1
|
Wang Y, Harrowell P. Structural diversity in condensed matter: A general characterization of crystals, amorphous solids, and the structures between. J Chem Phys 2024; 161:074502. [PMID: 39145563 DOI: 10.1063/5.0223675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/02/2024] [Indexed: 08/16/2024] Open
Abstract
A definition of structural diversity, adapted from the biodiversity literature, is introduced to provide a general characterization of structures of condensed matter. Using the favored local structure lattice model as a testbed, the diversity measure is found to effectively filter extrinsic noise and provide a useful differentiation between crystal and amorphous structures. We identify an interesting class of structures intermediate between crystals and glasses that are characterized by a complex combination of short-range ordering and long-range disorder. We demonstrate how the diversity can be used as an order parameter to organize various scenarios by structure change in response to increasing diversity.
Collapse
Affiliation(s)
- Yueran Wang
- School of Chemistry, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Peter Harrowell
- School of Chemistry, University of Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|
2
|
Schelling MPM, Meijer JM. Controlled creation of point defects in three-dimensional colloidal crystals. Phys Rev E 2024; 109:L062601. [PMID: 39020982 DOI: 10.1103/physreve.109.l062601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 05/06/2024] [Indexed: 07/20/2024]
Abstract
Crystal defects crucially influence the properties of crystalline materials and have been extensively studied. Even for the simplest type of defect-the point defect-however, basic properties such as their diffusive behavior, and their interactions, remain elusive on the atomic scale. Here, we demonstrate in situ control over the creation of isolated point defects in a three-dimensional (3D) colloidal crystal allowing insight on a single-particle level. Our system consists of thermoresponsive microgel particles embedded in a crystal of nonresponsive colloids. Heating this mixed-particle system triggers the shrinking of the embedded microgels, which then vacate their lattice positions, creating vacancy-interstitial pairs. We use temperature-controlled confocal laser scanning microscopy to verify and visualize the formation of the point defects. In addition, by reswelling the microgels we quantify the local lattice distortion around an interstitial defect. Our experimental model system provides a unique opportunity to shed light on the interplay between point defects, on the mechanisms of their diffusion, on their interactions, and on collective dynamics.
Collapse
|
3
|
Illing PE, Ono-Dit-Biot JC, Dalnoki-Veress K, Weeks ER. Compression and fracture of ordered and disordered droplet rafts. Phys Rev E 2024; 109:014610. [PMID: 38366516 DOI: 10.1103/physreve.109.014610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 12/06/2023] [Indexed: 02/18/2024]
Abstract
We simulate a two-dimensional array of droplets being compressed between two walls. The droplets are adhesive due to an attractive depletion force. As one wall moves toward the other, the droplet array is compressed and eventually induced to rearrange. The rearrangement occurs via a fracture, where depletion bonds are quickly broken between a subset of droplets. For monodisperse, hexagonally ordered droplet arrays, this fracture is preceded by a maximum force exerted on the walls, which drops rapidly after the fracture occurs. In small droplet arrays a fracture is a single well-defined event, but for larger droplet arrays, competing fractures can be observed. These are fractures nucleated nearly simultaneously in different locations. Finally, we also study the compression of bidisperse droplet arrays. The addition of a second droplet size further disrupts fracture events, showing differences between ideal crystalline arrays, crystalline arrays with a small number of defects, and fully amorphous arrays. These results are in good agreement with previously published experiments.
Collapse
Affiliation(s)
| | | | - Kari Dalnoki-Veress
- Department of Physics & Astronomy, McMaster University, Hamilton, Ontario, L8S 4L8, Canada
- Gulliver, CNRS UMR 7083, ESPCI Paris, University PSL, 75005 Paris, France
| | - Eric R Weeks
- Department of Physics, Emory University, Atlanta, Georgia 30322, USA
| |
Collapse
|
4
|
Yang Z, Zhang W, Zhu C, Wang Z, Guan J, Huo Y, Tang X, Shi W, Xia K, Liu YX, Yang L, Zhang J. Order transfer in a hybrid Raman-laser-optomechanical resonator. OPTICS EXPRESS 2023; 31:36836-36844. [PMID: 38017825 DOI: 10.1364/oe.502262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 09/18/2023] [Indexed: 11/30/2023]
Abstract
Order is one of the most important concepts to interpret various phenomena such as the emergence of turbulence and the life-evolution process. The generation of laser can also be treated as an ordering process in which the interaction between the laser beam and the gain medium leads to the correlation between photons in the output optical field. Here, we demonstrate experimentally in a hybrid Raman-laser-optomechanical system that an ordered Raman laser can be generated from an entropy-absorption process by a chaotic optomechanical resonator. When the optomechanical resonator is chaotic or disordered enough, the Raman-laser field is in an ordered lasing mode. This can be interpreted by the entropy transfer from the Raman-laser mode to the chaotic motion mediated by optomechanics. Different order parameters, such as the box-counting dimension, the maximal Lyapunov exponent, and the Kolmogorov entropy, are introduced to quantitatively analyze this entropy transfer process, by which we can observe the order transfer between the Raman-laser mode and the optomechanical resonator. Our study presents a new mechanism of laser generation and opens up new dimensions of research such as the modulation of laser by optomechanics.
Collapse
|
5
|
Li Z, Li X, Zhang H, Huang D, Zhang L. The prediction of contact force networks in granular materials based on graph neural networks. J Chem Phys 2023; 158:054905. [PMID: 36754816 DOI: 10.1063/5.0122695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The contact force network, usually organized inhomogeneously by the inter-particle forces on the bases of the contact network topologies, is essential to the rigidity and stability in amorphous solids. How to capture such a "backbone" is crucial to the understanding of various anomalous properties or behaviors in those materials, which remains a central challenge presently in physics, engineering, or material science. Here, we use a novel graph neural network to predict the contact force network in two-dimensional granular materials under uniaxial compression. With the edge classification model in the framework of the deep graph library, we show that the inter-particle contact forces can be accurately estimated purely from the knowledge of the static microstructures, which can be acquired from a discrete element method or directly visualized from experimental methods. By testing the granular packings with different structural disorders and pressure, we further demonstrate the robustness of the optimized graph neural network to changes in various model parameters. Our research tries to provide a new way of extracting the information about the inter-particle forces, which substantially improves the efficiency and reduces the costs compared to the traditional experiments.
Collapse
Affiliation(s)
- Zirui Li
- School of Automation, Central South University, Changsha 410083, China
| | - Xingqiao Li
- School of Automation, Central South University, Changsha 410083, China
| | - Hang Zhang
- School of Automation, Central South University, Changsha 410083, China
| | - Duan Huang
- School of Computer Science and Engineering, Central South University, Changsha 410083, China
| | - Ling Zhang
- School of Automation, Central South University, Changsha 410083, China
| |
Collapse
|
6
|
Nickel AC, Rudov AA, Potemkin II, Crassous JJ, Richtering W. Interfacial Assembly of Anisotropic Core-Shell and Hollow Microgels. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:4351-4363. [PMID: 35349289 DOI: 10.1021/acs.langmuir.2c00093] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Microgels, cross-linked polymers with submicrometer size, are ideal soft model systems. While spherical microgels have been studied extensively, anisotropic microgels have hardly been investigated. In this study, we compare the interfacial deformation and assembly of anisotropic core-shell and hollow microgels. The core-shell microgel consists of an elliptical core of hematite covered with a thin silica layer and a thin shell made of poly(N-isopropylacrylamide). The hollow microgels were obtained after a two-step etching procedure of the inorganic core. The behavior of these microgels at the oil-water interface was investigated in a Langmuir-Blodgett trough combined with ex situ atomic force microscopy. First, the influence of the architecture of anisotropic microgels on their spreading at the interface was investigated experimentally and by dissipative particle dynamic simulations. Hereby, the importance of the local shell thickness on the lateral and longitudinal interfacial deformation was highlighted as well as the differences between the core-shell and hollow architectures. The shape of the compression isotherms as well as the dimensions, ordering, and orientation of the microgels at the different compressions were analyzed. Due to their anisotropic shape and stiffness, both anisotropic microgels were found to exhibit significant capillary interactions with a preferential side-to-side assembly leading to stable microgel clusters at low interfacial coverage. Such capillary interactions were found to decrease in the case of the more deformable hollow anisotropic microgels. Consequently, anisotropic hollow microgels were found to distribute more evenly at high surface pressure compared to stiffer core-shell microgels. Our findings emphasize the complex interplay between the colloid design, anisotropy, and softness on the interfacial assembly and the opportunities it therefore offers to create more complex ordered interfaces.
