1
|
Chen S, Pleßow PN, Yu Z, Sauter E, Caulfield L, Nefedov A, Studt F, Wang Y, Wöll C. Structure and Chemical Reactivity of Y-Stabilized ZrO 2 Surfaces: Importance for the Water-Gas Shift Reaction. Angew Chem Int Ed Engl 2024; 63:e202404775. [PMID: 38758087 DOI: 10.1002/anie.202404775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 05/18/2024]
Abstract
The surface structure and chemical properties of Y-stabilized zirconia (YSZ) have been subjects of intense debate over the past three decades. However, a thorough understanding of chemical processes occurring at YSZ powders faces significant challenges due to the absence of reliable reference data acquired for well-controlled model systems. Here, we present results from polarization-resolved infrared reflection absorption spectroscopy (IRRAS) obtained for differently oriented, Y-doped ZrO2 single-crystal surfaces after exposure to CO and D2O. The IRRAS data reveal that the polar YSZ(100) surface undergoes reconstruction, characterized by an unusual, red-shifted CO band at 2132 cm-1. Density functional theory calculations allowed to relate this unexpected observation to under-coordinated Zr4+ cations in the vicinity of doping-induced O vacancies. This reconstruction leads to a strongly increased chemical reactivity and water spontaneously dissociates on YSZ(100). The latter, which is an important requirement for catalysing the water-gas-shift (WGS) reaction, is absent for YSZ(111), where only associative adsorption was observed. Together with a novel analysis Scheme these reference data allowed for an operando characterisation of YSZ powders using DRIFTS (diffuse reflectance infrared Fourier transform spectroscopy). These findings facilitate rational design and tuning of YSZ-based powder materials for catalytic applications, in particular CO oxidation and the WGS reaction.
Collapse
Affiliation(s)
- Shuang Chen
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), 76344, Eggenstein-Leopoldshafen, Germany
| | - Philipp N Pleßow
- Institute of Catalysis Research and Technology (IKFT), Karlsruhe Institute of Technology (KIT), 76344, Eggenstein-Leopoldshafen, Germany
| | - Zairan Yu
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), 76344, Eggenstein-Leopoldshafen, Germany
| | - Eric Sauter
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), 76344, Eggenstein-Leopoldshafen, Germany
| | - Lachlan Caulfield
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), 76344, Eggenstein-Leopoldshafen, Germany
| | - Alexei Nefedov
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), 76344, Eggenstein-Leopoldshafen, Germany
| | - Felix Studt
- Institute of Catalysis Research and Technology (IKFT), Karlsruhe Institute of Technology (KIT), 76344, Eggenstein-Leopoldshafen, Germany
- Institute for Chemical Technology and Polymer Chemistry (ICTP), Karlsruhe Institute of Technology (KIT), Engesserstrasse 18, 76131, Karlsruhe, Germany
| | - Yuemin Wang
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), 76344, Eggenstein-Leopoldshafen, Germany
| | - Christof Wöll
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), 76344, Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
2
|
Su H, Sun J, Li D, Wei J. Local hydrogen bonding environment induces the deprotonation of surface hydroxyl for continuing ammonia decomposition. Phys Chem Chem Phys 2024; 26:16871-16882. [PMID: 38832822 DOI: 10.1039/d3cp06328c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
There is still a paucity of fundamental understanding about the reaction of ammonia decomposition over TiO2, especially the role of water. Herein, FPMD and DFT calculations were used to address this concern. The results reveal that ammonia decomposition in pure ammonia causes the hydroxylation of the surfaces and reduction of the proton acceptor sites, making proton transfer (PT) difficult, increasing the distances between the NH3 and Obr sites and changing the adsorption configurations of NH3, which are not favourable for accepting protons from NH3 dissociation. When water is introduced, the local hydrogen bonding environment, consisting of NH3 and H2O with the H2O dynamically close to the ObrH, promotes the increase of the positive charge of H atoms from 0.133 to 1.47 e, which increases the ObrH bond dipole moment from 1.136 to 1.400 Debye, resulting in the shortening of the H-bond distances between NH3 and ObrH (1.858 vs. 1.945 Å of only NH3) and enlarging the ObrH bonds (0.980 vs. 1.120 Å). This reduces the activation energy barriers of ObrH deprotonation and causes the surfaces to have low hydroxyl coverage from 0.425 to 0.382 eV. Our study reveals the role of water and provides new insights into ammonia decomposition on TiO2.
Collapse
Affiliation(s)
- Hui Su
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Jie Sun
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Donghui Li
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Jinjia Wei
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China.
| |
Collapse
|
3
|
Nguyen TT, Edalati K. Brookite TiO 2 as an active photocatalyst for photoconversion of plastic wastes to acetic acid and simultaneous hydrogen production: Comparison with anatase and rutile. CHEMOSPHERE 2024; 355:141785. [PMID: 38537708 DOI: 10.1016/j.chemosphere.2024.141785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/22/2024] [Accepted: 03/22/2024] [Indexed: 04/18/2024]
Abstract
Photoreforming is a clean photocatalytic technology for simultaneous plastic waste degradation and hydrogen fuel production, but there are still limited active and stable catalysts for this process. This work introduces the brookite polymorph of TiO2 as an active photocatalyst for photoreforming with an activity higher than anatase and rutile polymorphs for both hydrogen production and plastic degradation. Commercial brookite successfully converts polyethylene terephthalate (PET) plastic to acetic acid under light. The high activity of brookite is attributed to good charge separation, slow decay and moderate electron trap energy, which lead to a higher generation of hydrogen and hydroxyl radicals and accordingly enhanced photo-oxidation of PET plastic. These results introduce brookite as a stable and active catalyst for the photoconversion of water contaminated with microplastics to value-added organic compounds and hydrogen.
Collapse
Affiliation(s)
- Thanh Tam Nguyen
- WPI, International Institute for Carbon Neutral Energy Research (WPI-I2CNER), Kyushu University, Fukuoka, 819-0395, Japan; Mitsui Chemicals, Inc. - Carbon Neutral Research Center (MCI-CNRC), Kyushu University, Fukuoka, 819-0395, Japan
| | - Kaveh Edalati
- WPI, International Institute for Carbon Neutral Energy Research (WPI-I2CNER), Kyushu University, Fukuoka, 819-0395, Japan; Mitsui Chemicals, Inc. - Carbon Neutral Research Center (MCI-CNRC), Kyushu University, Fukuoka, 819-0395, Japan.
| |
Collapse
|
4
|
Han Y, Li T, Zhang Q, Guo X, Jiao T. Influence of an External Electric Field on Electronic and Optical Properties of a g-C 3N 4/TiO 2 Heterostructure: A First-Principles Perspective. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:16035-16047. [PMID: 37910596 DOI: 10.1021/acs.langmuir.3c02169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
In this study, calculations based on density functional theory (DFT) were utilized to examine how electrostatic fields affect the electrical and optical characteristics of g-C3N4/TiO2 heterostructures. The binding energy, density of states, difference in charge density, and optical absorption spectra of the heterostructure were calculated and analyzed to reveal the mechanism of the influence of the external electric field (EF) on the properties of the heterostructure. The results show that the binding energy of the heterogeneous structure is reduced due to the imposed electric field in X- and Y-directions, and the optical absorption spectrum is slightly enhanced, but the BG and charge transfer number are basically unchanged. On the contrary, applying the electric field in the Z-direction increases the binding energy of the heterogeneous structure, decreases the BG, increases the number of charge transfers, and red shifts the optical absorption spectrum, which improves the photocatalytic ability of the g-C3N4/TiO2 heterostructure.
Collapse
Affiliation(s)
- Yong Han
- State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, Hebei 066004, P. R. China
- School of Electrical Engineering, Yanshan University, Qinhuangdao, Hebei 066004, P. R. China
| | - Tianyu Li
- School of Electrical Engineering, Yanshan University, Qinhuangdao, Hebei 066004, P. R. China
| | - Qingrui Zhang
- School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, P. R. China
| | - Xiaoqiang Guo
- School of Electrical Engineering, Yanshan University, Qinhuangdao, Hebei 066004, P. R. China
| | - Tifeng Jiao
- State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, Hebei 066004, P. R. China
| |
Collapse
|
5
|
Masahashi N, Hatakeyama M, Mori Y, Kurishima H, Inoue H, Mokudai T, Ohmura K, Aizawa T, Hanada S. Photoinduced properties of anodized Ti alloys for biomaterial applications. Sci Rep 2023; 13:13916. [PMID: 37626098 PMCID: PMC10457320 DOI: 10.1038/s41598-023-41189-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 08/23/2023] [Indexed: 08/27/2023] Open
Abstract
The photocatalytic properties of anodic oxides on a newly developed TiNbSn and commonly used Ti6Al4V alloys as biomaterials were investigated. The alloys were anodized in an electrolyte of sodium tartrate acid with H2O2 at a high voltage and the mechanism of the photocatalytic and antiviral activities was studied. The anodized TiNbSn and Ti6Al4V exhibited highly crystallized rutile TiO2 and poorly crystallized anatase TiO2, respectively. X-ray photoelectron spectroscopy analysis revealed the presence of oxides of the alloying elements in addition to TiO2. The anodized TiNbSn exhibited higher activities than Ti6Al4V, and electron spin resonance spectra indicated that the number of hydroxyl radicals (⋅OH) generated from the anodized TiNbSn was higher than that from the anodized Ti6Al4V. The results can be explained by two possible mechanisms: the higher crystallinity of TiO2 on TiNbSn than that on the Ti6Al4V reduces the number of charge recombination sites and generates abundant ⋅OH; charge separation in the anodic oxide on TiNbSn due to the electronic band structure between TiO2 and the oxides of alloying elements enhances photo activities. The excellent photoinduced characteristics of the anodized TiNbSn are expected to contribute to the safe and reliable implant treatment.
Collapse
Affiliation(s)
- N Masahashi
- Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 9808577, Japan.
| | - M Hatakeyama
- Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 9808577, Japan
| | - Y Mori
- Department of Orthopaedic Surgery, Graduate School of Medicine, Tohoku University, 2-1 Seiryo, Aoba-ku, Sendai, 9800872, Japan
| | - H Kurishima
- Department of Orthopaedic Surgery, Graduate School of Medicine, Tohoku University, 2-1 Seiryo, Aoba-ku, Sendai, 9800872, Japan
| | - H Inoue
- Department of Materials Science, Graduate School of Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka, 5998531, Japan
| | - T Mokudai
- Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 9808577, Japan
| | - K Ohmura
- Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 9808577, Japan
| | - T Aizawa
- Department of Orthopaedic Surgery, Graduate School of Medicine, Tohoku University, 2-1 Seiryo, Aoba-ku, Sendai, 9800872, Japan
| | - S Hanada
- Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 9808577, Japan
| |
Collapse
|
6
|
Al-Attafi K, Mezher HA, Hammadi AF, Al-Keisy A, Hamzawy S, Qutaish H, Kim JH. Solvothermally Synthesized Hierarchical Aggregates of Anatase TiO 2 Nanoribbons/Nanosheets and Their Photocatalytic-Photocurrent Activities. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1940. [PMID: 37446456 DOI: 10.3390/nano13131940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/23/2023] [Accepted: 06/24/2023] [Indexed: 07/15/2023]
Abstract
Hierarchical aggregates of anatase TiO2 nanoribbons/nanosheets (TiO2-NR) and anatase TiO2 nanoparticles (TiO2-NP) were produced through a one-step solvothermal reaction using acetic acid or ethanol and titanium isopropoxide as solvothermal reaction systems. The crystalline structure, crystalline phase, and morphologies of synthesized materials were characterized using several techniques. According to our findings, both TiO2-NR and TiO2-NP were found to have polycrystalline structures, with pure anatase phases. TiO2-NR has a three-dimensional hierarchical structure made up of aggregates of TiO2 nanoribbons/nanosheets, while TiO2-NP has a nanoparticulate structure. The photocatalytic and photocurrent activities for TiO2-NR and TiO2-NP were investigated and compared with the widely used commercial TiO2 (P25), which consists of anatase/rutile TiO2 nanoparticles, as a reference material. Our findings showed that TiO2-NR has higher photocatalytic and photocurrent performance than TiO2-NP, which are both, in turn, higher than those of P25. Our developed solvothermal method was shown to produce a pure anatase TiO2 phase for both synthesized structures, without using any surfactants or any other assisted templates. This developed solvothermal approach, and its anatase TiO2 nanostructure output, has promising potential for a wide range of energy harvesting applications, such as water pollution treatment and solar cells.
Collapse
Affiliation(s)
- Kadhim Al-Attafi
- Institute for Superconducting and Electronic Materials, Australian Institute for Innovative Materials (AIIM), University of Wollongong, North Wollongong, NSW 2500, Australia
- Department of Physics, College of Science, University of Kerbala, Karbala 56001, Iraq
| | - Hamza A Mezher
- Department of Physics, College of Science, University of Kerbala, Karbala 56001, Iraq
| | - Ali Faraj Hammadi
- Department of Mechanical Engineering, College of Engineering, Wasit University, Wasit 52001, Iraq
| | - Amar Al-Keisy
- Nanotechnology and Advanced Material Research Center, University of Technology-Iraq, Baghdad 10066, Iraq
| | - Sameh Hamzawy
- Intelligent Polymer Research Institute (IPRI), Australian Institute for Innovative Materials (AIIM), University of Wollongong, North Wollongong, NSW 2500, Australia
- Solar Research Laboratory, Solar and Space Research Department, National Research Institute of Astronomy and Geophysics, Helwan 11421, Cairo, Egypt
| | - Hamzeh Qutaish
- Institute for Superconducting and Electronic Materials, Australian Institute for Innovative Materials (AIIM), University of Wollongong, North Wollongong, NSW 2500, Australia
| | - Jung Ho Kim
- Institute for Superconducting and Electronic Materials, Australian Institute for Innovative Materials (AIIM), University of Wollongong, North Wollongong, NSW 2500, Australia
| |
Collapse
|
7
|
Goncearenco E, Morjan IP, Fleaca CT, Dumitrache F, Dutu E, Scarisoreanu M, Teodorescu VS, Sandulescu A, Anastasescu C, Balint I. Titania nanoparticles for photocatalytic degradation of ethanol under simulated solar light. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2023; 14:616-630. [PMID: 37284551 PMCID: PMC10241093 DOI: 10.3762/bjnano.14.51] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 05/02/2023] [Indexed: 06/08/2023]
Abstract
TiO2 nanoparticles were synthesized by laser pyrolysis from TiCl4 vapor in air in the presence of ethylene as sensitizer at different working pressures (250-850 mbar) with and without further calcination at 450 °C. The obtained powders were analyzed by energy-dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, X-ray diffractometry, and transmission electron microscopy. Also, specific surface area and photoluminescence with optical absorbance were evaluated. By varying the synthesis parameters (especially the working pressure), different TiO2 nanopowders were obtained, whose photodegradation properties were tested compared to a commercial Degussa P25 sample. Two series of samples were obtained. Series "a" includes thermally treated TiO2 nanoparticles (to remove impurities) that have different proportions of the anatase phase (41.12-90.74%) mixed with rutile and small crystallite sizes of 11-22 nm. Series "b" series represents nanoparticles with high purity, which did not require thermal treatment after synthesis (ca. 1 atom % of impurities). These nanoparticles show an increased anatase phase content (77.33-87.42%) and crystallite sizes of 23-45 nm. The TEM images showed that in both series small crystallites form spheroidal nanoparticles with dimensions of 40-80 nm, whose number increases with increasing the working pressure. The photocatalytic properties have been investigated regarding the photodegradation of ethanol vapors in Ar with 0.3% O2 using P25 powder as reference under simulated solar light. During the irradiation H2 gas production has been detected for the samples from series "b", whereas the CO2 evolution was observed for all samples from series "a".
Collapse
Affiliation(s)
- Evghenii Goncearenco
- National Institute for Lasers, Plasma and Radiation Physics, Atomistilor Str., No. 409, 077125, Bucharest-Magurele, Romania
| | - Iuliana P Morjan
- National Institute for Lasers, Plasma and Radiation Physics, Atomistilor Str., No. 409, 077125, Bucharest-Magurele, Romania
| | - Claudiu Teodor Fleaca
- National Institute for Lasers, Plasma and Radiation Physics, Atomistilor Str., No. 409, 077125, Bucharest-Magurele, Romania
| | - Florian Dumitrache
- National Institute for Lasers, Plasma and Radiation Physics, Atomistilor Str., No. 409, 077125, Bucharest-Magurele, Romania
| | - Elena Dutu
- National Institute for Lasers, Plasma and Radiation Physics, Atomistilor Str., No. 409, 077125, Bucharest-Magurele, Romania
| | - Monica Scarisoreanu
- National Institute for Lasers, Plasma and Radiation Physics, Atomistilor Str., No. 409, 077125, Bucharest-Magurele, Romania
| | - Valentin Serban Teodorescu
- National Institute of Materials Physics, Atomistilor Str., No. 405A, 077125, Bucharest-Magurele, Romania
| | - Alexandra Sandulescu
- Romanian Academy, Inst. Phys. Chem. Ilie Murgulescu, 202 Spl. Independentei, 060021, Bucharest, Romania
| | - Crina Anastasescu
- Romanian Academy, Inst. Phys. Chem. Ilie Murgulescu, 202 Spl. Independentei, 060021, Bucharest, Romania
| | - Ioan Balint
- Romanian Academy, Inst. Phys. Chem. Ilie Murgulescu, 202 Spl. Independentei, 060021, Bucharest, Romania
| |
Collapse
|
8
|
Moscato D, Gabas F, Conte R, Ceotto M. Vibrational spectroscopy simulation of solvation effects on a G-quadruplex. J Biomol Struct Dyn 2023; 41:14248-14258. [PMID: 36856120 DOI: 10.1080/07391102.2023.2180435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 02/07/2023] [Indexed: 03/02/2023]
Abstract
It is commonly believed that solvation effects on the vibrational properties of a solute are easily accounted for by simple rules of thumbs, that is, solvating a polar molecule in a polar medium has the only effect of red shifting all its spectroscopical features and, similarly, solvating a polar molecule in a nonpolar medium has the opposite effect. In this work, we use theoretical vibrational spectroscopy at quasi-classical and quantum approximate semiclassical level to gain atomistic insights about solvent-solute interactions for 2'-deoxyguanosine and the G-quadruplex. We employ the quasi-classical trajectory method to include full anharmonicity into our calculated spectra, and then introduce quantum nuclear effects by means of divide-and-conquer semiclassical spectroscopy calculations. Solvation is treated explicitly leading to a good reproducibility of the available experimental data and reliable predictions when an experimental reference is missing.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Davide Moscato
- Dipartimento di Chimica, Università degli Studi di Milano, Milano, Italy
| | - Fabio Gabas
- Dipartimento di Chimica, Università degli Studi di Milano, Milano, Italy
| | - Riccardo Conte
- Dipartimento di Chimica, Università degli Studi di Milano, Milano, Italy
| | - Michele Ceotto
- Dipartimento di Chimica, Università degli Studi di Milano, Milano, Italy
| |
Collapse
|
9
|
Mori Y, Fujimori S, Kurishima H, Inoue H, Ishii K, Kubota M, Kawakami K, Mori N, Aizawa T, Masahashi N. Antimicrobial Properties of TiNbSn Alloys Anodized in a Sulfuric Acid Electrolyte. MATERIALS (BASEL, SWITZERLAND) 2023; 16:1487. [PMID: 36837117 PMCID: PMC9968052 DOI: 10.3390/ma16041487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/03/2023] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
TiNbSn alloy is a high-performance titanium alloy which is biosafe, strong, and has a low Young's modulus. TiNbSn alloy has been clinically applied as a material for orthopedic prosthesis. Anodized TiNbSn alloys with acetic and sulfuric acid electrolytes have excellent biocompatibility for osseointegration. Herein, TiNbSn alloy was anodized in a sulfuric acid electrolyte to determine the antimicrobial activity. The photocatalytic activities of the anodic oxide alloys were investigated based on their electronic band structure and crystallinity. In addition, the cytotoxicity of the anodized TiNbSn alloy was evaluated using cell lines of the osteoblast and fibroblast lineages. The antimicrobial activity of the anodic oxide alloy was assessed according to the ISO 27447 using methicillin-susceptible Staphylococcus aureus, methicillin-resistant Staphylococcus aureus, and Escherichia coli. The anodic oxide comprised rutile and anatase titanium dioxide (TiO2) and exhibited a porous microstructure. A well-crystallized rutile TiO2 phase was observed in the anodized TiNbSn alloy. The methylene blue degradation tests under ultraviolet illumination exhibited photocatalytic activity. In antimicrobial tests, the anodized TiNbSn alloy exhibited robust antimicrobial activities under ultraviolet illumination for all bacterial species, regardless of drug resistance. Therefore, the anodized TiNbSn alloy can be used as a functional biomaterial with low Young's modulus and excellent antimicrobial activity.
Collapse
Affiliation(s)
- Yu Mori
- Department of Orthopedic Surgery, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan
| | - Satoko Fujimori
- Department of Orthopedic Surgery, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan
| | - Hiroaki Kurishima
- Department of Orthopedic Surgery, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan
| | - Hiroyuki Inoue
- Department of Materials Science, Graduate School of Engineering, Osaka Metropolitan University, 1-1 Gakuen-machi, Naka-ku, Sakai 599-8531, Japan
| | - Keiko Ishii
- Department of Medical Microbiology, Mycology, and Immunology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Maya Kubota
- Graduate School of Engineering, