation Beijing China
- Beijing National Laboratory for Condensed Matter Physics Beijing China
- Songshan Lake Materials Laboratory Dongguan China
| |
Collapse
|
14
|
Gisbert Y, Abid S, Kammerer C, Rapenne G. Molecular Gears: From Solution to Surfaces. Chemistry 2021; 27:12019-12031. [PMID: 34131971 DOI: 10.1002/chem.202101489] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Indexed: 01/18/2023]
Abstract
This review highlights the major efforts devoted to the development of molecular gears over the past 40 years, from pioneering covalent bis-triptycyl systems undergoing intramolecular correlated rotation in solution, to the most recent examples of gearing systems anchored on a surface, which allow intermolecular transmission of mechanical power. Emphasis is laid on the different strategies devised progressively to control the architectures of molecular bevel and spur gears, as intramolecular systems in solution or intermolecular systems on surfaces, while aiming at increased efficiency, complexity and functionality.
Collapse
Affiliation(s)
- Yohan Gisbert
- CEMES, Université de Toulouse, CNRS, 29, rue Marvig, 31055, Toulouse, France
| | - Seifallah Abid
- CEMES, Université de Toulouse, CNRS, 29, rue Marvig, 31055, Toulouse, France
| | - Claire Kammerer
- CEMES, Université de Toulouse, CNRS, 29, rue Marvig, 31055, Toulouse, France
| | - Gwénaël Rapenne
- CEMES, Université de Toulouse, CNRS, 29, rue Marvig, 31055, Toulouse, France.,Division of Materials Science, Nara Institute of Science and Technology, 8916-5, Nara, Japan
| |
Collapse
|
15
|
Lu J, Da B, Xiong W, Du R, Hao Z, Ruan Z, Zhang Y, Sun S, Gao L, Cai J. Identification and electronic characterization of four cyclodehydrogenation products of H 2TPP molecules on Au(111). Phys Chem Chem Phys 2021; 23:11784-11788. [PMID: 33982699 DOI: 10.1039/d1cp01040a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
C-H bond activation and dehydrogenative coupling reactions have always been significant approaches to construct microscopic nanostructures on surfaces. By using scanning tunneling microscopy/spectroscopy (STM/STS) and non-contact atomic force microscopy (nc-AFM) combined with density functional theory (DFT), we systematically characterized the atomically precise topographies and electronic properties of H2TPP cyclodehydrogenation products on Au(111). Through surface-assisted thermal excitation, four types of cyclodehydrogenation products were obtained and clearly resolved in the nc-AFM images. The electronic characterization depicts the predominant resonances and their spatial distributions of the four products.
Collapse
Affiliation(s)
- Jianchen Lu
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650093, China.
| | - Binbin Da
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650093, China.
| | - Wei Xiong
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650093, China.
| | - Renjun Du
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650093, China.
| | - Zhenliang Hao
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650093, China.
| | - Zilin Ruan
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650093, China.
| | - Yong Zhang
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650093, China.
| | - Shijie Sun
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650093, China.
| | - Lei Gao
- Faculty of Science, Kunming University of Science and Technology, Kunming, Yunnan 650093, China
| | - Jinming Cai
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650093, China.
| |
Collapse
|
16
|
Frauhammer T, Gerhard L, Edelmann K, Lindner M, Valášek M, Mayor M, Wulfhekel W. Addressing a lattice of rotatable molecular dipoles with the electric field of an STM tip. Phys Chem Chem Phys 2021; 23:4874-4881. [PMID: 33616122 DOI: 10.1039/d0cp06146h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Functional molecular groups mounted on specific foot structures are ideal model systems to study intermolecular interactions, due to the possibility to separate the functionality and the adsorption mechanism. Here, we report on the rotational switching of a thioacetate group mounted on a tripodal tetraphenylmethane (TPM) derivative adsorbed in ordered islands on a Au(111) surface. Using low temperature scanning tunnelling microscopy, individual freestanding molecular groups of the lattice can be switched between two bistable orientations. The functional dependence of this rotational switching on the sample bias and tip-sample distance allows us to model the energy landscape of this molecular group as an electric dipole in the electric field of the tunnelling junction. As expected for the interaction of two dipoles, we found states of neighbouring molecules to be correlated.
Collapse
Affiliation(s)
- Timo Frauhammer
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), D-76021 Karlsruhe, Germany. and Physikalisches Institut, Karlsruhe Institute of Technology (KIT), D-76131 Karlsruhe, Germany
| | - Lukas Gerhard
- Institute for Quantum Materials and Technologies, Karlsruhe Institute of Technology (KIT), D-76021 Karlsruhe, Germany
| | - Kevin Edelmann
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), D-76021 Karlsruhe, Germany. and Physikalisches Institut, Karlsruhe Institute of Technology (KIT), D-76131 Karlsruhe, Germany
| | - Marcin Lindner
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), D-76021 Karlsruhe, Germany.
| | - Michal Valášek
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), D-76021 Karlsruhe, Germany.
| | - Marcel Mayor
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), D-76021 Karlsruhe, Germany. and Department of Chemistry, University of Basel, St. Johannsring 19, CH-4056 Basel, Switzerland and Lehn Institute of Functional Materials (LIFM), School of Chemistry, Sun Yat-Sen University (SYSU), 510275 Guangzhou, China.
| | - Wulf Wulfhekel
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), D-76021 Karlsruhe, Germany. and Institute for Quantum Materials and Technologies, Karlsruhe Institute of Technology (KIT), D-76021 Karlsruhe, Germany
| |
Collapse
|
17
|
Adsorption of 4,4″-Diamino-p-Terphenyl on Cu(001): A First-Principles Study. SURFACES 2021. [DOI: 10.3390/surfaces4010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Single-molecular devices show remarkable potential for applications in downscale electronic devices. The adsorption behavior of a molecule on a metal surface is of great importance from both fundamental and technological points of view. Herein, based on first-principles calculations, the adsorption of a 4,4″-diamino-p-terphenyl (DAT) molecule on a Cu(001) surface has been systematically explored. The most stable configuration is the DAT molecule lying flat with a rotation angle of 13° relative to the [100] surface direction. It was found that the adsorption sites of benzene rings and nitrogen atoms in the DAT molecule have important influences on the stability of the adsorption configuration. Electron density differences analysis shows that the electrons accumulate at the DAT-Cu(001) interface. The density of states projected on a DAT molecule of DAT/Cu(001) exhibits a metallic character, while the freestanding ones are semiconducting, indicating a strong interaction between the DAT molecule and the Cu(001) surface in the most stable adsorption configuration. These results provide useful information for tuning the properties and functions of DAT molecules, and may offer useful insights for other organic molecule/surface systems.
Collapse
|
18
|
Li QF, Wang Y, Wang F, Hou Y, Lu Q. 100 MHz large bandwidth preamplifier and record-breaking 50 kHz scanning rate quantum point contact mode probe microscopy imaging with atomic resolution. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2021; 92:013701. [PMID: 33514189 DOI: 10.1063/5.0024802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 12/11/2020] [Indexed: 06/12/2023]
Abstract
The high-bandwidth preamplifier is a vital component designed to increase the scanning speed of a high-speed scanning tunneling microscope (STM). However, the bandwidth is limited not only by the characteristic GΩ feedback resistor RF but also by the characteristic unity-gain-stable operational amplifier (UGS-OPA) in the STM preamplifier. Here, we report that paralleling a resistor with the tunneling junction (PRTJ) can break both limitations. Then, the UGS-OPA can be replaced by a higher rate, higher antinoise ability, decompensated OPA. By doing so, a bandwidth of more than 100 MHz was achieved in the STM preamplifier with decompensated OPA657, and a higher bandwidth is possible. High-clarity atomic resolution STM images were obtained under about 10 MHz bandwidth and quantum point contact microscopy mode with a record-breaking line rate of 50 k lines/s and a record-breaking frame rate of 250 frames/s. Both the PRTJ method and the decompensated OPA will pave the way for higher scanning speeds and play a key role in the design of high-performance STMs.
Collapse
Affiliation(s)
- Quan Feng Li
- Henan Key Laboratory of Photovoltaic Materials, School of Physics, Henan Normal University, Xinxiang 453007, People's Republic of China
| | - Yang Wang
- Henan Key Laboratory of Photovoltaic Materials, School of Physics, Henan Normal University, Xinxiang 453007, People's Republic of China
| | - Fang Wang
- College of Electronic and Electrical Engineering, Henan Normal University, Xinxiang 453007, Henan, People's Republic of China
| | - Yubin Hou
- Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031, Anhui, People's Republic of China
| | - Qingyou Lu
- Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031, Anhui, People's Republic of China
| |
Collapse
|
19
|
Xiang F, Schmitt T, Raschmann M, Schneider MA. Adsorption and self-assembly of porphyrins on ultrathin CoO films on Ir(100). BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2020; 11:1516-1524. [PMID: 33094085 PMCID: PMC7554680 DOI: 10.3762/bjnano.11.134] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 09/22/2020] [Indexed: 06/11/2023]
Abstract
Porphyrins represent a versatile class of molecules, the adsorption behavior of which on solid surfaces is of fundamental interest due to a variety of potential applications. We investigate here the molecule-molecule and molecule-substrate interaction of Co-5,15-diphenylporphyrin (Co-DPP) and 2H-tetrakis(p-cyanophenyl)porphyrin (2H-TCNP) on one bilayer (1BL) and two bilayer (2BL) thick cobalt oxide films on Ir(100) by scanning tunneling microscopy (STM) and density functional theory (DFT). The two substrates differ greatly with respect to their structural and potential-energy landscape corrugation with immediate consequences for adsorption and self-assembly of the molecules studied. On both films, an effective electronic decoupling from the metal substrate is achieved. However, on the 1BL film, Co-DPP molecules are sufficiently mobile at 300 K and coalesce to self-assembled molecular islands when cooled to 80 K despite their rather weak intermolecular interaction. In contrast, on the 2BL film, due to the rather flat potential landscape, molecular rotation is thermally activated, which effectively prevents self-assembly. The situation is different for 2H-TCNPP, which, due to the additional functional anchoring groups, does not self-assemble on the 1BL film but forms self-assembled compact islands on the 2BL film. The findings demonstrate the guiding effect of the cobalt oxide films of different thickness and the effect of functional surface anchoring.
Collapse
Affiliation(s)
- Feifei Xiang
- Solid State Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91058 Erlangen, Germany
| | - Tobias Schmitt
- Solid State Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91058 Erlangen, Germany
| | - Marco Raschmann
- Solid State Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91058 Erlangen, Germany
| | - M Alexander Schneider
- Solid State Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91058 Erlangen, Germany
| |
Collapse
|
20
|
Au Yeung KH, Kühne T, Eisenhut F, Kleinwächter M, Gisbert Y, Robles R, Lorente N, Cuniberti G, Joachim C, Rapenne G, Kammerer C, Moresco F. Transmitting Stepwise Rotation among Three Molecule-Gear on the Au(111) Surface. J Phys Chem Lett 2020; 11:6892-6899. [PMID: 32787202 DOI: 10.1021/acs.jpclett.0c01747] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The realization of a train of molecule-gears working under the tip of a scanning tunneling microscope (STM) requires a stable anchor of each molecule to the metal surface. Such an anchor can be promoted by a radical state of the molecule induced by a dissociation reaction. Our results, rationalized by density functional theory calculations, reveal that such an open radical state at the core of star-shaped pentaphenylcyclopentadiene (PPCP) favors anchoring. Furthermore, to allow the transmission of motion by STM manipulation, the molecule-gears should be equipped with specific groups facilitating the tip-molecule interactions. In our case, a tert-butyl group positioned at one tooth end of the gear benefits both the tip-induced manipulation and the monitoring of rotation. With this optimized molecule, we achieve reproducible and stepwise rotations of the single gears and transmit rotations for up to three interlocked units.
Collapse
Affiliation(s)
| | | | | | | | - Yohan Gisbert
- CEMES, Université de Toulouse, CNRS, 31055 Toulouse, France
| | - Roberto Robles
- Centro de Fisica de Materiales CFM/MPC (CSIC-UPV/EHU), 20018 Donostia-San Sebastián, Spain
| | - Nicolas Lorente
- Centro de Fisica de Materiales CFM/MPC (CSIC-UPV/EHU), 20018 Donostia-San Sebastián, Spain
- Donostia International Physics Center, 20018 Donostia-S. Sebastian, Spain
| | | | | | - Gwénaël Rapenne
- CEMES, Université de Toulouse, CNRS, 31055 Toulouse, France
- Division of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | | | | |
Collapse
|
21
|
Ren J, Freitag M, Schwermann C, Bakker A, Amirjalayer S, Rühling A, Gao HY, Doltsinis NL, Glorius F, Fuchs H. A Unidirectional Surface-Anchored N-Heterocyclic Carbene Rotor. NANO LETTERS 2020; 20:5922-5928. [PMID: 32510964 DOI: 10.1021/acs.nanolett.0c01884] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A molecular rotor based on N-heterocyclic carbenes (NHCs) has been rationally designed following theoretical predictions, experimentally realized, and characterized. Utilizing the structural tunability of NHCs, a computational screening protocol was first applied to identify NHCs with asymmetric rotational potentials on a surface as a prerequisite for unidirectional molecular rotors. Suitable candidates were then synthesized and studied using scanning tunneling microscopy/spectroscopy (STM/STS), analytical theoretical models, and molecular dynamics simulations. For our best NHC rotor featuring a mesityl N substituent on one side and a chiral naphthylethyl substituent on the other, unidirectional rotation is driven by inelastic tunneling of electrons from the NHC to the STM tip. While electrons preferentially tunnel through the mesityl N substituent, the chiral naphthylethyl substituent controls the directionality. Such NHC-based surface rotors open up new possibilities for the design and construction of functionalized molecular systems with high catalytic applicability and superior stability compared with other classes of molecular rotors.
Collapse
Affiliation(s)
- Jindong Ren
- Physikalisches Institut, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Straße 10, 48149 Münster, Germany
- Center for Nanotechnology, Heisenbergstraße 11, 48149 Münster, Germany
| | - Matthias Freitag
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149 Münster, Germany
| | - Christian Schwermann
- Institute of Solid State Theory and Center for Multiscale Theory and Computation, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Straße 10, 48149 Münster, Germany
| | - Anne Bakker
- Physikalisches Institut, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Straße 10, 48149 Münster, Germany
- Center for Nanotechnology, Heisenbergstraße 11, 48149 Münster, Germany
| | - Saeed Amirjalayer
- Physikalisches Institut, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Straße 10, 48149 Münster, Germany
- Center for Nanotechnology, Heisenbergstraße 11, 48149 Münster, Germany
- Center for Multiscale Theory and Computation, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Straße 10, 48149 Münster, Germany
| | - Andreas Rühling
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149 Münster, Germany
| | - Hong-Ying Gao
- Physikalisches Institut, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Straße 10, 48149 Münster, Germany
- Center for Nanotechnology, Heisenbergstraße 11, 48149 Münster, Germany
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Nikos L Doltsinis
- Institute of Solid State Theory and Center for Multiscale Theory and Computation, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Straße 10, 48149 Münster, Germany
| | - Frank Glorius
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149 Münster, Germany
| | - Harald Fuchs
- Physikalisches Institut, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Straße 10, 48149 Münster, Germany
- Center for Nanotechnology, Heisenbergstraße 11, 48149 Münster, Germany
- Herbert Gleiter Institute of Nanoscience, Nanjing University of Science and Technology, Xiaolingwei 200, Nanjing 210094, P. R. China
| |
Collapse
|
22
|
Jasper-Toennies T, Gruber M, Johannsen S, Frederiksen T, Garcia-Lekue A, Jäkel T, Roehricht F, Herges R, Berndt R. Rotation of Ethoxy and Ethyl Moieties on a Molecular Platform on Au(111). ACS NANO 2020; 14:3907-3916. [PMID: 32073820 DOI: 10.1021/acsnano.0c00029] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Molecular rotors have attracted considerable interest for their prospects in nanotechnology. However, their adsorption on supporting substrates, where they may be addressed individually, usually modifies their properties. Here, we investigate the switching of two closely related three-state rotors mounted on platforms on Au(111) using low-temperature scanning tunneling microscopy and density functional theory calculations. Being physisorbed, the platforms retain important gas-phase properties of the rotor. This simplifies a detailed analysis and permits, for instance, the identification of the vibrational modes involved in the rotation process. The symmetry provided by the platform enables active control of the rotation direction through electrostatic interactions with the tip and charged neighboring adsorbates. The present investigation of two model systems may turn out useful for designing platforms that provide directional rotation and for transferring more sophisticated molecular machines from the gas phase to surfaces.
Collapse
Affiliation(s)
- Torben Jasper-Toennies
- Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität, 24098 Kiel, Germany
| | - Manuel Gruber
- Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität, 24098 Kiel, Germany
| | - Sven Johannsen
- Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität, 24098 Kiel, Germany
| | - Thomas Frederiksen
- Donostia International Physics Center, DIPC, Paseo Manuel de Lardizabal 4, E-20018 Donostia-San Sebastián, Spain
- IKERBASQUE, Basque Foundation for Science, E-48013 Bilbao, Spain
| | - Aran Garcia-Lekue
- Donostia International Physics Center, DIPC, Paseo Manuel de Lardizabal 4, E-20018 Donostia-San Sebastián, Spain
- IKERBASQUE, Basque Foundation for Science, E-48013 Bilbao, Spain
| | - Torben Jäkel
- Otto-Diels-Institut für Organische Chemie, Christian-Albrechts-Universität, 24098 Kiel, Germany
| | - Fynn Roehricht
- Otto-Diels-Institut für Organische Chemie, Christian-Albrechts-Universität, 24098 Kiel, Germany
| | - Rainer Herges
- Otto-Diels-Institut für Organische Chemie, Christian-Albrechts-Universität, 24098 Kiel, Germany
| | - Richard Berndt
- Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität, 24098 Kiel, Germany
| |
Collapse
|
23
|
Belser A, Greulich K, Grüninger P, Bettinger HF, Peisert H, Chassé T. Visualization of the Borazine Core of B 3N 3-Doped Nanographene by STM. ACS APPLIED MATERIALS & INTERFACES 2020; 12:19218-19225. [PMID: 32223213 DOI: 10.1021/acsami.0c02324] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Electronic interface properties and the initial growth of hexa-peri-hexabenzocoronene with a borazine core (BN-HBC) on Au(111) have been studied by using X-ray photoelectron spectroscopy (XPS), low-energy electron diffraction (LEED), and scanning tunneling microscopy (STM). A weak, but non-negligible, interaction between BN-HBC and Au(111) was found at the interface. Both hexa-peri-hexabenzocoronene (HBC) and BN-HBC molecules form well-defined monolayers. The different contrast in STM images of HBC and BN-HBC at different tunneling voltages with submolecular resolution can be ascribed to differences in the local density of states (LDOS). At positive and negative tunneling voltages, STM images reproduce the distribution of the highest occupied and lowest unoccupied molecular orbitals (HOMO and LUMO) as determined by density functional theory (DFT) calculations very well.
Collapse
Affiliation(s)
- Axel Belser
- Institute of Physical and Theoretical Chemistry, University of Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany
| | - Katharina Greulich
- Institute of Physical and Theoretical Chemistry, University of Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany
| | - Peter Grüninger
- Institute of Physical and Theoretical Chemistry, University of Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany
- Institute of Organic Chemistry, University of Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany
| | - Holger F Bettinger
- Institute of Organic Chemistry, University of Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany
- Center for Light-Matter Interaction, Sensors & Analytics (LISA+) at the University of Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany
| | - Heiko Peisert
- Institute of Physical and Theoretical Chemistry, University of Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany
| | - Thomas Chassé
- Institute of Physical and Theoretical Chemistry, University of Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany
- Center for Light-Matter Interaction, Sensors & Analytics (LISA+) at the University of Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany
| |
Collapse
|
24
|
Wu T, Liu L, Zhang Y, Wang Y, Shen Z, Li N, Berndt R, Hou S, Wang Y. Tuning rotation axes of single molecular rotors by a combination of single-atom manipulation and single-molecule chemistry. Chem Commun (Camb) 2020; 56:968-971. [PMID: 31859333 DOI: 10.1039/c9cc07440f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Defining the axis of a molecular rotation is vital for the bottom-up design of molecular rotors. The rotation of tin-phthalocyanine molecules on the Ag(111) surface is studied by scanning tunneling microscopy and atomic/molecular manipulation at 4 K. Tin-phthalocyanine acts as a molecular rotor that binds to Ag adatoms and the substrate. Four different rotation axes are constructed at positions from the center to the periphery of the molecule. Furthermore, using the asymmetric appearance of the modified molecule, the rotation direction of the molecules is identified. This work provides a new approach for designing molecular rotors or motors with definable rotation radii and functions.
Collapse
Affiliation(s)
- Tianhao Wu
- Key Laboratory for the Physics and Chemistry of Nanodevices, Department of Electronics, Peking University, Beijing 100871, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
Two molecule-gears, 1.2 nm in diameter with six teeth, are mounted each on a single copper adatom separated exactly by 1.9 nm on a lead surface using a low-temperature scanning tunneling microscope (LT-STM). A functioning train of two molecule-gears is constructed complete with a molecule-handle. Not mounted on a Cu adatom axle, this ancillary molecule-gear is mechanically engaged with the first molecule-gear of the train to stabilize its step-by-step rotation. Centered on its Cu adatom axle, the rotation of the first gear of the train step by step rotates the second similar to a train of macroscopic gears. From the handle to the first and to this second molecule-gear, the exact positioning of the two Cu adatom axles on the lead surface ensures that the molecular teeth-to-teeth mechanics is fully reversible.
Collapse
Affiliation(s)
- We-Hyo Soe
- Centre d'Elaboration de Matériaux et d'Études Structurales (CEMES) , Centre National de la Recherche Scientifique (CNRS), Université de Toulouse , 29 Rue J. Marvig, BP 4347 , 31055 Toulouse Cedex, France
- International Center for Materials Nanoarchitectonics (WPI-MANA) , National Institute for Material Sciences (NIMS) , 1-1 Namiki , Tsukuba , Ibaraki 305-0044 , Japan
| | - Saurabh Srivastava
- Centre d'Elaboration de Matériaux et d'Études Structurales (CEMES) , Centre National de la Recherche Scientifique (CNRS), Université de Toulouse , 29 Rue J. Marvig, BP 4347 , 31055 Toulouse Cedex, France
| | - Christian Joachim
- Centre d'Elaboration de Matériaux et d'Études Structurales (CEMES) , Centre National de la Recherche Scientifique (CNRS), Université de Toulouse , 29 Rue J. Marvig, BP 4347 , 31055 Toulouse Cedex, France
- International Center for Materials Nanoarchitectonics (WPI-MANA) , National Institute for Material Sciences (NIMS) , 1-1 Namiki , Tsukuba , Ibaraki 305-0044 , Japan
| |
Collapse
|
26
|
Lu HL, Cao Y, Qi J, Bakker A, Strassert CA, Lin X, Ernst KH, Du S, Fuchs H, Gao HJ. Modification of the Potential Landscape of Molecular Rotors on Au(111) by the Presence of an STM Tip. NANO LETTERS 2018; 18:4704-4709. [PMID: 29965769 DOI: 10.1021/acs.nanolett.8b01019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Molecular rotors on solid surfaces are fundamental components of molecular machines. No matter whether the rotation is activated by heat, electric field or light, it is determined by the intrinsic rotational potential landscape. Therefore, tuning the potential landscape is of great importance for future applications of controlled molecular rotors. Here, using scanning tunneling microscopy (STM), we demonstrate that both tip-molecule distance and sample bias can modify the rotational potential of molecular rotors. We achieve the potential energy difference variations of ∼0.3 meV/pm and ∼18 meV/V between two configurations of a molecular rotor, a tetra- tert-butyl nickel phthalocyanine molecule on Au(111) substrate. Further analysis indicates that the mechanism of modifying the rotational potential is a combination of the van der Waals interaction and the interaction between the molecular dipole and an electric field. This work provides insight into the methods used to modify the effective rotational potential energy of molecular rotors.
Collapse
Affiliation(s)
- Hong-Liang Lu
- Institute of Physics & University of Chinese Academy of Sciences , Chinese Academy of Sciences , Beijing 100190 , P. R. China
| | - Yun Cao
- Institute of Physics & University of Chinese Academy of Sciences , Chinese Academy of Sciences , Beijing 100190 , P. R. China
| | - Jing Qi
- Institute of Physics & University of Chinese Academy of Sciences , Chinese Academy of Sciences , Beijing 100190 , P. R. China
| | - Anne Bakker
- Physikalisches Institut , Westfälische Wilhelms-Universität & Center for Nanotechnology (CeNTech) , Wilhelm-Klemm-Straße 10 , 48149 Münster , Germany
| | - Cristian A Strassert
- Physikalisches Institut , Westfälische Wilhelms-Universität & Center for Nanotechnology (CeNTech) , Wilhelm-Klemm-Straße 10 , 48149 Münster , Germany
| | - Xiao Lin
- Institute of Physics & University of Chinese Academy of Sciences , Chinese Academy of Sciences , Beijing 100190 , P. R. China
| | - Karl-Heinz Ernst
- Nanoscale Materials Science , Empa, Swiss Federal Laboratories for Materials Testing and Research , Überlandstrasse 129 , CH-8600 Dübendorf , Switzerland
| | - Shixuan Du
- Institute of Physics & University of Chinese Academy of Sciences , Chinese Academy of Sciences , Beijing 100190 , P. R. China
| | - Harald Fuchs
- Physikalisches Institut , Westfälische Wilhelms-Universität & Center for Nanotechnology (CeNTech) , Wilhelm-Klemm-Straße 10 , 48149 Münster , Germany
| | - Hong-Jun Gao
- Institute of Physics & University of Chinese Academy of Sciences , Chinese Academy of Sciences , Beijing 100190 , P. R. China
| |
Collapse
|
27
|
Lu S, Huang M, Qin Z, Yu Y, Guo Q, Cao G. Highly ordered molecular rotor matrix on a nanopatterned template: titanyl phthalocyanine molecules on FeO/Pt(111). NANOTECHNOLOGY 2018; 29:315301. [PMID: 29770773 DOI: 10.1088/1361-6528/aac594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Molecular rotors, motors and gears play important roles in artificial molecular machines, in which rotor and motor matrices are highly desirable for large-scale bottom-up fabrication of molecular machines. Here we demonstrate the fabrication of a highly ordered molecular rotor matrix by depositing nonplanar dipolar titanyl phthalocyanine (TiOPc, C32H16N8OTi) molecules on a Moiré patterned dipolar FeO/Pt(111) substrate. TiOPc molecules with O atoms pointing outwards from the substrate (upward) or towards the substrate (downward) are alternatively adsorbed on the fcc sites by strong lateral confinement. The adsorbed molecules, i.e. two kinds of molecular rotors, show different scanning tunneling microscopy images, thermal stabilities and rotational characteristics. Density functional theory calculations clarify that TiOPc molecules anchoring upwards with high adsorption energies correspond to low-rotational-rate rotors, while those anchoring downwards with low adsorption energies correspond to high-rotational-rate rotors. A robust rotor matrix fully occupied by low-rate rotors is fabricated by depositing molecules on the substrate at elevated temperature. Such a paradigm opens up a promising route to fabricate functional molecular rotor matrices, driven motor matrices and even gear groups on solid substrates.
Collapse
Affiliation(s)
- Shuangzan Lu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, People's Republic of China
| | | | | | | | | | | |
Collapse
|
28
|
Pope T, Du S, Gao HJ, Hofer WA. Electronic effects and fundamental physics studied in molecular interfaces. Chem Commun (Camb) 2018; 54:5508-5517. [PMID: 29726883 DOI: 10.1039/c8cc02191k] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Scanning probe instruments in conjunction with a very low temperature environment have revolutionized the ability of building, functionalizing, and analysing two dimensional interfaces in the last twenty years. In addition, the availability of fast, reliable, and increasingly sophisticated methods to simulate the structure and dynamics of these interfaces allow us to capture even very small effects at the atomic and molecular level. In this review we shall focus largely on metal surfaces and organic molecular compounds and show that building systems from the bottom up and controlling the physical properties of such systems is no longer within the realm of the desirable, but has become day to day reality in our best laboratories.
Collapse
Affiliation(s)
- Thomas Pope
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK.
| | | | | | | |
Collapse
|
29
|
Liu L, Xiao W, Mao J, Zhang H, Jiang Y, Zhou H, Yang K, Gao H. Densely packed overlayer of iron phthalocyanine molecules grown on single-layer graphene. CHINESE CHEM LETT 2018. [DOI: 10.1016/j.cclet.2017.06.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
30
|
Sun K, Luo JY, Zhang X, Wu ZJ, Wang Y, Yuan HK, Xiong ZH, Li SC, Xue QK, Wang JZ. Supramolecular Motors on Graphite Surface Stabilized by Charge States and Hydrogen Bonds. ACS NANO 2017; 11:10236-10242. [PMID: 28926223 DOI: 10.1021/acsnano.7b04811] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Molecular motors are nanoscale machines that convert external energies into controlled mechanical movements. In supramolecular motors, the rotator and stator are held together mechanically, and thus the rotation can be essentially barrier free when molecular conformation is negligible. However, nearly all the supramolecular motors appeared in solutions or host-guest complexes. Surface-mounted supramolecular motors have rarely been addressed, even though they are easily manipulated by external fields. Here we report a surface-mounted supramolecular motor assembled by charge states and hydrogen bonds. On a graphite surface, individual ethanol clusters can be charged with a scanning tunneling microscopy tip and then trap the ethanol chains with a permanent dipole moment. Serving as a rotator, the trapped ethanol chains rotate around a charged cluster driven by the inelastic tunneling electrons. Random rotation in clockwise or anticlockwise direction occurs in the chiral molecular chains through chiral flipping. Directional rotation with clockwise chirality can be realized by introducing a chiral branch to the near end of ethanol chains to suppress the chiral flipping with steric hindrance.
Collapse
Affiliation(s)
- Kai Sun
- School of Physical Science and Technology and Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, Southwest University , Chongqing 400715, China
| | - Ji-Yong Luo
- School of Physical Science and Technology and Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, Southwest University , Chongqing 400715, China
| | - Xin Zhang
- School of Physical Science and Technology and Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, Southwest University , Chongqing 400715, China
| | - Zhi-Jian Wu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, China
| | - Ying Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, China
| | - Hong-Kuan Yuan
- School of Physical Science and Technology and Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, Southwest University , Chongqing 400715, China
| | - Zu-Hong Xiong
- School of Physical Science and Technology and Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, Southwest University , Chongqing 400715, China
| | - Shao-Chun Li
- School of Physics, Nanjing University and National Lab of Solid State Microstructure , Nanjing 210093, China
| | - Qi-Kun Xue
- Department of Physics, Tsinghua University , Beijing 100084, China
| | - Jun-Zhong Wang
- School of Physical Science and Technology and Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, Southwest University , Chongqing 400715, China
| |
Collapse
|
31
|
Hong J, Pan Y, Hu Z, Lv D, Jin C, Ji W, Yuan J, Zhang Z. Direct Imaging of Kinetic Pathways of Atomic Diffusion in Monolayer Molybdenum Disulfide. NANO LETTERS 2017; 17:3383-3390. [PMID: 28548860 DOI: 10.1021/acs.nanolett.6b05342] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Direct observation of atomic migration both on and below surfaces is a long-standing but important challenge in materials science as diffusion is one of the most elementary processes essential to many vital material behaviors. Probing the kinetic pathways, including metastable or even transition states involved down to atomic scale, holds the key to the underlying physical mechanisms. Here, we applied aberration-corrected transmission electron microscopy (TEM) to demonstrate direct atomic-scale imaging and quasi-real-time tracking of diffusion of Mo adatoms and vacancies in monolayer MoS2, an important two-dimensional transition metal dichalcogenide (TMD) system. Preferred kinetic pathways and the migration potential-energy landscape are determined experimentally and confirmed theoretically. The resulting three-dimensional knowledge of the atomic configuration evolution reveals the different microscopic mechanisms responsible for the contrasting intrinsic diffusion rates for Mo adatoms and vacancies. The new insight will benefit our understanding of material processes such as phase transformation and heterogeneous catalysis.
Collapse
Affiliation(s)
- Jinhua Hong
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University , Hangzhou, Zhejiang 310027, China
| | - Yuhao Pan
- Beijing Key Laboratory of Optoelectronic Functional Materials and Micro-Nano Devices, Department of Physics, Renmin University of China , Beijing 100872, China
| | - Zhixin Hu
- Beijing Key Laboratory of Optoelectronic Functional Materials and Micro-Nano Devices, Department of Physics, Renmin University of China , Beijing 100872, China
| | - Danhui Lv
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University , Hangzhou, Zhejiang 310027, China
| | - Chuanhong Jin
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University , Hangzhou, Zhejiang 310027, China
| | - Wei Ji
- Beijing Key Laboratory of Optoelectronic Functional Materials and Micro-Nano Devices, Department of Physics, Renmin University of China , Beijing 100872, China
| | - Jun Yuan
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University , Hangzhou, Zhejiang 310027, China
- Department of Physics, University of York , Heslington, York YO10 5DD, United Kingdom
| | - Ze Zhang
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University , Hangzhou, Zhejiang 310027, China
| |
Collapse
|
32
|
Tu YB, Tao ML, Sun K, Ni C, Xie F, Wang JZ. Monitoring and manipulating single molecule rotors on the Bi(111) surface by the scanning tunneling microscopy. RSC Adv 2017. [DOI: 10.1039/c7ra05611g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
MnPc rotors were started and stopped by controlling the intermolecular spacing with the STM tip.
Collapse
Affiliation(s)
- Yu-Bing Tu
- School of Physical Science and Technology
- Southwest University
- Chongqing 400715
- China
| | - Min-Long Tao
- School of Physical Science and Technology
- Southwest University
- Chongqing 400715
- China
| | - Kai Sun
- School of Physical Science and Technology
- Southwest University
- Chongqing 400715
- China
| | - Chen Ni
- School of Physical Science and Technology
- Southwest University
- Chongqing 400715
- China
| | - Fang Xie
- School of Physical Science and Technology
- Southwest University
- Chongqing 400715
- China
| | - Jun-Zhong Wang
- School of Physical Science and Technology
- Southwest University
- Chongqing 400715
- China
| |
Collapse
|
33
|
Yoshida S, Taninaka A, Sugita Y, Katayama T, Takeuchi O, Shigekawa H. Revealing the Conformational Dynamics in a Single-Molecule Junction by Site- and Angle-Resolved Dynamic Probe Method. ACS NANO 2016; 10:11211-11218. [PMID: 28024353 DOI: 10.1021/acsnano.6b06278] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Single-molecule junctions have been extensively studied because of their high potential for future nanoscale device applications as well as their importance in basic studies for molecular science and technology. However, since the bonding sites at an electrode and the molecular tilt angles, for example, cannot be determined experimentally, analyses have been performed assuming the structures of such interactive key factors, with uncertainties and inconsistencies remaining in the proposed mechanisms. We have developed a methodology that enables the probing of conformational dynamics in single-molecule junctions simultaneously with the direct characterization of molecular bonding sites and tilt angles. This technique has revealed the elemental processes in single-molecule junctions, which have not been clarified using conventional methods. The mechanisms of the molecular dynamics in 1,4-benzenedithiol and 4,4'-bipyridine single-molecule junctions, which, for example, produce binary conductance switching of different types, were clearly discriminated and comprehensively explained.
Collapse
Affiliation(s)
- Shoji Yoshida
- Faculty of Pure and Applied Sciences, University of Tsukuba , Tsukuba 305-8571, Japan
| | - Atsushi Taninaka
- Faculty of Pure and Applied Sciences, University of Tsukuba , Tsukuba 305-8571, Japan
| | - Yoshihiro Sugita
- Faculty of Pure and Applied Sciences, University of Tsukuba , Tsukuba 305-8571, Japan
| | - Tomoki Katayama
- Faculty of Pure and Applied Sciences, University of Tsukuba , Tsukuba 305-8571, Japan
| | - Osamu Takeuchi
- Faculty of Pure and Applied Sciences, University of Tsukuba , Tsukuba 305-8571, Japan
| | - Hidemi Shigekawa
- Faculty of Pure and Applied Sciences, University of Tsukuba , Tsukuba 305-8571, Japan
| |
Collapse
|
34
|
Wang G, Rühling A, Amirjalayer S, Knor M, Ernst JB, Richter C, Gao HJ, Timmer A, Gao HY, Doltsinis NL, Glorius F, Fuchs H. Ballbot-type motion of N-heterocyclic carbenes on gold surfaces. Nat Chem 2016; 9:152-156. [PMID: 28282049 DOI: 10.1038/nchem.2622] [Citation(s) in RCA: 155] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 08/22/2016] [Indexed: 12/21/2022]
Abstract
Recently, N-heterocyclic carbenes (NHCs) were introduced as alternative anchors for surface modifications and so offered many attractive features, which might render them superior to thiol-based systems. However, little effort has been made to investigate the self-organization process of NHCs on surfaces, an important aspect for the formation of self-assembled monolayers (SAMs), which requires molecular mobility. Based on investigations with scanning tunnelling microscopy and first-principles calculations, we provide an understanding of the microscopic mechanism behind the high mobility observed for NHCs. These NHCs extract a gold atom from the surface, which leads to the formation of an NHC-gold adatom complex that displays a high surface mobility by a ballbot-type motion. Together with their high desorption barrier this enables the formation of ordered and strongly bound SAMs. In addition, this mechanism allows a complementary surface-assisted synthesis of dimeric and hitherto unknown trimeric NHC gold complexes on the surface.
Collapse
Affiliation(s)
- Gaoqiang Wang
- Physikalisches Institut, Westfälische Wilhelms-Universität, Wilhelm-Klemm-Straße 10, 48149 Münster, Germany.,Center for Nanotechnology, Heisenbergstraße 11, 48149 Münster, Germany.,Institute of Physics &University of Chinese Academy of Sciences, Chinese Academy of Sciences, PO Box 603, Beijing 100190, China
| | - Andreas Rühling
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstrasse 40, 48149 Münster, Germany
| | - Saeed Amirjalayer
- Physikalisches Institut, Westfälische Wilhelms-Universität, Wilhelm-Klemm-Straße 10, 48149 Münster, Germany.,Center for Nanotechnology, Heisenbergstraße 11, 48149 Münster, Germany.,Center for Multiscale Theory and Computation, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Straße 10, 48149 Münster, Germany
| | - Marek Knor
- Physikalisches Institut, Westfälische Wilhelms-Universität, Wilhelm-Klemm-Straße 10, 48149 Münster, Germany.,Center for Nanotechnology, Heisenbergstraße 11, 48149 Münster, Germany
| | - Johannes Bruno Ernst
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstrasse 40, 48149 Münster, Germany
| | - Christian Richter
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstrasse 40, 48149 Münster, Germany
| | - Hong-Jun Gao
- Institute of Physics &University of Chinese Academy of Sciences, Chinese Academy of Sciences, PO Box 603, Beijing 100190, China
| | - Alexander Timmer
- Physikalisches Institut, Westfälische Wilhelms-Universität, Wilhelm-Klemm-Straße 10, 48149 Münster, Germany.,Center for Nanotechnology, Heisenbergstraße 11, 48149 Münster, Germany
| | - Hong-Ying Gao
- Physikalisches Institut, Westfälische Wilhelms-Universität, Wilhelm-Klemm-Straße 10, 48149 Münster, Germany.,Center for Nanotechnology, Heisenbergstraße 11, 48149 Münster, Germany
| | - Nikos L Doltsinis
- Center for Multiscale Theory and Computation, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Straße 10, 48149 Münster, Germany.,Institut für Festkörpertheorie, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Straße 10, 48149 Münster, Germany
| | - Frank Glorius
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstrasse 40, 48149 Münster, Germany
| | - Harald Fuchs
- Physikalisches Institut, Westfälische Wilhelms-Universität, Wilhelm-Klemm-Straße 10, 48149 Münster, Germany.,Center for Nanotechnology, Heisenbergstraße 11, 48149 Münster, Germany.,Center for Multiscale Theory and Computation, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Straße 10, 48149 Münster, Germany
| |
Collapse
|
35
|
Lloyd JA, Papageorgiou AC, Fischer S, Oh SC, Saǧlam Ö, Diller K, Duncan DA, Allegretti F, Klappenberger F, Stöhr M, Maurer RJ, Reuter K, Reichert J, Barth JV. Dynamics of Spatially Confined Bisphenol A Trimers in a Unimolecular Network on Ag(111). NANO LETTERS 2016; 16:1884-1889. [PMID: 26849384 DOI: 10.1021/acs.nanolett.5b05026] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Bisphenol A (BPA) aggregates on Ag(111) shows a polymorphism between two supramolecular motifs leading to formation of distinct networks depending on thermal energy. With rising temperature a dimeric pairing scheme reversibly converts into a trimeric motif, which forms a hexagonal superstructure with complex dynamic characteristics. The trimeric arrangements notably organize spontaneously into a self-assembled one-component array with supramolecular BPA rotors embedded in a two-dimensional stator sublattice. By varying the temperature, the speed of the rotors can be controlled as monitored by direct visualization. A combination of scanning tunneling microscopy and dispersion-corrected density-functional tight-binding (DFTB-vdW(surf)) based molecular modeling reveals the exact atomistic position of each molecule within the assembly as well as the driving force for the formation of the supramolecular rotors.
Collapse
Affiliation(s)
- Julian A Lloyd
- Physik-Department E20, Technische Universität München , D-85748 Garching, Germany
| | | | - Sybille Fischer
- Physik-Department E20, Technische Universität München , D-85748 Garching, Germany
| | - Seung Cheol Oh
- Physik-Department E20, Technische Universität München , D-85748 Garching, Germany
| | - Özge Saǧlam
- Physik-Department E20, Technische Universität München , D-85748 Garching, Germany
| | - Katharina Diller
- Physik-Department E20, Technische Universität München , D-85748 Garching, Germany
- Theoretische Chemie, Technische Universität München , D-85748 Garching, Germany
| | - David A Duncan
- Physik-Department E20, Technische Universität München , D-85748 Garching, Germany
| | - Francesco Allegretti
- Physik-Department E20, Technische Universität München , D-85748 Garching, Germany
| | | | - Martin Stöhr
- Theoretische Chemie, Technische Universität München , D-85748 Garching, Germany
| | - Reinhard J Maurer
- Theoretische Chemie, Technische Universität München , D-85748 Garching, Germany
| | - Karsten Reuter
- Theoretische Chemie, Technische Universität München , D-85748 Garching, Germany
| | - Joachim Reichert
- Physik-Department E20, Technische Universität München , D-85748 Garching, Germany
| | - Johannes V Barth
- Physik-Department E20, Technische Universität München , D-85748 Garching, Germany
| |
Collapse
|
36
|
Mishra P, Hill JP, Vijayaraghavan S, Van Rossom W, Yoshizawa S, Grisolia M, Echeverria J, Ono T, Ariga K, Nakayama T, Joachim C, Uchihashi T. Current-Driven Supramolecular Motor with In Situ Surface Chiral Directionality Switching. NANO LETTERS 2015; 15:4793-4798. [PMID: 26098301 DOI: 10.1021/acs.nanolett.5b01908] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Surface-supported molecular motors are nanomechanical devices of particular interest in terms of future nanoscale applications. However, the molecular motors realized so far consist of covalently bonded groups that cannot be reconfigured without undergoing a chemical reaction. Here we demonstrate that a platinum-porphyrin-based supramolecularly assembled dimer supported on a Au(111) surface can be rotated with high directionality using the tunneling current of a scanning tunneling microscope (STM). Rotational direction of this molecular motor is determined solely by the surface chirality of the dimer, and most importantly, the chirality can be inverted in situ through a process involving an intradimer rearrangement. Our result opens the way for the construction of complex molecular machines on a surface to mimic at a smaller scale versatile biological supramolecular motors.
Collapse
Affiliation(s)
- Puneet Mishra
- †International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science, 1-1, Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Jonathan P Hill
- †International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science, 1-1, Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Saranyan Vijayaraghavan
- †International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science, 1-1, Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Wim Van Rossom
- †International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science, 1-1, Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Shunsuke Yoshizawa
- †International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science, 1-1, Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Maricarmen Grisolia
- ‡Centre d'Elaboration des Matériaux et d'Etudes Structurales (CEMES) and MANA Satellite, CNRS, 29 rue J. Marvig, 31055 Toulouse Cedex, France
| | - Jorge Echeverria
- ‡Centre d'Elaboration des Matériaux et d'Etudes Structurales (CEMES) and MANA Satellite, CNRS, 29 rue J. Marvig, 31055 Toulouse Cedex, France
| | - Teruo Ono
- §Institute for Chemical Research, Kyoto University, Gokasho, Uji-city, Kyoto, 611-0011, Japan
| | - Katsuhiko Ariga
- †International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science, 1-1, Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Tomonobu Nakayama
- †International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science, 1-1, Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Christian Joachim
- †International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science, 1-1, Namiki, Tsukuba, Ibaraki 305-0044, Japan
- ‡Centre d'Elaboration des Matériaux et d'Etudes Structurales (CEMES) and MANA Satellite, CNRS, 29 rue J. Marvig, 31055 Toulouse Cedex, France
| | - Takashi Uchihashi
- †International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science, 1-1, Namiki, Tsukuba, Ibaraki 305-0044, Japan
| |
Collapse
|
37
|
Palma CA, Björk J, Klappenberger F, Arras E, Kühne D, Stafström S, Barth JV. Visualization and thermodynamic encoding of single-molecule partition function projections. Nat Commun 2015; 6:6210. [PMID: 25703681 DOI: 10.1038/ncomms7210] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 01/06/2015] [Indexed: 12/28/2022] Open
Abstract
Ensemble averaging of molecular states is fundamental for the experimental determination of thermodynamic quantities. A special case occurs for single-molecule investigations under equilibrium conditions, for which free energy, entropy and enthalpy at finite temperatures are challenging to determine with ensemble averaging alone. Here we report a method to directly record time-averaged equilibrium probability distributions by confining an individual molecule to a nanoscopic pore of a two-dimensional metal-organic nanomesh, using temperature-controlled scanning tunnelling microscopy. We associate these distributions with partition function projections to assess real-space-projected thermodynamic quantities, aided by computational modelling. The presented molecular dynamics-based analysis is able to reproduce experimentally observed projected microstates with high accuracy. By an in silico customized energy landscape, we demonstrate that distinct probability distributions can be encrypted at different temperatures. Such modulation provides means to encode and decode information into position-temperature space.
Collapse
Affiliation(s)
- Carlos-Andres Palma
- Physik-Department E20, Technische Universität München, D-85748 Garching, Germany
| | - Jonas Björk
- Department of Physics, Chemistry and Biology (IFM), Linköping University, Linköping 58183, Sweden
| | | | - Emmanuel Arras
- Physik-Department E20, Technische Universität München, D-85748 Garching, Germany
| | - Dirk Kühne
- Physik-Department E20, Technische Universität München, D-85748 Garching, Germany
| | - Sven Stafström
- Department of Physics, Chemistry and Biology (IFM), Linköping University, Linköping 58183, Sweden
| | - Johannes V Barth
- Physik-Department E20, Technische Universität München, D-85748 Garching, Germany
| |
Collapse
|
38
|
Zhang JL, Zhong JQ, Lin JD, Hu WP, Wu K, Xu GQ, Wee ATS, Chen W. Towards single molecule switches. Chem Soc Rev 2015; 44:2998-3022. [DOI: 10.1039/c4cs00377b] [Citation(s) in RCA: 247] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Scanning tunneling microscope (STM) controlled reversible switching of a single-dipole molecule imbedded in hydrogen-bonded binary molecular networks on graphite.
Collapse
Affiliation(s)
- Jia Lin Zhang
- Department of Chemistry
- National University of Singapore
- Singapore
- Department of Physics
- National University of Singapore
| | - Jian Qiang Zhong
- Department of Chemistry
- National University of Singapore
- Singapore
- Department of Physics
- National University of Singapore
| | - Jia Dan Lin
- Department of Chemistry
- National University of Singapore
- Singapore
- Department of Physics
- National University of Singapore
| | - Wen Ping Hu
- School of Science
- Tianjin University
- Tian Jin
- China
| | - Kai Wu
- Singapore-Peking University Research Center for a Sustainable Low-Carbon Future
- Singapore
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing 100871
| | - Guo Qin Xu
- Department of Chemistry
- National University of Singapore
- Singapore
- Singapore-Peking University Research Center for a Sustainable Low-Carbon Future
- Singapore
| | | | - Wei Chen
- Department of Chemistry
- National University of Singapore
- Singapore
- Department of Physics
- National University of Singapore
| |
Collapse
|
39
|
Roussel TJ, Barrena E, Ocal C, Faraudo J. Predicting supramolecular self-assembly on reconstructed metal surfaces. NANOSCALE 2014; 6:7991-8001. [PMID: 24905213 DOI: 10.1039/c4nr01987c] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The prediction of supramolecular self-assembly onto solid surfaces is still challenging in many situations of interest for nanoscience. In particular, no previous simulation approach has been capable to simulate large self-assembly patterns of organic molecules over reconstructed surfaces (which have periodicities over large distances) due to the large number of surface atoms and adsorbing molecules involved. Using a novel simulation technique, we report here large scale simulations of the self-assembly patterns of an organic molecule (DIP) over different reconstructions of the Au(111) surface. We show that on particular reconstructions, the molecule-molecule interactions are enhanced in a way that long-range order is promoted. Also, the presence of a distortion in a reconstructed surface pattern not only induces the presence of long-range order but also is able to drive the organization of DIP into two coexisting homochiral domains, in quantitative agreement with STM experiments. On the other hand, only short range order is obtained in other reconstructions of the Au(111) surface. The simulation strategy opens interesting perspectives to tune the supramolecular structure by simulation design and surface engineering if choosing the right molecular building blocks and stabilising the chosen reconstruction pattern.
Collapse
Affiliation(s)
- Thomas J Roussel
- Institut de Ciència de Materials de Barcelona ICMAB-CSIC, Campus de la UAB, E-08193 Bellaterra, Spain.
| | | | | | | |
Collapse
|
40
|
Sun Q, Xu W. Regulating the Interactions of Adsorbates on Surfaces by Scanning Tunneling Microscopy Manipulation. Chemphyschem 2014; 15:2657-63. [DOI: 10.1002/cphc.201402021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2014] [Indexed: 11/05/2022]
|
41
|
Lin T, Kuang G, Shang XS, Liu PN, Lin N. Self-assembly of metal–organic coordination networks using on-surface synthesized ligands. Chem Commun (Camb) 2014; 50:15327-9. [DOI: 10.1039/c4cc07604d] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A two-step strategy consisting of on-surface synthesis and supramolecular assembly is developed for constructing low-dimensional molecular nanostructures on surfaces.
Collapse
Affiliation(s)
- Tao Lin
- Department of Physics
- The Hong Kong University of Science and Technology
- Clear Water Bay
- Hong Kong, China
| | - Guowen Kuang
- Department of Physics
- The Hong Kong University of Science and Technology
- Clear Water Bay
- Hong Kong, China
| | - Xue Song Shang
- Shanghai Key Laboratory of Functional Materials Chemistry
- Key Lab for Advanced Materials and Institute of Fine Chemicals
- East China University of Science and Technology
- Shanghai, China
| | - Pei Nian Liu
- Shanghai Key Laboratory of Functional Materials Chemistry
- Key Lab for Advanced Materials and Institute of Fine Chemicals
- East China University of Science and Technology
- Shanghai, China
| | - Nian Lin
- Department of Physics
- The Hong Kong University of Science and Technology
- Clear Water Bay
- Hong Kong, China
| |
Collapse
|
42
|
Díaz Arado O, Mönig H, Wagner H, Franke JH, Langewisch G, Held PA, Studer A, Fuchs H. On-surface azide-alkyne cycloaddition on Au(111). ACS NANO 2013; 7:8509-15. [PMID: 24047459 DOI: 10.1021/nn4022789] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
We present [3 + 2] cycloaddition reactions between azides and alkynes on a Au(111) surface at room temperature and under ultrahigh vacuum conditions. High-resolution scanning tunneling microscopy images reveal that these on-surface cycloadditions occur highly regioselectively to form the corresponding 1,4-triazoles. Density functional theory simulations confirm that the reactions can occur at room temperature, where the Au(111) surface does not participate as a catalytic agent in alkyne C-H activation but acts solely as a two-dimensional constraint for the positioning of the two reaction partners. The on-surface azide-alkyne cycloaddition offers great potential toward the development and fabrication of functional organic nanomaterials on surfaces.
Collapse
Affiliation(s)
- Oscar Díaz Arado
- Physikalisches Institut, Westfälische Wilhelms-Universität Münster , Wilhelm-Klemm-Strasse 10, 48149 Münster, Germany
| | | | | | | | | | | | | | | |
Collapse
|
43
|
van Vörden D, Lange M, Schaffert J, Cottin MC, Schmuck M, Robles R, Wende H, Bobisch CA, Möller R. Surface-Induced Dechlorination of FeOEPCl on Cu(111). Chemphyschem 2013; 14:3472-5. [DOI: 10.1002/cphc.201300497] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 07/10/2013] [Indexed: 11/11/2022]
Affiliation(s)
- Dennis van Vörden
- Faculty of Physics and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Lotharstr.1-21 47048 Duisburg (Germany)
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Thanasekaran P, Huang CY, Lu KL. Synthesis, Structure, and Dynamic Behavior of Discrete Metallacyclic Rotors. CHEM LETT 2013. [DOI: 10.1246/cl.130455] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
45
|
van Vörden D, Lange M, Schmuck M, Schaffert J, Cottin MC, Bobisch CA, Möller R. Communication: Substrate induced dehydrogenation: Transformation of octa-ethyl-porphyrin into tetra-benzo-porphyrin. J Chem Phys 2013; 138:211102. [DOI: 10.1063/1.4810879] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
46
|
Abstract
The adsorption geometry and electronic properties of a zinc-phthalocyanine molecule on a Cu(111) substrate are studied by density functional theory. In agreement with experiment, we find remarkable distortions of the molecule, mainly as the central Zn atom tends towards the substrate to minimize the Zn-Cu distance. As a consequence, the Zn-N chemical bonding and energy levels of the molecule are significantly modified. However, charge transfer induces metallic states on the molecule and therefore is more important for the ZnPc/Cu(111) system than the structural distortions.
Collapse
|
47
|
Schaffert J, Cottin MC, Sonntag A, Karacuban H, Bobisch CA, Lorente N, Gauyacq JP, Möller R. Imaging the dynamics of individually adsorbed molecules. NATURE MATERIALS 2013; 12:223-227. [PMID: 23263642 DOI: 10.1038/nmat3527] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Accepted: 11/13/2012] [Indexed: 05/28/2023]
Abstract
Although noise is observed in many experiments, it is rarely used as a source of information. However, valuable information can be extracted from noisy signals. The motion of particles on a surface induced, for example, by thermal activation or by the interaction with the tip of a scanning tunnelling microscope may lead to fluctuations or switching of the tunnelling current. The analysis of these processes gives insight into dynamics on a single atomic or molecular level. Unfortunately, scanning tunnelling microscopy (STM) is not a useful tool to study dynamics in detail, as it is an intrinsically slow technique. Here, we show that this problem can be solved by providing a full real-time characterization of random telegraph noise in the current signal. The hopping rate, the noise amplitude and the relative occupation of the involved states are measured as a function of the tunnelling parameters, providing spatially resolved maps. In contrast to standard STM, our technique gives access to transiently populated states revealing an electron-driven hindered rotation between the equilibrium and two metastable positions of an individually adsorbed molecule. The new approach yields a complete characterization of copper phthalocyanine molecules on Cu(111), ranging from dynamical processes on surfaces to the underlying electronic structure on the single-molecule level.
Collapse
Affiliation(s)
- Johannes Schaffert
- Faculty of Physics and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Duisburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Tierney HL, Jewell AD, Baber AE, Iski EV, Sykes ECH. Viewing and inducing symmetry breaking at the single-molecule limit. Chirality 2012; 24:1051-4. [PMID: 22887740 DOI: 10.1002/chir.22096] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Revised: 06/13/2012] [Accepted: 06/19/2012] [Indexed: 11/07/2022]
Abstract
Symmetry breaking by photons, electrons, and molecular interactions lies at the heart of many important problems as varied as the origin of homochiral life to enantioselective drug production. Herein we report a system in which symmetry breaking can be induced and measured in situ at the single-molecule level using scanning tunneling microscopy. We demonstrate that electrical excitation of a prochiral molecule on an achiral surface produces large enantiomeric excesses in the chiral adsorbed state of up to 39%. The degree of symmetry breaking was monitored as a function of scanning probe tip state, and the results revealed that enantiomeric excesses are correlated with the intrinsic chirality in scanning probe tips themselves, as evidenced by height differences between single molecule enantiomers. While this work has consequences for the study of two-dimensional chirality, more importantly, it offers a new method for interrogating the coupling of photons, electrons, and combinations of physical fields to achiral starting systems in a reproducible manner. This will allow the mechanism of chirality transfer to be studied in a system in which enantiomeric excesses are quantified accurately by counting individual molecules.
Collapse
Affiliation(s)
- Heather L Tierney
- Department of Chemistry, Tufts University, Medford, Massachusetts, USA
| | | | | | | | | |
Collapse
|
49
|
Liu Q, Du S, Zhang Y, Jiang N, Shi D, Gao HJ. Identifying multiple configurations of complex molecules on metal surfaces. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2012; 8:796-795. [PMID: 22334582 DOI: 10.1002/smll.201101937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Indexed: 05/31/2023]
Abstract
Experimental identification of molecular configurations in diffusion processes of large complex molecules has been a demanding topic in the field of molecular construction at solid surfaces. Such identification is needed in order to control the self-assembly process and the properties and configurations of the resulting structures. This paper provides an overview of state-of-the-art techniques for identification of molecular configurations in motion. First, a brief introduction to the conventional tools is presented, for example, low-energy electron diffraction and IR/Raman spectroscopy. Second, currently used techniques, scanning probe microscopy, and its application in molecular configuration identification are reviewed. In the last part, a methodology combining time-resolved tunneling spectroscopy and density functional theory calculation is reviewed in detail; this strategy has been successfully applied to two typical molecular systems, (t-Bu)₄ -ZnPc and FePc (where Pc is phthalocyanine), with molecular rotation and laterial diffusion on the Au(111) surface.
Collapse
Affiliation(s)
- Qi Liu
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | | | | | | | | | | |
Collapse
|
50
|
Néel N, Kröger J, Berndt R. Two-level conductance fluctuations of a single-molecule junction. NANO LETTERS 2011; 11:3593-3596. [PMID: 21854026 DOI: 10.1021/nl201327c] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The conductance of a single-molecule junction in a low-temperature scanning tunneling microscope has been measured at nanosecond time resolution. In a transition region between tunneling and contact the conductance exhibits rapid two-level fluctuations which are attributed to different geometries of the junction. The voltage dependence of the fluctuations indicates that electrons injected into the lowest unoccupied molecular orbital may efficiently couple to molecular vibrations.
Collapse
Affiliation(s)
- N Néel
- Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität zu Kiel, D-24098 Kiel, Germany.
| | | | | |
Collapse
|