Collapse
Affiliation(s)
- Anne C Nickel
- Institute of Physical Chemistry, RWTH Aachen University, 52056 Aachen, Germany, European Union
| | - Andrey A Rudov
- DWI-Leibniz-Institute for Interactive Materials, 52056 Aachen, Germany, European Union
| | - Igor I Potemkin
- DWI-Leibniz-Institute for Interactive Materials, 52056 Aachen, Germany, European Union
| | - Jérôme J Crassous
- Institute of Physical Chemistry, RWTH Aachen University, 52056 Aachen, Germany, European Union
| | - Walter Richtering
- Institute of Physical Chemistry, RWTH Aachen University, 52056 Aachen, Germany, European Union
| |
Collapse
|
7
|
Chen Y, Tan X, Wang H, Zhang Z, Kosterlitz JM, Ling XS. 2D Colloidal Crystals with Anisotropic Impurities. PHYSICAL REVIEW LETTERS 2021; 127:018004. [PMID: 34270301 DOI: 10.1103/physrevlett.127.018004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/13/2021] [Accepted: 06/04/2021] [Indexed: 06/13/2023]
Abstract
We report a study of 2D colloidal crystals with anisotropic ellipsoid impurities using video microscopy. It is found that at low impurity densities, the impurity particles behave like floating disorder with which the quasi-long-range orientational order survives and the elasticity of the system is actually enhanced. There is a critical impurity density above which the 2D crystal loses the quasi-long-range orientational order. At high impurity densities, the 2D crystal breaks into polycrystalline domains separated by grain boundaries where the impurity particles aggregate. This transition is accompanied by a decrease in the elastic moduli, and it is associated with strong heterogeneous dynamics in the system. The correlation length vs impurity density in the disordered phase exhibits an essential singularity at the critical impurity density.
Collapse
Affiliation(s)
- Ya Chen
- Institute for Advanced Study, Center for Soft Condensed Matter Physics and Interdisciplinary Research, School of Physical Science and Technology, Soochow University, Suzhou 215006, China
| | - Xinlan Tan
- Institute for Advanced Study, Center for Soft Condensed Matter Physics and Interdisciplinary Research, School of Physical Science and Technology, Soochow University, Suzhou 215006, China
| | - Huaguang Wang
- Institute for Advanced Study, Center for Soft Condensed Matter Physics and Interdisciplinary Research, School of Physical Science and Technology, Soochow University, Suzhou 215006, China
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Zexin Zhang
- Institute for Advanced Study, Center for Soft Condensed Matter Physics and Interdisciplinary Research, School of Physical Science and Technology, Soochow University, Suzhou 215006, China
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - J M Kosterlitz
- Department of Physics, Brown University, Providence, Rhode Island 02912, USA
| | - Xinsheng Sean Ling
- Department of Physics, Brown University, Providence, Rhode Island 02912, USA
| |
Collapse
|
8
|
Tan X, Chen Y, Wang H, Zhang Z, Ling XS. 2D isotropic-nematic transition in colloidal suspensions of ellipsoids. SOFT MATTER 2021; 17:6001-6005. [PMID: 34059864 DOI: 10.1039/d1sm00367d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Liquid crystals are important condensed matter systems for technological applications, as well as for fundamental studies. An important unresolved issue is the nature of the phase transition in a two-dimensional (2D) liquid crystal system. In contrast to numerous computational studies reported in the last few decades, there have been no convincing experiments to verify these numerical results. Anisotropic colloids provide an excellent experimental model system to study phase transitions, such as crystallization and glass transition in condensed matter physics with single particle resolution. However, using colloids to probe the two-dimensional liquid crystal transition remains a challenge, since the condensed anisotropic colloids usually become stuck in the metastable glassy state rather than approaching their equilibrium liquid crystal phase. Here we report a method of using an external magnetic field to assist a colloidal system of super-paramagnetic anisotropic particles to overcome the local free energy barriers in the metastable states and approach the equilibrium phase. The experiments demonstrate a 2D isotropic-nematic phase transition with increasing packing density. The effects of the anisotropy of the colloidal particles on the 2D isotropic-nematic transition are explored. Our experimental results are compared with those from previous computational work, and quantitative agreements are reached.
Collapse
Affiliation(s)
- Xinlan Tan
- Institute for Advanced Study, Center for Soft Condensed Matter Physics and Interdisciplinary Research, School of Physical Science and Technology, Soochow University, Suzhou 215006, China.
| | - Ya Chen
- Institute for Advanced Study, Center for Soft Condensed Matter Physics and Interdisciplinary Research, School of Physical Science and Technology, Soochow University, Suzhou 215006, China.
| | - Huaguang Wang
- Institute for Advanced Study, Center for Soft Condensed Matter Physics and Interdisciplinary Research, School of Physical Science and Technology, Soochow University, Suzhou 215006, China. and College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Zexin Zhang
- Institute for Advanced Study, Center for Soft Condensed Matter Physics and Interdisciplinary Research, School of Physical Science and Technology, Soochow University, Suzhou 215006, China. and College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | | |
Collapse
|
9
|
Tan X, Guo Y, Huang D, Zhang L. A structural approach to vibrational properties ranging from crystals to disordered systems. SOFT MATTER 2021; 17:1330-1336. [PMID: 33315036 DOI: 10.1039/d0sm01989e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Many scientists generally attribute the vibrational anomalies of disordered solids to the structural disorder, which, however, is still under intense debate. Here we conduct simulations on two-dimensional packings with a finite temperature, whose structure is tuned from a crystalline configuration to an amorphous one, then the amorphous from very dense state to a relatively loose state. By measuring the vibrational density of states and the reduced density of states, we clearly observe the evolution of the boson peak with the change of the disorder and volume fractions. Meanwhile, to understand the structural origin of this anomaly, we identify the soft regimes of all systems with a novel machine-learning method, where the "softness", a local structural quantity, is defined. Interestingly, we find a strong monotonic relationship between the shape of the boson peak and the softness as well as its spatial heterogeneity, suggesting that the softness of a system may be a new structural approach to the anomalous vibrational properties of amorphous solids.
Collapse
Affiliation(s)
- Xin Tan
- School of Computer Science and Engineering, Central South University, Changsha 410083, China
| | - Ying Guo
- School of Automation, Central South University, Changsha 410083, China.
| | - Duan Huang
- School of Computer Science and Engineering, Central South University, Changsha 410083, China
| | - Ling Zhang
- School of Automation, Central South University, Changsha 410083, China.
| |
Collapse
|
10
|
Ono-Dit-Biot JC, Soulard P, Barkley S, Weeks ER, Salez T, Raphaël E, Dalnoki-Veress K. Mechanical properties of 2D aggregates of oil droplets as model mono-crystals. SOFT MATTER 2021; 17:1194-1201. [PMID: 33336662 DOI: 10.1039/d0sm01165g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We investigate the elastic and yielding properties of two dimensional defect-free mono-crystals made of highly monodisperse droplets. Crystals are compressed between two parallel boundaries of which one acts as a force sensor. As the available space between boundaries is reduced, the crystal goes through successive row-reduction transitions. For small compression forces, the crystal responds elastically until a critical force is reached and the assembly fractures in a single catastrophic global event. Correspondingly there is a peak in the force measurement associated with each row-reduction. The elastic properties of ideal mono-crystal samples are fully captured by a simple analytical model consisting of an assembly of individual capillary springs. The yielding properties of the crystal are captured with a minimal bond breaking model.
Collapse
Affiliation(s)
| | - Pierre Soulard
- UMR CNRS Gulliver 7083, ESPCI Paris, PSL Research University, 10 rue Vauquelin, 75005 Paris, France
| | - Solomon Barkley
- Department of Physics & Astronomy, McMaster University, Hamilton, ON L8S 4L8, Canada.
| | - Eric R Weeks
- Department of Physics, Emory University, Atlanta, GA 30322, USA
| | - Thomas Salez
- Univ. Bordeaux, CNRS, LOMA, UMR 5798, F-33405 Talence, France and Global Station for Soft Matter, Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo, Japan
| | - Elie Raphaël
- UMR CNRS Gulliver 7083, ESPCI Paris, PSL Research University, 10 rue Vauquelin, 75005 Paris, France
| | - Kari Dalnoki-Veress
- Department of Physics & Astronomy, McMaster University, Hamilton, ON L8S 4L8, Canada. and UMR CNRS Gulliver 7083, ESPCI Paris, PSL Research University, 10 rue Vauquelin, 75005 Paris, France
| |
Collapse
|
11
|
Pattern detection in colloidal assembly: A mosaic of analysis techniques. Adv Colloid Interface Sci 2020; 284:102252. [PMID: 32971396 DOI: 10.1016/j.cis.2020.102252] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 08/27/2020] [Accepted: 08/28/2020] [Indexed: 01/19/2023]
Abstract
Characterization of the morphology, identification of patterns and quantification of order encountered in colloidal assemblies is essential for several reasons. First of all, it is useful to compare different self-assembly methods and assess the influence of different process parameters on the final colloidal pattern. In addition, casting light on the structures formed by colloidal particles can help to get better insight into colloidal interactions and understand phase transitions. Finally, the growing interest in colloidal assemblies in materials science for practical applications going from optoelectronics to biosensing imposes a thorough characterization of the morphology of colloidal assemblies because of the intimate relationship between morphology and physical properties (e.g. optical and mechanical) of a material. Several image analysis techniques developed to investigate images (acquired via scanning electron microscopy, digital video microscopy and other imaging methods) provide variegated and complementary information on the colloidal structures under scrutiny. However, understanding how to use such image analysis tools to get information on the characteristics of the colloidal assemblies may represent a non-trivial task, because it requires the combination of approaches drawn from diverse disciplines such as image processing, computational geometry and computational topology and their application to a primarily physico-chemical process. Moreover, the lack of a systematic description of such analysis tools makes it difficult to select the ones more suitable for the features of the colloidal assembly under examination. In this review we provide a methodical and extensive description of real-space image analysis tools by explaining their principles and their application to the investigation of two-dimensional colloidal assemblies with different morphological characteristics.
Collapse
|
12
|
H A, Chaudhuri P. Dense hard disk ordering: influence of bidispersity and quenched disorder. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2020; 32:414001. [PMID: 32521523 DOI: 10.1088/1361-648x/ab9b52] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 06/10/2020] [Indexed: 06/11/2023]
Abstract
Using Monte Carlo simulations, the impact on structural ordering in two-dimensional systems via the interplay of size bidispersity and quenched disorder in the form of an externally applied spatially random potential, is studied for a system of hard disks. By scanning across a wide range of dense packing fractions, size ratios and roughness of the applied potential, the phase diagram is constructed, which demonstrates that both quenched and size disorders shift the onset of translational order to higher packings, while maintaining the presence of the intermediate hexatic phase. At larger disorder strengths, the signatures of structural order are absent within the range of investigated packing fractions. Further, the dynamics with increasing potential strength is analysed for the mono-component system to obtain a spatio-temporal description of the melting process. Finally, the influence of the externally rough field on the Mermin-Wagner fluctuations, characteristic to two-dimensional systems, is investigated.
Collapse
Affiliation(s)
- Arjun H
- The Institute of Mathematical Sciences, CIT Campus, Taramani, Chennai-600113, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Pinaki Chaudhuri
- The Institute of Mathematical Sciences, CIT Campus, Taramani, Chennai-600113, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| |
Collapse
|
13
|
Mishra CK, Habdas P, Yodh AG. Dynamic Heterogeneities in Colloidal Supercooled Liquids: Experimental Tests of Inhomogeneous Mode Coupling Theory. J Phys Chem B 2019; 123:5181-5188. [PMID: 31132279 DOI: 10.1021/acs.jpcb.9b03419] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The dynamics in supercooled liquids slow enormously upon approaching the glass transition, albeit without significant change of liquid structure. This empirical observation has stimulated development of many theoretical models which attempt to elucidate microscopic mechanisms in glasses and glass precursors. Here, quasi-two-dimensional colloidal supercooled liquids and glasses are employed to experimentally test predictions of widely used models: mode coupling theory (MCT) and its important extension, inhomogeneous MCT (IMCT). We measure two-point dynamic correlation functions in the glass forming liquids to determine structural relaxation times, τα, and mode coupling exponents, a, b, and γ; these parameters are then used to extract the mode coupling dynamic crossover packing area-fraction, ϕ c. This information, along with our measurements of supercooled liquid spatiotemporal dynamics, permits characterization of dynamic heterogeneities in the samples and facilitates direct experimental tests of the scaling predictions of IMCT. The time scales at which dynamic heterogeneities are largest, and their spatial sizes, exhibit power law growth on approaching ϕ c. Within experimental error, the exponents of the measured power laws are close to the predictions of IMCT.
Collapse
Affiliation(s)
- Chandan K Mishra
- Department of Physics and Astronomy , University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
| | - Piotr Habdas
- Department of Physics , Saint Joseph's University , Philadelphia , Pennsylvania 19131 , United States
| | - A G Yodh
- Department of Physics and Astronomy , University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
| |
Collapse
|
14
|
Díaz-Méndez R, Pupillo G, Mezzacapo F, Wallin M, Lidmar J, Babaev E. Phase-change switching in 2D via soft interactions. SOFT MATTER 2019; 15:355-358. [PMID: 30556570 DOI: 10.1039/c8sm01738g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We present a new type of phase-change behavior relevant for information storage applications, that can be observed in 2D systems with cluster-forming ability. The temperature-based control of the ordering in 2D particle systems depends on the existence of a crystal-to-glass transition. We perform molecular dynamics simulations of models with soft interactions, demonstrating that the crystalline and amorphous structures can be easily tuned by heat pulses. The physical mechanism responsible for this behavior is a self-assembled polydispersity, that depends on the cluster-forming ability of the interactions. Therefore, the range of real materials that can perform such a transition is very wide in nature, ranging from colloidal suspensions to vortex matter. The state of the art in soft matter experimental setups, controlling interactions, polydispersity and dimensionality, makes it a very fertile ground for practical applications.
Collapse
Affiliation(s)
- Rogelio Díaz-Méndez
- Department of Physics, KTH Royal Institute of Technology, SE-106 91 Stockholm, Sweden.
| | - Guido Pupillo
- icFRC, ISIS (UMR 7006), IPCMS (UMR 7504), Université de Strasbourg and CNRS, 67000 Strasbourg, France
| | - Fabio Mezzacapo
- Laboratoire de Physique, CNRS UMR 5672, ENS de Lyon, F-69364 Lyon Cedex 07, France
| | - Mats Wallin
- Department of Physics, KTH Royal Institute of Technology, SE-106 91 Stockholm, Sweden.
| | - Jack Lidmar
- Department of Physics, KTH Royal Institute of Technology, SE-106 91 Stockholm, Sweden.
| | - Egor Babaev
- Department of Physics, KTH Royal Institute of Technology, SE-106 91 Stockholm, Sweden.
| |
Collapse
|
15
|
Shear bands and the evolving microstructure in a drying colloidal film studied with scanning µ-SAXS. Sci Rep 2018; 8:12979. [PMID: 30154430 PMCID: PMC6113273 DOI: 10.1038/s41598-018-31405-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 08/14/2018] [Indexed: 11/09/2022] Open
Abstract
Shear localisation in thin bands is an important process involved in the plastic deformation of materials subject to stress. This process is often sensitive to the sample microstructure (amorphous/crystalline). Here we show using the scanning µ-SAXS technique, how these different microstructures influence the plastic deformations in a drying colloidal film. In crystalline samples, the presence of an ordering transition at the compaction front was directly identified through the development of a six-fold symmetry in the scattering pattern in 20 wt% samples. It is shown that plastic deformations in individual groups of particles during the compaction process can be tracked and measured in real time. Higher concentration suspensions were found to result in amorphous structures. The transition between crystalline and amorphous microstructures with initial particle concentration was also found to correlate with the appearance of shear bands. Through 2D spatial mapping of the local film structure, the presence of shear bands in the films was directly related to the microscale spatial variations in strain magnitude and compression direction. Our measurements also showed that shear bands lead to a reduction in the local particle volume fraction ~1–2%, indicating significant dilatancy.
Collapse
|
16
|
Laurati M, Sentjabrskaja T, Ruiz-Franco J, Egelhaaf SU, Zaccarelli E. Different scenarios of dynamic coupling in glassy colloidal mixtures. Phys Chem Chem Phys 2018; 20:18630-18638. [DOI: 10.1039/c8cp02559b] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The composition of mixtures determines the mechanism of glass formation and dynamic coupling of different species.
Collapse
Affiliation(s)
- Marco Laurati
- División de Ciencias e Ingenierías
- Campus León
- Universidad de Guanajuato
- Loma del Bosque 103
- Lomas del Campestre
| | | | - José Ruiz-Franco
- Dipartimento di Fisica
- Università di Roma La Sapienza
- Roma 00185
- Italy
| | - Stefan U. Egelhaaf
- Condensed Matter Physics Laboratory
- Heinrich Heine University
- 40225 Düsseldorf
- Germany
| | - Emanuela Zaccarelli
- Dipartimento di Fisica
- Università di Roma La Sapienza
- Roma 00185
- Italy
- CNR-ISC (Institute for Complex Systems of National Research Council)
| |
Collapse
|
17
|
Prakash P, Varma M. Trapping/Pinning of colloidal microspheres over glass substrate using surface features. Sci Rep 2017; 7:15754. [PMID: 29147027 PMCID: PMC5691049 DOI: 10.1038/s41598-017-15984-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 11/06/2017] [Indexed: 12/21/2022] Open
Abstract
Suspensions of micro/nano particles made of Polystyrene, Poly(methyl methacrylate), Silicon dioxide etc. have been a standard model system to understand colloidal physics. These systems have proved useful insights into phenomena such as self-assembly. Colloidal model systems are also extensively used to simulate many condensed matter phenomena such as dynamics in a quenched disordered system and glass transition. A precise control of particles using optical or holographic tweezers is essential for such studies. However, studies of collective phenomena such as jamming and flocking behaviour in a disordered space are limited due to the low throughput of the optical trapping techniques. In this article, we present a technique where we trap and pin polystyrene microspheres ~10 μm over ‘triangular crest’ shaped microstructures in a microfluidic environment. Trapping/Pinning occurs due to the combined effect of hydrodynamic interaction and non-specific adhesion forces. This method allows trapping and pinning of microspheres in any arbitrary pattern with a high degree of spatial accuracy which can be useful in studying fundamentals of various collective phenomena as well as in applications such as bead detachment assay based biosensors.
Collapse
Affiliation(s)
- Praneet Prakash
- Centre for Nano Science and Engineering, Indian Institute of Science, Bangalore, India
| | - Manoj Varma
- Centre for Nano Science and Engineering, Indian Institute of Science, Bangalore, India. .,Robert Bosch Centre for Cyber Physical Systems, Indian Institute of Science, Bangalore, India.
| |
Collapse
|
18
|
Su Y, Ma XG, Lai PY, Tong P. Colloidal diffusion over a quenched two-dimensional random potential. SOFT MATTER 2017; 13:4773-4785. [PMID: 28653070 DOI: 10.1039/c7sm01056g] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A two-layer colloidal system is developed for the study of diffusion over a quenched two-dimensional random potential. A mixture of bidisperse silica spheres is used to form a randomly packed colloidal monolayer on the bottom substrate. The corrugated surface of the bottom colloidal monolayer provides a gravitational potential field for the dilute diffusing particles in the top layer. The population probability histogram P(x,y) of the diffusing particles is obtained to fully characterize the random potential landscape U(x,y) via the Boltzmann distribution. The dynamical properties of the top diffusing particles, such as their mean square displacement (MSD), histogram of the escape time, and long-time self-diffusion coefficient, are simultaneously measured from the particle trajectories. A quantitative relationship between the long-time diffusion coefficient and the random potential is obtained, which is in good agreement with the theoretical prediction. The measured MSD reveals a wide region of subdiffusion resulting from the structural disorders. The crossover from subdiffusion to normal diffusion is explained by the Lorentz model for tracer diffusion through a heterogeneous space filled with a set of randomly distributed obstacles.
Collapse
Affiliation(s)
- Yun Su
- Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong.
| | - Xiao-Guang Ma
- Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong.
| | - Pik-Yin Lai
- Department of Physics and Center for Complex Systems, National Central University, Chungli District, Tao-Yuan City, Taiwan 320, Republic of China.
| | - Penger Tong
- Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong.
| |
Collapse
|
19
|
Ness C, Ooi JY, Sun J, Marigo M, McGuire P, Xu H, Stitt H. Linking particle properties to dense suspension extrusion flow characteristics using discrete element simulations. AIChE J 2017. [DOI: 10.1002/aic.15768] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Christopher Ness
- School of Engineering; University of Edinburgh; Edinburgh EH9 3JL U.K
- Dept. of Chemical Engineering and Biotechnology; University of Cambridge; Cambridge CB3 0AS U.K
| | - Jin Y. Ooi
- School of Engineering; University of Edinburgh; Edinburgh EH9 3JL U.K
| | - Jin Sun
- School of Engineering; University of Edinburgh; Edinburgh EH9 3JL U.K
| | - Michele Marigo
- Johnson Matthey Technology Centre; PO Box 1 Billingham TS23 1LB U.K
| | - Paul McGuire
- Johnson Matthey Technology Centre; PO Box 1 Billingham TS23 1LB U.K
| | - Han Xu
- Johnson Matthey Technology Centre; PO Box 1 Billingham TS23 1LB U.K
| | - Hugh Stitt
- Johnson Matthey Technology Centre; PO Box 1 Billingham TS23 1LB U.K
| |
Collapse
|
20
|
Wang P, Zheng Y, Fernandes MC, Sun Y, Xu K, Sun S, Kang SH, Tournat V, Bertoldi K. Harnessing Geometric Frustration to Form Band Gaps in Acoustic Channel Lattices. PHYSICAL REVIEW LETTERS 2017; 118:084302. [PMID: 28282189 DOI: 10.1103/physrevlett.118.084302] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Indexed: 06/06/2023]
Abstract
We demonstrate both numerically and experimentally that geometric frustration in two-dimensional periodic acoustic networks consisting of arrays of narrow air channels can be harnessed to form band gaps (ranges of frequency in which the waves cannot propagate in any direction through the system). While resonant standing wave modes and interferences are ubiquitous in all the analyzed network geometries, we show that they give rise to band gaps only in the geometrically frustrated ones (i.e., those comprising of triangles and pentagons). Our results not only reveal a new mechanism based on geometric frustration to suppress the propagation of pressure waves in specific frequency ranges but also open avenues for the design of a new generation of smart systems that control and manipulate sound and vibrations.
Collapse
Affiliation(s)
- Pai Wang
- Harvard John A. Paulson School of Engineering and Applied Science, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Yue Zheng
- Jacobs School of Engineering, University of California, San Diego, California 92093, USA
| | - Matheus C Fernandes
- Harvard John A. Paulson School of Engineering and Applied Science, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Yushen Sun
- Tsinghua University, Beijing 100084, China
| | - Kai Xu
- Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Sijie Sun
- Harvard John A. Paulson School of Engineering and Applied Science, Harvard University, Cambridge, Massachusetts 02138, USA
- Tsinghua University, Beijing 100084, China
| | - Sung Hoon Kang
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Vincent Tournat
- Harvard John A. Paulson School of Engineering and Applied Science, Harvard University, Cambridge, Massachusetts 02138, USA
- LAUM, CNRS, Université du Maine, Avenue O. Messiaen, 72085 Le Mans, France
| | - Katia Bertoldi
- Harvard John A. Paulson School of Engineering and Applied Science, Harvard University, Cambridge, Massachusetts 02138, USA
- Kavli Institute, Harvard University, Cambridge, Massachusetts 02138, USA
| |
Collapse
|
21
|
Díaz-Méndez R, Mezzacapo F, Lechner W, Cinti F, Babaev E, Pupillo G. Glass Transitions in Monodisperse Cluster-Forming Ensembles: Vortex Matter in Type-1.5 Superconductors. PHYSICAL REVIEW LETTERS 2017; 118:067001. [PMID: 28234534 DOI: 10.1103/physrevlett.118.067001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Indexed: 06/06/2023]
Abstract
At low enough temperatures and high densities, the equilibrium configuration of an ensemble of ultrasoft particles is a self-assembled, ordered, cluster crystal. In the present Letter, we explore the out-of-equilibrium dynamics for a two-dimensional realization, which is relevant to superconducting materials with multiscale intervortex forces. We find that, for small temperatures following a quench, the suppression of the thermally activated particle hopping hinders the ordering. This results in a glass transition for a monodispersed ensemble, for which we derive a microscopic explanation in terms of an "effective polydispersity" induced by multiscale interactions. This demonstrates that a vortex glass can form in clean systems of thin films of "type-1.5" superconductors. An additional setup to study this physics can be layered superconducting systems, where the shape of the effective vortex-vortex interactions can be engineered.
