1
|
Sakamoto K, Akimoto T, Muramatsu M, Sansom MSP, Metzler R, Yamamoto E. Heterogeneous biological membranes regulate protein partitioning via fluctuating diffusivity. PNAS NEXUS 2023; 2:pgad258. [PMID: 37593200 PMCID: PMC10427746 DOI: 10.1093/pnasnexus/pgad258] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 06/22/2023] [Accepted: 07/27/2023] [Indexed: 08/19/2023]
Abstract
Cell membranes phase separate into ordered L o and disordered L d domains depending on their compositions. This membrane compartmentalization is heterogeneous and regulates the localization of specific proteins related to cell signaling and trafficking. However, it is unclear how the heterogeneity of the membranes affects the diffusion and localization of proteins in L o and L d domains. Here, using Langevin dynamics simulations coupled with the phase-field (LDPF) method, we investigate several tens of milliseconds-scale diffusion and localization of proteins in heterogeneous biological membrane models showing phase separation into L o and L d domains. The diffusivity of proteins exhibits temporal fluctuations depending on the field composition. Increases in molecular concentrations and domain preference of the molecule induce subdiffusive behavior due to molecular collisions by crowding and confinement effects, respectively. Moreover, we quantitatively demonstrate that the protein partitioning into the L o domain is determined by the difference in molecular diffusivity between domains, molecular preference of domain, and molecular concentration. These results pave the way for understanding how biological reactions caused by molecular partitioning may be controlled in heterogeneous media. Moreover, the methodology proposed here is applicable not only to biological membrane systems but also to the study of diffusion and localization phenomena of molecules in various heterogeneous systems.
Collapse
Affiliation(s)
- Ken Sakamoto
- Department of System Design Engineering, Keio University, Yokohama, Kanagawa 223-8522, Japan
| | - Takuma Akimoto
- Department of Physics, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Mayu Muramatsu
- Department of Mechanical Engineering, Keio University, Yokohama, Kanagawa 223-8522, Japan
| | - Mark S P Sansom
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Ralf Metzler
- Institute of Physics & Astronomy, University of Potsdam, Potsdam-Golm 14476, Germany
- Asia Pacific Centre for Theoretical Physics, Pohang 37673, Republic of Korea
| | - Eiji Yamamoto
- Department of System Design Engineering, Keio University, Yokohama, Kanagawa 223-8522, Japan
| |
Collapse
|
2
|
Schoch RL, Haran G, Brown FLH. Dynamic correlations in lipid bilayer membranes over finite time intervals. J Chem Phys 2023; 158:044112. [PMID: 36725516 DOI: 10.1063/5.0129130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Recent single-molecule measurements [Schoch et al., Proc. Natl. Acad. Sci. U. S. A. 118, e2113202118 (2021)] have observed dynamic lipid-lipid correlations in membranes with submicrometer spatial resolution and submillisecond temporal resolution. While short from an instrumentation standpoint, these length and time scales remain long compared to microscopic molecular motions. Theoretical expressions are derived to infer experimentally measurable correlations from the two-body diffusion matrix appropriate for membrane-bound bodies coupled by hydrodynamic interactions. The temporal (and associated spatial) averaging resulting from finite acquisition times has the effect of washing out correlations as compared to naive predictions (i.e., the bare elements of the diffusion matrix), which would be expected to hold for instantaneous measurements. The theoretical predictions are shown to be in excellent agreement with Brownian dynamics simulations of experimental measurements. Numerical results suggest that the experimental measurement of membrane protein diffusion, in complement to lipid diffusion measurements, might help to resolve the experimental ambiguities encountered for certain black lipid membranes.
Collapse
Affiliation(s)
- Rafael L Schoch
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Gilad Haran
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Frank L H Brown
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, USA
| |
Collapse
|
3
|
Li L, Hu J, Różycki B, Song F. Intercellular Receptor-Ligand Binding and Thermal Fluctuations Facilitate Receptor Aggregation in Adhering Membranes. NANO LETTERS 2020; 20:722-728. [PMID: 31858798 PMCID: PMC7751893 DOI: 10.1021/acs.nanolett.9b04596] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 12/15/2019] [Indexed: 05/28/2023]
Abstract
Nanoscale molecular clusters in cell membranes can serve as platforms to recruit membrane proteins for various biological functions. A central question is how these nanoclusters respond to physical contacts between cells. Using a statistical mechanics model and Monte Carlo simulations, we explore how the adhesion of cell membranes affects the stability and coalescence of clusters enriched in receptor proteins. Our results show that intercellular receptor-ligand binding and membrane shape fluctuations can lead to receptor aggregation within the adhering membranes even if large-scale clusters are thermodynamically unstable in nonadhering membranes.
Collapse
Affiliation(s)
- Long Li
- State
Key Laboratory of Nonlinear Mechanics and Beijing Key Laboratory of
Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
| | - Jinglei Hu
- Kuang
Yaming Honors School & Institute for Brain Sciences, Nanjing University, Nanjing 210023, China
| | - Bartosz Różycki
- Institute
of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warsaw, Poland
| | - Fan Song
- State
Key Laboratory of Nonlinear Mechanics and Beijing Key Laboratory of
Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
- School
of Engineering Science, University of Chinese
Academy of Sciences, Beijing 100049, China
| |
Collapse
|
4
|
A Rationale for Mesoscopic Domain Formation in Biomembranes. Biomolecules 2018; 8:biom8040104. [PMID: 30274275 PMCID: PMC6316292 DOI: 10.3390/biom8040104] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 09/04/2018] [Accepted: 09/06/2018] [Indexed: 12/25/2022] Open
Abstract
Cell plasma membranes display a dramatically rich structural complexity characterized by functional sub-wavelength domains with specific lipid and protein composition. Under favorable experimental conditions, patterned morphologies can also be observed in vitro on model systems such as supported membranes or lipid vesicles. Lipid mixtures separating in liquid-ordered and liquid-disordered phases below a demixing temperature play a pivotal role in this context. Protein-protein and protein-lipid interactions also contribute to membrane shaping by promoting small domains or clusters. Such phase separations displaying characteristic length-scales falling in-between the nanoscopic, molecular scale on the one hand and the macroscopic scale on the other hand, are named mesophases in soft condensed matter physics. In this review, we propose a classification of the diverse mechanisms leading to mesophase separation in biomembranes. We distinguish between mechanisms relying upon equilibrium thermodynamics and those involving out-of-equilibrium mechanisms, notably active membrane recycling. In equilibrium, we especially focus on the many mechanisms that dwell on an up-down symmetry breaking between the upper and lower bilayer leaflets. Symmetry breaking is an ubiquitous mechanism in condensed matter physics at the heart of several important phenomena. In the present case, it can be either spontaneous (domain buckling) or explicit, i.e., due to an external cause (global or local vesicle bending properties). Whenever possible, theoretical predictions and simulation results are confronted to experiments on model systems or living cells, which enables us to identify the most realistic mechanisms from a biological perspective.
Collapse
|
5
|
Li L, Xu GK, Song F. Impact of lipid rafts on the T-cell-receptor and peptide-major-histocompatibility-complex interactions under different measurement conditions. Phys Rev E 2017; 95:012403. [PMID: 28208397 DOI: 10.1103/physreve.95.012403] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Indexed: 01/02/2023]
Abstract
The interactions between T-cell receptor (TCR) and peptide-major-histocompatibility complex (pMHC), which enable T-cell development and initiate adaptive immune responses, have been intensively studied. However, a central issue of how lipid rafts affect the TCR-pMHC interactions remains unclear. Here, by using a statistical-mechanical membrane model, we show that the binding affinity of TCR and pMHC anchored on two apposing cell membranes is significantly enhanced because of the lipid raft-induced signaling protein aggregation. This finding may provide an alternative insight into the mechanism of T-cell activation triggered by very low densities of pMHC. In the case of cell-substrate adhesion, our results indicate that the loss of lateral mobility of the proteins on the solid substrate leads to the inhibitory effect of lipid rafts on TCR-pMHC interactions. Our findings help to understand why different experimental methods for measuring the impact of lipid rafts on the receptor-ligand interactions have led to contradictory conclusions.
Collapse
Affiliation(s)
- Long Li
- State Key Laboratory of Nonlinear Mechanics (LNM) and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Guang-Kui Xu
- International Center for Applied Mechanics, State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Fan Song
- State Key Laboratory of Nonlinear Mechanics (LNM) and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, 100190, China.,School of Engineering Science, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
6
|
Schmid F. Physical mechanisms of micro- and nanodomain formation in multicomponent lipid membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1859:509-528. [PMID: 27823927 DOI: 10.1016/j.bbamem.2016.10.021] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 10/19/2016] [Accepted: 10/27/2016] [Indexed: 12/17/2022]
Abstract
This article summarizes a variety of physical mechanisms proposed in the literature, which can generate micro- and nanodomains in multicomponent lipid bilayers and biomembranes. It mainly focusses on lipid-driven mechanisms that do not involve direct protein-protein interactions. Specifically, it considers (i) equilibrium mechanisms based on lipid-lipid phase separation such as critical cluster formation close to critical points, and multiple domain formation in curved geometries, (ii) equilibrium mechanisms that stabilize two-dimensional microemulsions, such as the effect of linactants and the effect of curvature-composition coupling in bilayers and monolayers, and (iii) non-equilibrium mechanisms induced by the interaction of a biomembrane with the cellular environment, such as membrane recycling and the pinning effects of the cytoplasm. Theoretical predictions are discussed together with simulations and experiments. The presentation is guided by the theory of phase transitions and critical phenomena, and the appendix summarizes the mathematical background in a concise way within the framework of the Ginzburg-Landau theory. This article is part of a Special Issue entitled: Lipid order/lipid defects and lipid-control of protein activity edited by Dirk Schneider.
Collapse
Affiliation(s)
- Friederike Schmid
- Institute of Physics, Johannes Gutenberg University, 55099 Mainz, Germany
| |
Collapse
|
7
|
Destainville N, Schmidt TH, Lang T. Where Biology Meets Physics--A Converging View on Membrane Microdomain Dynamics. CURRENT TOPICS IN MEMBRANES 2015; 77:27-65. [PMID: 26781829 DOI: 10.1016/bs.ctm.2015.10.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
For several decades, the phenomenon of membrane component segregation into microdomains has been a well-known and highly debated subject, and varying concepts including the raft hypothesis, the fence-and-picket model, hydrophobic-mismatch, and specific protein-protein interactions have been offered as explanations. Here, we review the level of insight into the molecular architecture of membrane domains one is capable of obtaining through biological experimentation. Using SNARE proteins as a paradigm, comprehensive data suggest that several dozens of molecules crowd together into almost circular spots smaller than 100 nm. Such clusters are highly dynamical as they constantly capture and lose molecules. The organization has a strong influence on the functional availability of proteins and likely provides a molecular scaffold for more complex protein networks. Despite this high level of insight, fundamental open questions remain, applying not only to SNARE protein domains but more generally to all types of membrane domains. In this context, we explain the view of physical models and how they are beneficial in advancing our concept of micropatterning. While biological models generally remain qualitative and descriptive, physics aims towards making them quantitative and providing reproducible numbers, in order to discriminate between different mechanisms which have been proposed to account for experimental observations. Despite the fundamental differences in biological and physical approaches as far as cell membrane microdomains are concerned, we are able to show that convergence on common points of views is in reach.
Collapse
Affiliation(s)
- Nicolas Destainville
- Laboratoire de Physique Theorique (IRSAMC), Universite Toulouse 3-Paul Sabatier, UPS/CNRS, Toulouse, France
| | - Thomas H Schmidt
- Department of Membrane Biochemistry, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Thorsten Lang
- Department of Membrane Biochemistry, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| |
Collapse
|
8
|
Lee IH, Saha S, Polley A, Huang H, Mayor S, Rao M, Groves JT. Live cell plasma membranes do not exhibit a miscibility phase transition over a wide range of temperatures. J Phys Chem B 2015; 119:4450-9. [PMID: 25747462 DOI: 10.1021/jp512839q] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Lipid/cholesterol mixtures derived from cell membranes as well as their synthetic reconstitutions exhibit well-defined miscibility phase transitions and critical phenomena near physiological temperatures. This suggests that lipid/cholesterol-mediated phase separation plays a role in the organization of live cell membranes. However, macroscopic lipid-phase separation is not generally observed in cell membranes, and the degree to which properties of isolated lipid mixtures are preserved in the cell membrane remain unknown. A fundamental property of phase transitions is that the variation of tagged particle diffusion with temperature exhibits an abrupt change as the system passes through the transition, even when the two phases are distributed in a nanometer-scale emulsion. We support this using a variety of Monte Carlo and atomistic simulations on model lipid membrane systems. However, temperature-dependent fluorescence correlation spectroscopy of labeled lipids and membrane-anchored proteins in live cell membranes shows a consistently smooth increase in the diffusion coefficient as a function of temperature. We find no evidence of a discrete miscibility phase transition throughout a wide range of temperatures: 14-37 °C. This contrasts the behavior of giant plasma membrane vesicles (GPMVs) blebbed from the same cells, which do exhibit phase transitions and macroscopic phase separation. Fluorescence lifetime analysis of a DiI probe in both cases reveals a significant environmental difference between the live cell and the GPMV. Taken together, these data suggest the live cell membrane may avoid the miscibility phase transition inherent to its lipid constituents by actively regulating physical parameters, such as tension, in the membrane.
Collapse
Affiliation(s)
- Il-Hyung Lee
- †Department of Chemistry, California Institute for Quantitative Biosciences (QB3), Howard Hughes Medical Institute, University of California, Berkeley, California 94720, United States
| | - Suvrajit Saha
- §National Centre for Biological Sciences (TIFR), Bellary Road, Bangalore 560065, India
| | - Anirban Polley
- ∥Raman Research Institute, C.V. Raman Avenue, Bangalore 560080, India
| | - Hector Huang
- †Department of Chemistry, California Institute for Quantitative Biosciences (QB3), Howard Hughes Medical Institute, University of California, Berkeley, California 94720, United States
| | - Satyajit Mayor
- §National Centre for Biological Sciences (TIFR), Bellary Road, Bangalore 560065, India
| | - Madan Rao
- §National Centre for Biological Sciences (TIFR), Bellary Road, Bangalore 560065, India.,∥Raman Research Institute, C.V. Raman Avenue, Bangalore 560080, India
| | - Jay T Groves
- †Department of Chemistry, California Institute for Quantitative Biosciences (QB3), Howard Hughes Medical Institute, University of California, Berkeley, California 94720, United States.,‡Materials Sciences Division, Physical Biosciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States
| |
Collapse
|
9
|
Lipid rafts and raft-mediated supramolecular entities in the regulation of CD95 death receptor apoptotic signaling. Apoptosis 2015; 20:584-606. [DOI: 10.1007/s10495-015-1104-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
10
|
Bonaventura G, Barcellona ML, Golfetto O, Nourse JL, Flanagan LA, Gratton E. Laurdan monitors different lipids content in eukaryotic membrane during embryonic neural development. Cell Biochem Biophys 2014; 70:785-94. [PMID: 24839062 PMCID: PMC4228983 DOI: 10.1007/s12013-014-9982-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We describe a method based on fluorescence-lifetime imaging microscopy (FLIM) to assess the fluidity of various membranes in neuronal cells at different stages of development [day 12 (E12) and day 16 (E16) of gestation]. For the FLIM measurements, we use the Laurdan probe which is commonly used to assess membrane water penetration in model and in biological membranes using spectral information. Using the FLIM approach, we build a fluidity scale based on calibration with model systems of different lipid compositions. In neuronal cells, we found a marked difference in fluidity between the internal membranes and the plasma membrane, being the plasma membrane the less fluid. However, we found no significant differences between the two cell groups, E12 and E16. Comparison with NIH3T3 cells shows that the plasma membranes of E12 and E16 cells are significantly more fluid than the plasma membrane of the cancer cells.
Collapse
Affiliation(s)
- Gabriele Bonaventura
- Department of Drug Science, Section of Biochemistry, University of Catania, Catania, Italy,
| | | | | | | | | | | |
Collapse
|
11
|
Gueguen G, Destainville N, Manghi M. Mixed lipid bilayers with locally varying spontaneous curvature and bending. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2014; 37:31. [PMID: 25160487 DOI: 10.1140/epje/i2014-14076-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 07/21/2014] [Accepted: 08/06/2014] [Indexed: 06/03/2023]
Abstract
A model of lipid bilayers made of a mixture of two lipids with different average compositions on both leaflets, is developed. A Landau Hamiltonian describing the lipid-lipid interactions on each leaflet, with two lipidic fields ψ 1 and ψ 2, is coupled to a Helfrich one, accounting for the membrane elasticity, via both a local spontaneous curvature, which varies as C 0 + C 1(ψ 1 - ψ 2/2), and a bending modulus equal to κ 0 + κ 1(ψ 1 + ψ 2)/2. This model allows us to define curved patches as membrane domains where the asymmetry in composition, ψ 1 - ψ 2, is large, and thick and stiff patches where ψ 1 + ψ 2 is large. These thick patches are good candidates for being lipidic rafts, as observed in cell membranes, which are composed primarily of saturated lipids forming a liquid-ordered domain and are known to be thick and flat nano-domains. The lipid-lipid structure factors and correlation functions are computed for globally spherical membranes and planar ones and for a whole set of parameters including the surface tension and the coupling in the two leaflet compositions. Phase diagrams are established, within a Gaussian approximation, showing the occurrence of two types of Structure Disordered phases, with correlations between either curved or thick patches, and an Ordered phase, corresponding to the divergence of the structure factor at a finite wave vector. The varying bending modulus plays a central role for curved membranes, where the driving force κ 1 C 0 (2) is balanced by the line tension, to form raft domains of size ranging from 10 to 100 nm. For planar membranes, raft domains emerge via the cross-correlation with curved domains. A global picture emerges from curvature-induced mechanisms, described in the literature for planar membranes, to coupled curvature- and bending-induced mechanisms in curved membranes forming a closed vesicle.
Collapse
Affiliation(s)
- Guillaume Gueguen
- UPS, Laboratoire de Physique Théorique (IRSAMC), Université de Toulouse, F-31062, Toulouse, France
| | | | | |
Collapse
|
12
|
Modeling the interplay between protein and lipid aggregation in supported membranes. Chem Phys Lipids 2014; 185:141-52. [PMID: 24968242 DOI: 10.1016/j.chemphyslip.2014.06.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 05/26/2014] [Accepted: 06/20/2014] [Indexed: 12/16/2022]
Abstract
We present a theoretical model that deals with the complex interplay between lipid segregation and the self-aggregation of lipid-attached proteins. The model, in contrast to previous ones that consider proteins only as passive elements affecting the lipid distribution, describes the system including three terms: the dynamic interactions between protein monomers, the interactions between lipid components, and a mixed term considering protein-lipid interactions. It is used to explain experimental results performed on a well-defined system in which a self-aggregating soluble bacterial cytoskeletal protein polymerizes on a lipid bilayer containing two lipid components. All the elements considered in a previously described protein model, including torsion of the monomers within the filament, are needed to account for the observed filament shapes. The model also points out that lipid segregation can affect the length and curvature of the filaments and that the dynamic behavior of the lipids and proteins can have different time scales, giving rise to memory effects. This simple model that considers a dynamic protein assembly on a fluid and active lipid surface can be easily extended to other biologically relevant situations in which the interplay between protein and lipid aggregation is needed to fully describe the system.
Collapse
|
13
|
Sodt AJ, Sandar ML, Gawrisch K, Pastor RW, Lyman E. The molecular structure of the liquid-ordered phase of lipid bilayers. J Am Chem Soc 2014; 136:725-32. [PMID: 24345334 DOI: 10.1021/ja4105667] [Citation(s) in RCA: 173] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Molecular dynamics simulations reveal substructures within the liquid-ordered phase of lipid bilayers. These substructures, identified in a 10 μs all-atom trajectory of liquid-ordered/liquid-disordered coexistence (L(o)/L(d)) are composed of saturated hydrocarbon chains packed with local hexagonal order and separated by interstitial regions enriched in cholesterol and unsaturated chains. Lipid hydrocarbon chain order parameters calculated from the L(o) phase are in excellent agreement with (2)H NMR measurements; the local hexagonal packing is also consistent with (1)H-MAS NMR spectra of the L(o) phase, NMR diffusion experiments, and small-angle X-ray and neutron scattering. The balance of cholesterol-rich to local hexagonal order is proposed to control the partitioning of membrane components into the L(o) regions. The latter have been frequently associated with formation of so-called rafts, platforms in the plasma membranes of cells that facilitate interaction between components of signaling pathways.
Collapse
Affiliation(s)
- Alexander J Sodt
- National Heart, Lung, and Blood Institute and §National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health , Bethesda, Maryland 20892, United States
| | | | | | | | | |
Collapse
|
14
|
Zhdanov VP, Höök F. Kinetics of the enzyme–vesicle interaction including the formation of rafts and membrane strain. Biophys Chem 2012; 170:17-24. [DOI: 10.1016/j.bpc.2012.06.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Revised: 06/19/2012] [Accepted: 06/28/2012] [Indexed: 11/29/2022]
|
15
|
Hirose Y, Komura S, Andelman D. Concentration fluctuations and phase transitions in coupled modulated bilayers. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2012; 86:021916. [PMID: 23005794 DOI: 10.1103/physreve.86.021916] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Indexed: 06/01/2023]
Abstract
We consider the formation of finite-size domains in lipid bilayers consisting of saturated and hybrid lipids. First, we describe a monolayer model that includes a coupling between a compositional scalar field and a two-dimensional vectorial order parameter. Such a coupling yields an effective two-dimensional microemulsion free energy for the lipid monolayer, and its characteristic length of compositional modulations can be considered as the origin of finite-size domains in biological membranes. Next, we consider a coupled bilayer composed of two modulated monolayers and discuss the static and dynamic properties of concentration fluctuations above the transition temperature. We also investigate the micro-phase separation below the transition temperature and compare the micro-phase separated structures with statics and dynamics of concentration fluctuations above the transition.
Collapse
Affiliation(s)
- Yuichi Hirose
- Department of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| | | | | |
Collapse
|
16
|
Bally M, Dimitrievski K, Larson G, Zhdanov VP, Höök F. Interaction of virions with membrane glycolipids. Phys Biol 2012; 9:026011. [PMID: 22475581 DOI: 10.1088/1478-3975/9/2/026011] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Cellular membranes contain various lipids including glycolipids (GLs). The hydrophilic head groups of GLs extend from the membrane into the aqueous environment outside the cell where they act as recognition sites for specific interactions. The first steps of interaction of virions with cells often include contacts with GLs. To clarify the details of such contacts, we have used the total internal reflection fluorescence microscopy to explore the interaction of individual unlabelled virus-like particles (or, more specifically, norovirus protein capsids), which are firmly bound to a lipid bilayer, and fluorescent vesicles containing glycosphingolipids (these lipids form a subclass of GLs). The corresponding binding kinetics were earlier found to be kinetically limited, while the detachment kinetics were logarithmic over a wide range of time. Here, the detachment rate is observed to dramatically decrease with increasing concentration of glycosphingolipids from 1% to 8%. This effect has been analytically explained by using a generic model describing the statistics of bonds in the contact area between a virion and a lipid membrane. Among other factors, the model takes the formation of GL domains into account. Our analysis indicates that in the system under consideration, such domains, if present, have a characteristic size smaller than the contact area between the vesicle and the virus-like particle.
Collapse
Affiliation(s)
- M Bally
- Department of Applied Physics, Chalmers University of Technology, S-412 96 Göteborg, Sweden
| | | | | | | | | |
Collapse
|
17
|
Foret L. Aggregation on a membrane of particles undergoing active exchange with a reservoir. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2012; 35:12. [PMID: 22354679 DOI: 10.1140/epje/i2012-12012-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Accepted: 02/06/2012] [Indexed: 05/31/2023]
Abstract
We investigate the dynamics of clusters made of aggregating particles on a membrane which exchanges particles with a reservoir. Exchanges are driven by chemical reactions which supply energy to the system, leading to the establishment of a non-equilibrium steady state. We predict the distribution of cluster size at steady state. We show in particular that in a regime, that cannot exist at equilibrium, the distribution is bimodal: the membrane is mainly populated of single particles and finite-size clusters. This work is motivated by the observations that have revealed the existence of submicrometric clusters of proteins in biological membranes.
Collapse
Affiliation(s)
- L Foret
- Ecole Normale Supérieure, Université Pierre et Marie Curie Paris 6, CNRS, Laboratoire de Physique Statistique, Paris, France.
| |
Collapse
|
18
|
Witkowski T, Backofen R, Voigt A. The influence of membrane bound proteins on phase separation and coarsening in cell membranes. Phys Chem Chem Phys 2012; 14:14509-15. [DOI: 10.1039/c2cp41274h] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
19
|
Continuum simulations of biomembrane dynamics and the importance of hydrodynamic effects. Q Rev Biophys 2011; 44:391-432. [PMID: 21729348 DOI: 10.1017/s0033583511000047] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Traditional particle-based simulation strategies are impractical for the study of lipid bilayers and biological membranes over the longest length and time scales (microns, seconds and longer) relevant to cellular biology. Continuum-based models developed within the frameworks of elasticity theory, fluid dynamics and statistical mechanics provide a framework for studying membrane biophysics over a range of mesoscopic to macroscopic length and time regimes, but the application of such ideas to simulation studies has occurred only relatively recently. We review some of our efforts in this direction with emphasis on the dynamics in model membrane systems. Several examples are presented that highlight the prominent role of hydrodynamics in membrane dynamics and we argue that careful consideration of fluid dynamics is key to understanding membrane biophysics at the cellular scale.
Collapse
|
20
|
Haughey NJ, Tovar-y-Romo LB, Bandaru VVR. Roles for biological membranes in regulating human immunodeficiency virus replication and progress in the development of HIV therapeutics that target lipid metabolism. J Neuroimmune Pharmacol 2011; 6:284-95. [PMID: 21445582 DOI: 10.1007/s11481-011-9274-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Accepted: 03/08/2011] [Indexed: 01/14/2023]
Abstract
Infection by the human immunodeficiency virus (HIV) involves a number of important interactions with lipid components in host membranes that regulate binding, fusion, internalization, and viral assembly. Available data suggests that HIV actively modifies the sphingolipid content of cellular membranes to create focal environments that are favorable for infection. In this review, we summarize the roles that membrane lipids play in HIV infection and discuss the current status of therapeutics that attempt to modify biological membranes to inhibit HIV.
Collapse
Affiliation(s)
- Norman J Haughey
- Department of Neurology, Richard T. Johnson Division of Neuroimmunology and Neurological Infections, The Johns Hopkins University School of Medicine, Meyer 6-109, 600N. Wolfe Street, Baltimore, MD 21287, USA.
| | | | | |
Collapse
|
21
|
Das T, Maiti TK, Chakraborty S. Nanodomain stabilization dynamics in plasma membranes of biological cells. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2011; 83:021909. [PMID: 21405865 DOI: 10.1103/physreve.83.021909] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Revised: 11/25/2010] [Indexed: 05/30/2023]
Abstract
We discover that a synergistically amplifying role of stabilizing membrane proteins and continuous lipid recycling can explain the physics governing the stability, polydispersity, and dynamics of lipid raft domains in plasma membranes of biological cells. We establish the conjecture using a generalized order parameter based on theoretical formalism, endorsed by detailed scaling arguments and domain mapping. Quantitative agreements with morphological distributions of raft complexes, as obtained from Förster resonance energy transfer based visualization, support the present theoretical conjecture.
Collapse
Affiliation(s)
- Tamal Das
- Department of Biotechnology, Indian Institute of Technology, Kharagpur 721302, India
| | | | | |
Collapse
|
22
|
Laradji M, Sunil Kumar P. Coarse-Grained Computer Simulations of Multicomponent Lipid Membranes. ADVANCES IN PLANAR LIPID BILAYERS AND LIPOSOMES 2011. [DOI: 10.1016/b978-0-12-387720-8.00007-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
23
|
Camley BA, Brown FLH. Dynamic simulations of multicomponent lipid membranes over long length and time scales. PHYSICAL REVIEW LETTERS 2010; 105:148102. [PMID: 21230871 DOI: 10.1103/physrevlett.105.148102] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2010] [Indexed: 05/30/2023]
Abstract
We present a stochastic phase-field model for multicomponent lipid bilayers that explicitly accounts for the quasi-two-dimensional hydrodynamic environment unique to a thin fluid membrane immersed in aqueous solution. Dynamics over a wide range of length scales (from nanometers to microns) for durations up to seconds and longer are readily accessed and provide a direct comparison to fluorescence microscopy measurements in ternary lipid-cholesterol mixtures. Simulations of phase separation kinetics agree with experiment and elucidate the importance of hydrodynamics in the coarsening process.
Collapse
Affiliation(s)
- Brian A Camley
- Department of Physics, University of California, Santa Barbara, California 93106, USA
| | | |
Collapse
|