Collapse
Affiliation(s)
- Rogelio Díaz-Méndez
- icFRC, IPCMS (UMR 7504), ISIS (UMR 7006), Université de Strasbourg and CNRS, 67000 Strasbourg, France
| | - Fabio Mezzacapo
- icFRC, IPCMS (UMR 7504), ISIS (UMR 7006), Université de Strasbourg and CNRS, 67000 Strasbourg, France
| | - Wolfgang Lechner
- IQOQI and Institute for Theoretical Physics, University of Innsbruck, 6020 Innsbruck, Austria
| | - Fabio Cinti
- National Institute for Theoretical Physics (NITheP), Stellenbosch 7600, South Africa
- Institute of Theoretical Physics, Stellenbosch University, Stellenbosch 7600, South Africa
| | - Egor Babaev
- Department of Theoretical Physics and Center for Quantum Materials, KTH-Royal Institute of Technology, Stockholm SE-10691, Sweden
| | - Guido Pupillo
- icFRC, IPCMS (UMR 7504), ISIS (UMR 7006), Université de Strasbourg and CNRS, 67000 Strasbourg, France
| |
Collapse
|
22
|
Gratale MD, Ma X, Davidson ZS, Still T, Habdas P, Yodh AG. Vibrational properties of quasi-two-dimensional colloidal glasses with varying interparticle attraction. Phys Rev E 2016; 94:042606. [PMID: 27841543 DOI: 10.1103/physreve.94.042606] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Indexed: 06/06/2023]
Abstract
We measure the vibrational modes and particle dynamics of quasi-two-dimensional colloidal glasses as a function of interparticle interaction strength. The interparticle attractions are controlled via a temperature-tunable depletion interaction. Specifically, the interparticle attraction energy is increased gradually from a very small value (nearly hard-sphere) to moderate strength (∼4k_{B}T), and the variation of colloidal particle dynamics and vibrations are concurrently probed. The particle dynamics slow monotonically with increasing attraction strength, and the particle motions saturate for strengths greater than ∼2k_{B}T, i.e., as the system evolves from a nearly repulsive glass to an attractive glass. The shape of the phonon density of states is revealed to change with increasing attraction strength, and the number of low-frequency modes exhibits a crossover for glasses with weak compared to strong interparticle attraction at a threshold of ∼2k_{B}T. This variation in the properties of the low-frequency vibrational modes suggests a new means for distinguishing between repulsive and attractive glass states.
Collapse
Affiliation(s)
- Matthew D Gratale
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Xiaoguang Ma
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Complex Assemblies of Soft Matter, CNRS-Solvay-UPenn UMI 3254, Bristol, Pennsylvania 19007-3624, USA
| | - Zoey S Davidson
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Tim Still
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Piotr Habdas
- Department of Physics, Saint Joseph's University, Philadelphia, Pennsylvania 19131, USA
| | - A G Yodh
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
23
|
Hwang J, Kim J, Sung BJ. Dynamics of highly polydisperse colloidal suspensions as a model system for bacterial cytoplasm. Phys Rev E 2016; 94:022614. [PMID: 27627367 DOI: 10.1103/physreve.94.022614] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Indexed: 11/07/2022]
Abstract
There are various kinds of macromolecules in bacterial cell cytoplasm. The size polydispersity of the macromolecules is so significant that the crystallization and the phase separation could be suppressed, thus stabilizing the liquid state of bacterial cytoplasm. On the other hand, recent experiments suggested that the macromolecules in bacterial cytoplasm should exhibit glassy dynamics, which should be also affected significantly by the size polydispersity of the macromolecules. In this work, we investigate the anomalous and slow dynamics of highly polydisperse colloidal suspensions, of which size distribution is chosen to mimic Escherichia coli cytoplasm. We find from our Langevin dynamics simulations that the diffusion coefficient (D_{tot}) and the displacement distribution functions (P(r,t)) averaged over all colloids of different sizes do not show anomalous and glassy dynamic behaviors until the system volume fraction ϕ is increased up to 0.82. This indicates that the intrinsic polydispersity of bacterial cytoplasm should suppress the glass transition and help maintain the liquid state of the cytoplasm. On the other hand, colloids of each kind show totally different dynamic behaviors depending on their size. The dynamics of colloids of different size becomes non-Gaussian at a different range of ϕ, which suggests that a multistep glass transition should occur. The largest colloids undergo the glass transition at ϕ=0.65, while the glass transition does not occur for smaller colloids in our simulations even at the highest value of ϕ. We also investigate the distribution (P(θ,t)) of the relative angles of displacement for macromolecules and find that macromolecules undergo directionally correlated motions in a sufficiently dense system.
Collapse
Affiliation(s)
- Jiye Hwang
- Department of Chemistry, Sogang University, Seoul 121-742, Republic of Korea
| | - Jeongmin Kim
- Department of Chemistry, Sogang University, Seoul 121-742, Republic of Korea
| | - Bong June Sung
- Department of Chemistry, Sogang University, Seoul 121-742, Republic of Korea
| |
Collapse
|
24
|
Tong H, Tan P, Xu N. From Crystals to Disordered Crystals: A Hidden Order-Disorder Transition. Sci Rep 2015; 5:15378. [PMID: 26483326 PMCID: PMC4613360 DOI: 10.1038/srep15378] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 09/24/2015] [Indexed: 11/09/2022] Open
Abstract
To distinguish between order and disorder is of fundamental importance to understanding solids. It becomes more significant with recent observations that solids with high structural order can behave like disordered solids, while properties of disordered solids can approach crystals under certain circumstance. It is then imperative to understand when and how disorder takes effect to deviate the properties of a solid from crystals and what the correct factors are to control the behaviours of solids. Here we answer these questions by reporting the finding of a hidden order-disorder transition from crystals to disordered crystals for static packings of frictionless spheres. While the geometric indicators are mostly blind to the transition, disordered crystals already exhibit properties apart from crystals. The transition approaches the close packing of hard spheres, giving rise to the singularity of the close packing point. We evidence that both the transition and properties of disordered crystals are jointly determined by the structural order and density. Near the transition, the elastic moduli and coordination number of disordered crystals show particular pressure dependence distinct from known behaviours of both crystals and jammed solids. The discovery of the transition therefore reveals some unknown aspects of solids.
Collapse
Affiliation(s)
- Hua Tong
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, and Department of Physics, University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Peng Tan
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, People's Republic of China
| | - Ning Xu
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, and Department of Physics, University of Science and Technology of China, Hefei 230026, People's Republic of China
| |
Collapse
|
25
|
Qi W, Dijkstra M. Destabilisation of the hexatic phase in systems of hard disks by quenched disorder due to pinning on a lattice. SOFT MATTER 2015; 11:2852-2856. [PMID: 25710224 DOI: 10.1039/c4sm02876g] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We investigate the effect of quenched disorder on the melting mechanism of two-dimensional hard disks using large-scale event-driven molecular dynamics simulations. The two-stage melting scenario of a continuous solid-hexatic and a first-order hexatic-liquid transition for a 2D system of hard disks does not persist in the case of quenched disorder, which arises by pinning less than one percent of the particles on a triangular lattice. Based on the Halperin-Nelson-Young (HNY) renormalization group equation, we observe that a first-order solid-liquid transition preempts the Kosterlitz-Thouless-type solid-hexatic transition in a 2D system of hard disks with quenched disorder as the stiffness of the crystal is increased by the presence of pinned particles.
Collapse
Affiliation(s)
- Weikai Qi
- Soft Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 5, 3584 CC Utrecht, The Netherlands.
| | | |
Collapse
|
26
|
Hendricks J, Capellmann R, Schofield AB, Egelhaaf SU, Laurati M. Different mechanisms for dynamical arrest in largely asymmetric binary mixtures. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 91:032308. [PMID: 25871111 DOI: 10.1103/physreve.91.032308] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Indexed: 06/04/2023]
Abstract
Using confocal microscopy we investigate binary colloidal mixtures with large size asymmetry, in particular the formation of dynamically arrested states of the large spheres. The volume fraction of the system is kept constant, and as the concentration of small spheres is increased we observe a series of transitions of the large spheres to different arrested states: an attractive glass, a gel, and an asymmetric glass. These states are distinguished by the degree of dynamical arrest and the amount of structural and dynamical heterogeneity. The transitions between two different arrested states occur through melting and the formation of a fluid state. While a space-spanning network of bonded particles is found in both arrested and fluid states, only arrested states are characterized by the presence of a space-spanning network of dynamically arrested particles.
Collapse
Affiliation(s)
- J Hendricks
- Condensed Matter Physics Laboratory, Heinrich-Heine University, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - R Capellmann
- Condensed Matter Physics Laboratory, Heinrich-Heine University, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - A B Schofield
- SUPA, School of Physics & Astronomy, University of Edinburgh, Peter Guthrie Tait Road, Edinburgh EH9 3FD, United Kingdom
| | - S U Egelhaaf
- Condensed Matter Physics Laboratory, Heinrich-Heine University, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - M Laurati
- Condensed Matter Physics Laboratory, Heinrich-Heine University, Universitätsstr. 1, 40225 Düsseldorf, Germany
| |
Collapse
|
27
|
Becker N, Sibani P, Boettcher S, Vivek S. Mesoscopic model of temporal and spatial heterogeneity in aging colloids. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2014; 26:505102. [PMID: 25420098 DOI: 10.1088/0953-8984/26/50/505102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We develop a simple and effective description of the dynamics of dense hard sphere colloids in the aging regime deep in the glassy phase. Our description complements the many efforts to understand the onset of jamming in low density colloids, whose dynamics is still time-homogeneous. Based on a small set of principles, our model provides emergent dynamic heterogeneity, reproduces the known results for dense hard sphere colloids and makes detailed, experimentally-testable predictions for canonical observables in glassy dynamics. In particular, we reproduce the shape of the intermediate scattering function and particle mean-square displacements for jammed colloidal systems, and we predict a growth for the peak of the χ(4) mobility correlation function that is logarithmic in waiting-time. At the same time, our model suggests a novel unified description for the irreversible aging dynamics of structural and quenched glasses based on the dynamical properties of growing clusters of highly correlated degrees of freedom.
Collapse
|
28
|
Sentjabrskaja T, Hermes M, Poon WCK, Estrada CD, Castañeda-Priego R, Egelhaaf SU, Laurati M. Transient dynamics during stress overshoots in binary colloidal glasses. SOFT MATTER 2014; 10:6546-6555. [PMID: 24988071 DOI: 10.1039/c4sm00577e] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
We investigate, using simultaneous rheology and confocal microscopy, the time-dependent stress response and transient single-particle dynamics following a step change in shear rate in binary colloidal glasses with large dynamical asymmetry and different mixing ratios. The transition from solid-like response to flow is characterised by a stress overshoot, whose magnitude is linked to transient superdiffusive dynamics as well as cage compression effects. These and the yield strain at which the overshoot occurs vary with the mixing ratio, and hence the prevailing caging mechanism. The yielding and stress storage are dominated by dynamics on different time and length scales, the short-time in-cage dynamics and the long-time structural relaxation respectively. These time scales and their relation to the characteristic time associated with the applied shear, namely the inverse shear rate, result in two different and distinct regimes of the shear rate dependencies of the yield strain and the magnitude of the stress overshoot.
Collapse
Affiliation(s)
- T Sentjabrskaja
- Condensed Matter Physics Laboratory, Heinrich Heine University, Universitätsstraße 1, 40225 Düsseldorf, Germany.
| | | | | | | | | | | | | |
Collapse
|
29
|
Cristofolini L. Synchrotron X-ray techniques for the investigation of structures and dynamics in interfacial systems. Curr Opin Colloid Interface Sci 2014. [DOI: 10.1016/j.cocis.2014.03.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
30
|
Zhang H, Peng S, Mao L, Zhou X, Liang J, Wan C, Zheng J, Ju X. Freezing of Lennard-Jones fluid on a patterned substrate. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 89:062410. [PMID: 25019797 DOI: 10.1103/physreve.89.062410] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Indexed: 06/03/2023]
Abstract
Using molecular dynamics simulations, we study freezing of Lennard-Jones particles at commensurate substrate with triangular pattern. Throughout the box particles freeze onto the substrate and form close-packed layers. For the moderately attractive substrates, an intermediate hexatic phase between liquid and crystal is detected in the first two layers where the hexatic-solid freezing process is continuous while, counterintuitively, the liquid-hexatic process is of first order. Moreover, we observe that liquid-hexatic and hexatic-solid transitions shift towards higher temperatures with the attraction strength increasing. By contrast, the liquid-hexatic transition shifts faster than the hexatic-solid process, significantly widening the temperature range of the hexatic phase. When this phenomenon appears, freezing in the bulk always proceeds through a first-order transition at the same temperature. In addition, changes in the average structural order (three-dimensional) of the layers indicate that freezing processes in layers near substrates seem to cost the structural order of the bulk particles in their vicinity, and an intermediate prestructural cloud of medium-ordered particles is always observed before the layering freezing.
Collapse
Affiliation(s)
- Huijun Zhang
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China and Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900, China
| | - Shuming Peng
- Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900, China
| | - Li Mao
- Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900, China
| | - Xiaosong Zhou
- Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900, China
| | - Jianhua Liang
- Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900, China
| | - Chubin Wan
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
| | - Jian Zheng
- Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900, China and School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230026, China
| | - Xin Ju
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
31
|
Yunker PJ, Chen K, Gratale MD, Lohr MA, Still T, Yodh AG. Physics in ordered and disordered colloidal matter composed of poly(N-isopropylacrylamide) microgel particles. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2014; 77:056601. [PMID: 24801604 DOI: 10.1088/0034-4885/77/5/056601] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
This review collects and describes experiments that employ colloidal suspensions to probe physics in ordered and disordered solids and related complex fluids. The unifying feature of this body of work is its clever usage of poly(N-isopropylacrylamide) (PNIPAM) microgel particles. These temperature-sensitive colloidal particles provide experimenters with a 'knob' for in situ control of particle size, particle interaction and particle packing fraction that, in turn, influence the structural and dynamical behavior of the complex fluids and solids. A brief summary of PNIPAM particle synthesis and properties is given, followed by a synopsis of current activity in the field. The latter discussion describes a variety of soft matter investigations including those that explore formation and melting of crystals and clusters, and those that probe structure, rearrangement and rheology of disordered (jammed/glassy) and partially ordered matter. The review, therefore, provides a snapshot of a broad range of physics phenomenology which benefits from the unique properties of responsive microgel particles.
Collapse
Affiliation(s)
- Peter J Yunker
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104, USA. School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | | | | | | | | | | |
Collapse
|
32
|
Kang SH, Shan S, Košmrlj A, Noorduin WL, Shian S, Weaver JC, Clarke DR, Bertoldi K. Complex ordered patterns in mechanical instability induced geometrically frustrated triangular cellular structures. PHYSICAL REVIEW LETTERS 2014; 112:098701. [PMID: 24655285 DOI: 10.1103/physrevlett.112.098701] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Indexed: 06/03/2023]
Abstract
Geometrical frustration arises when a local order cannot propagate throughout the space because of geometrical constraints. This phenomenon plays a major role in many systems leading to disordered ground-state configurations. Here, we report a theoretical and experimental study on the behavior of buckling-induced geometrically frustrated triangular cellular structures. To our surprise, we find that buckling induces complex ordered patterns which can be tuned by controlling the porosity of the structures. Our analysis reveals that the connected geometry of the cellular structure plays a crucial role in the generation of ordered states in this frustrated system.
Collapse
Affiliation(s)
- Sung Hoon Kang
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Sicong Shan
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Andrej Košmrlj
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Wim L Noorduin
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Samuel Shian
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
| | - James C Weaver
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, Massachusetts 02138, USA
| | - David R Clarke
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Katia Bertoldi
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA and Kavli Institute, Harvard University, Cambridge, Massachusetts 02138, USA
| |
Collapse
|
33
|
Horn T, Deutschländer S, Löwen H, Maret G, Keim P. Fluctuations of orientational order and clustering in a two-dimensional colloidal system under quenched disorder. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013; 88:062305. [PMID: 24483442 DOI: 10.1103/physreve.88.062305] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Indexed: 06/03/2023]
Abstract
Using both video microscopy of superparamagnetic colloidal particles confined in two dimensions and corresponding computer simulations of repulsive parallel dipoles, we study the formation of fluctuating orientational clusters and topological defects in the context of the KTHNY-like melting scenario under quenched disorder. We analyze cluster densities, average cluster sizes, and the population of noncluster particles, as well as the development of defects, as a function of the system temperature and disorder strength. In addition, the probability distribution of clustering and orientational order is presented. We find that the well-known disorder-induced widening of the hexatic phase can be traced back to the distinct development characteristics of clusters and defects along the melting transitions from the solid phase to the hexatic phase to the isotropic fluid.
Collapse
Affiliation(s)
- Tobias Horn
- Institut für Theoretische Physik II, Heinrich-Heine-Universität Düsseldorf, D-40225 Düsseldorf, Germany
| | | | - Hartmut Löwen
- Institut für Theoretische Physik II, Heinrich-Heine-Universität Düsseldorf, D-40225 Düsseldorf, Germany
| | - Georg Maret
- Fachbereich für Physik, Universität Konstanz, D-78464 Konstanz, Germany
| | - Peter Keim
- Fachbereich für Physik, Universität Konstanz, D-78464 Konstanz, Germany
| |
Collapse
|
34
|
Synthesis of micrometer-size poly(N-isopropylacrylamide) microgel particles with homogeneous crosslinker density and diameter control. J Colloid Interface Sci 2013; 405:96-102. [DOI: 10.1016/j.jcis.2013.05.042] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 04/13/2013] [Accepted: 05/17/2013] [Indexed: 11/18/2022]
|
35
|
Deutschländer S, Horn T, Löwen H, Maret G, Keim P. Two-dimensional melting under quenched disorder. PHYSICAL REVIEW LETTERS 2013; 111:098301. [PMID: 24033073 DOI: 10.1103/physrevlett.111.098301] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Indexed: 06/02/2023]
Abstract
We study the influence of quenched disorder on the two-dimensional melting behavior of superparamagnetic colloidal particles, using both video microscopy and computer simulations of repulsive parallel dipoles. Quenched disorder is introduced by pinning a fraction of the particles to an underlying substrate. We confirm the occurrence of the Kosterlitz-Thouless-Halperin-Nelson-Young scenario and observe an intermediate hexatic phase. While the fluid-hexatic transition remains largely unaffected by disorder, the hexatic-solid transition shifts to lower temperatures with increasing disorder. This results in a significantly broadened stability range of the hexatic phase. In addition, we observe spatiotemporal critical(like) fluctuations, which are consistent with the continuous character of the phase transitions. Characteristics of first-order transitions are not observed.
Collapse
|
36
|
Gratale MD, Yunker PJ, Chen K, Still T, Aptowicz KB, Yodh AG. Phonons in two-dimensional colloidal crystals with bond-strength disorder. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013; 87:052301. [PMID: 23767534 DOI: 10.1103/physreve.87.052301] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 04/02/2013] [Indexed: 06/02/2023]
Abstract
We study phonon modes in two-dimensional colloidal crystals composed of soft microgel particles with hard polystyrene particle dopants distributed randomly on the triangular lattice. This experimental approach produces close-packed lattices of spheres with random bond strength disorder, i.e., the effective springs coupling nearest neighbors are very stiff, very soft, or of intermediate stiffness. Particle tracking video microscopy and covariance matrix techniques are then employed to derive the phonon modes of the corresponding "shadow" crystals with bond strength disorder as a function of increasing dopant concentration. At low frequencies, hard and soft particles participate equally in the phonon modes, and the samples exhibit Debye-like density of states behavior characteristic of crystals. For mid- and high-frequency phonons, the relative participation of hard versus soft particles in each mode is found to vary systematically with dopant concentration. Additionally, a few localized modes, primarily associated with hard particle motions, are found at the highest frequencies.
Collapse
Affiliation(s)
- Matthew D Gratale
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | |
Collapse
|
37
|
Yunker PJ, Zhang Z, Gratale M, Chen K, Yodh AG. Relationship between neighbor number and vibrational spectra in disordered colloidal clusters with attractive interactions. J Chem Phys 2013; 138:12A525. [DOI: 10.1063/1.4774076] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
38
|
Zhang H, Khalkhali M, Liu Q, Douglas JF. String-like cooperative motion in homogeneous melting. J Chem Phys 2013; 138:12A538. [PMID: 23556789 PMCID: PMC3598817 DOI: 10.1063/1.4769267] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Accepted: 11/06/2012] [Indexed: 02/05/2023] Open
Abstract
Despite the fundamental nature and practical importance of melting, there is still no generally accepted theory of this ubiquitous phenomenon. Even the earliest simulations of melting of hard discs by Alder and Wainwright indicated the active role of collective atomic motion in melting and here we utilize molecular dynamics simulation to determine whether these correlated motions are similar to those found in recent studies of glass-forming (GF) liquids and other condensed, strongly interacting, particle systems. We indeed find string-like collective atomic motion in our simulations of "superheated" Ni crystals, but other observations indicate significant differences from GF liquids. For example, we observe neither stretched exponential structural relaxation, nor any decoupling phenomenon, while we do find a boson peak, findings that have strong implications for understanding the physical origin of these universal properties of GF liquids. Our simulations also provide a novel view of "homogeneous" melting in which a small concentration of interstitial defects exerts a powerful effect on the crystal stability through their initiation and propagation of collective atomic motion. These relatively rare point defects are found to propagate down the strings like solitons, driving the collective motion. Crystal integrity remains preserved when the permutational atomic motions take the form of ring-like atomic exchanges, but a topological transition occurs at higher temperatures where the rings open to form linear chains similar in geometrical form and length distribution to the strings of GF liquids. The local symmetry breaking effect of the open strings apparently destabilizes the local lattice structure and precipitates crystal melting. The crystal defects are thus not static entities under dynamic conditions, such as elevated temperatures or material loading, but rather are active agents exhibiting a rich nonlinear dynamics that is not addressed in conventional "static" defect melting models.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 2V4, Canada.
| | | | | | | |
Collapse
|
39
|
van der Linden MN, van Blaaderen A, Dijkstra M. Effect of size polydispersity on the crystal-fluid and crystal-glass transition in hard-core repulsive Yukawa systems. J Chem Phys 2013; 138:114903. [DOI: 10.1063/1.4794918] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
|
40
|
Texter J, Bian K, Chojnowski D, Byrom J. Organosiloxane Supramolecular Liquids-Surface-Energy-Driven Phase Transitions. Angew Chem Int Ed Engl 2013; 52:2511-5. [DOI: 10.1002/anie.201208725] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Indexed: 11/10/2022]
|
41
|
Texter J, Bian K, Chojnowski D, Byrom J. Organosiloxane Supramolecular Liquids-Surface-Energy-Driven Phase Transitions. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201208725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
42
|
Bonales LJ, Martínez-Pedrero F, Rubio MA, Rubio RG, Ortega F. Phase behavior of dense colloidal binary monolayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:16555-16566. [PMID: 23137172 DOI: 10.1021/la302718q] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
In this work, we study how structures develop on 2D dense binary colloidal monolayers as a function of the relative concentration of small/large particles. Translational and orientational distribution functions have been used to monitor the continuous phase transition through a detailed characterization of the global and local order. We have observed how a gradual enhancement in the number of particles of different sizes leads to a continuous vitrification process and how homogeneous binary glasses form in equimolar mixtures. Also, we have performed a simple calculation that relates the structures found to the pair dipolar potential, allowing the forecast of local structures in other arbitrary binary mixtures. Finally, we have corroborated the goodness of the binary systems as a glass-forming model by comparing the established scenario with the structural features found in partially aggregated monolayers.
Collapse
Affiliation(s)
- L J Bonales
- Departamento de Química Física I, Facultad de Química, Universidad Complutense, 28040 Madrid, Spain
| | | | | | | | | |
Collapse
|
43
|
Su YS, Io CW, I L. Transient slowing down relaxation dynamics of the supercooled dusty plasma liquid after quenching. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2012; 86:016405. [PMID: 23005548 DOI: 10.1103/physreve.86.016405] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2011] [Indexed: 06/01/2023]
Abstract
The spatiotemporal evolutions of microstructure and motion in the transient relaxation toward the steady supercooled liquid state after quenching a dusty plasma Wigner liquid, formed by charged dust particles suspended in a low pressure discharge, are experimentally investigated through direct optical microscopy. It is found that the quenched liquid slowly evolves to a colder state with more heterogeneities in structure and motion. Hopping particles and defects appear in the form of clusters with multiscale cluster size distributions. Via the structure rearrangement induced by the reduced thermal agitation from the cold thermal bath after quenching, the temporarily stored strain energy can be cascaded through the network to different newly distorted regions and dissipated after transferring to nonlinearly coupled motions with different scales. It leads to the observed self-similar multiscale slowing down relaxation with power law increases of structural order and structural relaxation time, the similar power law decreases of particle motions at different time scales, and the stronger and slower fluctuations with increasing waiting time toward the new steady state.
Collapse
Affiliation(s)
- Yen-Shuo Su
- Department of Physics and Center for Complex Systems, National Central University, Jhongli, Taiwan 32001, Republic of China
| | | | | |
Collapse
|
44
|
Orsi D, Cristofolini L, Baldi G, Madsen A. Heterogeneous and anisotropic dynamics of a 2D gel. PHYSICAL REVIEW LETTERS 2012; 108:105701. [PMID: 22463423 DOI: 10.1103/physrevlett.108.105701] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Indexed: 05/31/2023]
Abstract
We report x-ray photon correlation spectroscopy (XPCS) results on bidimensional (2D) gels formed by a Langmuir monolayer of gold nanoparticles. The system allows an experimental determination of the fourth order time correlation function, which is compared to the usual second order correlation function and to the mechanical response measured on macroscopic scale. The observed dynamics is anisotropic, heterogeneous and superdiffusive on the nanoscale. Different time scales, associated with fast heterogeneous dynamics inside 2D cages and slower motion of larger parts of the film, can be identified from the correlation functions. The XPCS results are discussed in view of other experimental results and models of three-dimensional gel dynamics.
Collapse
Affiliation(s)
- D Orsi
- Physics Department, Parma University, I-43124, Parma, Italy
| | | | | | | |
Collapse
|
45
|
Abstract
Colloidal dispersions have been studied for decades as a result of their utility in numerous applications and as models for molecular and atomic condensed phases. More recently, a number of groups have exploited in such studies submicrometer-sized hydrogel particles (microgels) that have environmentally tunable sizes. The experimental convenience of tuning the dispersion's colloidal volume fraction while maintaining a constant number density of particles provides a clear advantage over more tedious studies that employ traditional hard-sphere particles. However, as studies delved deeper into the fundamental physics of colloidal dispersions comprising microgel particles, it became abundantly clear that a microgel's utility as a tunable hard sphere was limited and that the impact of softness was more profound than previously appreciated. Herein we review the brief history of microgel-based colloidal dispersions and discuss their transition from tunable hard spheres to a class of soft matter that has revealed a landscape of physics and chemistry notable for its extraordinary richness and diversity.
Collapse
Affiliation(s)
- L Andrew Lyon
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, 30332, USA.
| | | |
Collapse
|
46
|
Nordstrom KN, Gollub JP, Durian DJ. Dynamical heterogeneity in soft-particle suspensions under shear. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2011; 84:021403. [PMID: 21928990 DOI: 10.1103/physreve.84.021403] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Indexed: 05/31/2023]
Abstract
We present experimental measurements of dynamical heterogeneities in a dense system of microgel spheres, sheared at different rates and at different packing fractions in a microfluidic channel, and visualized with high-speed digital video microscopy. A four-point dynamic susceptibility is deduced from video correlations, and is found to exhibit a peak that grows in height and shifts to longer times as the jamming transition is approached from two different directions. In particular, the time for particle-size root-mean square relative displacements is found to scale as τ*∼(γΔφ4)(-1), where γ is the strain rate and Δφ = |φ - φ(c)| is the distance from the random close-packing volume fraction. The typical number of particles in a dynamical heterogeneity is deduced from the susceptibility peak height and found to scale as n*∼(γΔφ4)(-0.3). Exponent uncertainties are less than ten percent. We emphasize that the same power-law behavior is found at packing fractions above and below φ(c). Thus our results considerably extend a previous observation of n*∼γ(-0.3) for granular heap flow at fixed packing below φ(c). Furthermore, the implied result n*∼(τ*)(0.3) compares well with the expectation from mode-coupling theory and with prior observations for driven granular systems.
Collapse
Affiliation(s)
- K N Nordstrom
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6396, USA
| | | | | |
Collapse
|
47
|
Angelini TE, Hannezo E, Trepat X, Marquez M, Fredberg JJ, Weitz DA. Glass-like dynamics of collective cell migration. Proc Natl Acad Sci U S A 2011; 108:4714-9. [PMID: 21321233 PMCID: PMC3064326 DOI: 10.1073/pnas.1010059108] [Citation(s) in RCA: 422] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Collective cell migration in tissues occurs throughout embryonic development, during wound healing, and in cancerous tumor invasion, yet most detailed knowledge of cell migration comes from single-cell studies. As single cells migrate, the shape of the cell body fluctuates dramatically through cyclic processes of extension, adhesion, and retraction, accompanied by erratic changes in migration direction. Within confluent cell layers, such subcellular motions must be coupled between neighbors, yet the influence of these subcellular motions on collective migration is not known. Here we study motion within a confluent epithelial cell sheet, simultaneously measuring collective migration and subcellular motions, covering a broad range of length scales, time scales, and cell densities. At large length scales and time scales collective migration slows as cell density rises, yet the fastest cells move in large, multicell groups whose scale grows with increasing cell density. This behavior has an intriguing analogy to dynamic heterogeneities found in particulate systems as they become more crowded and approach a glass transition. In addition we find a diminishing self-diffusivity of short-wavelength motions within the cell layer, and growing peaks in the vibrational density of states associated with cooperative cell-shape fluctuations. Both of these observations are also intriguingly reminiscent of a glass transition. Thus, these results provide a broad and suggestive analogy between cell motion within a confluent layer and the dynamics of supercooled colloidal and molecular fluids approaching a glass transition.
Collapse
Affiliation(s)
- Thomas E. Angelini
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32611
| | - Edouard Hannezo
- Département de Physique, Ecole Normale Supérieure, 75005 Paris, France
| | - Xavier Trepat
- Institut de Bioenginyeria de Catalunya, Universitat de Barcelona, Ciber Enfermedades Respiratorias, and Institució Catalana de Recerca i Estudis Avançats, 08028 Barcelona, Spain
| | - Manuel Marquez
- YNano Limited Liability Corporation (LLC), 14148 Riverdowns South Drive, Midlothian, VA 23113
| | - Jeffrey J. Fredberg
- Program in Molecular and Integrative Physiological Sciences, School of Public Health, Harvard University, Boston, MA 02115; and
| | - David A. Weitz
- School of Engineering and Applied Sciences, Department of Physics, Harvard University, Cambridge, MA 02138
| |
Collapse
|
48
|
Peng Y, Wang ZR, Alsayed AM, Yodh AG, Han Y. Melting of multilayer colloidal crystals confined between two walls. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2011; 83:011404. [PMID: 21405695 DOI: 10.1103/physreve.83.011404] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Indexed: 05/30/2023]
Abstract
Video microscopy is employed to study the melting behaviors of multilayer colloidal crystals composed of diameter-tunable microgel spheres confined between two walls. We systematically explore film thickness effects on the melting process and on the phase behaviors of single crystal and polycrystalline films. Thick films (>4 layers) are observed to melt heterogeneously, while thin films (≤4 layers) melt homogeneously, even for polycrystalline films. Grain-boundary melting dominates other types of melting processes in polycrystalline films thicker than 12 layers. The heterogeneous melting from dislocations is found to coexist with grain-boundary melting in films between 5- and 12-layers. In dislocation melting, liquid nucleates at dislocations and forms lakelike domains embedded in the larger crystalline matrix; the "lakes" are observed to diffuse, interact, merge with each other, and eventually merge with large strips of liquid melted from grain boundaries. Thin film melting is qualitatively different: thin films homogeneously melt by generating many small defects which need not nucleate at grain boundaries or dislocations. For three- and four-layer thin films, different layers are observed to have the same melting point, but surface layers melt faster than bulk layers. Within our resolution, two- to four-layer films appear to melt in one step, while monolayers melt in two steps with an intermediate hexatic phase.
Collapse
Affiliation(s)
- Y Peng
- Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | | | | | | | | |
Collapse
|
49
|
Nordstrom KN, Verneuil E, Ellenbroek WG, Lubensky TC, Gollub JP, Durian DJ. Centrifugal compression of soft particle packings: theory and experiment. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2010; 82:041403. [PMID: 21230273 DOI: 10.1103/physreve.82.041403] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Indexed: 05/30/2023]
Abstract
An exact method is developed for computing the height of an elastic medium subjected to centrifugal compression, for arbitrary constitutive relation between stress and strain. Example solutions are obtained for power-law media and for cases where the stress diverges at a critical strain--for example as required by packings composed of deformable but incompressible particles. Experimental data are presented for the centrifugal compression of thermo-responsive N-isopropylacrylamide (NIPA) microgel beads in water. For small radial acceleration, the results are consistent with Hertzian elasticity, and are analyzed in terms of the Young elastic modulus of the bead material. For large radial acceleration, the sample compression asymptotes to a value corresponding to a space-filling particle volume fraction of unity. Therefore we conclude that the gel beads are incompressible, and deform without deswelling. In addition, we find that the Young elastic modulus of the particulate gel material scales with cross-link density raised to the power 3.3±0.8, somewhat larger than the Flory expectation.
Collapse
Affiliation(s)
- K N Nordstrom
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6396, USA
| | | | | | | | | | | |
Collapse
|
50
|
Gerbode SJ, Ong DC, Liddell CM, Cohen I. Dislocations and vacancies in two-dimensional mixed crystals of spheres and dimers. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2010; 82:041404. [PMID: 21230274 DOI: 10.1103/physreve.82.041404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2010] [Indexed: 05/30/2023]
Abstract
In colloidal crystals of spheres, dislocation motion is unrestricted. On the other hand, recent studies of relaxation in crystals of colloidal dimer particles have demonstrated that the dislocation dynamics in such crystals are reminiscent of glassy systems. The observed glassy dynamics arise as a result of dislocation cages formed by certain dimer orientations. In the current study, we use experiments and simulations to investigate the transition that arises when a pure sphere crystal is doped with an increasing concentration of dimers. Specifically, we focus on both dislocation caging and vacancy motion. Interestingly, we find that any nonzero fraction of dimers introduces finite dislocation cages, suggesting that glassy dynamics are present for any mixed crystal. However, we have also identified a vacancy-mediated uncaging mechanism for releasing dislocations from their cages. This mechanism is dependent on vacancy diffusion, which slows by orders of magnitude as the dimer concentration is increased. We propose that in mixed crystals with low dimer concentrations vacancy diffusion is fast enough to uncage dislocations and delay the onset of glassy dislocation dynamics.
Collapse
Affiliation(s)
- Sharon J Gerbode
- Department of Physics, Cornell University, Ithaca, New York 14853, USA.
| | | | | | | |
Collapse
|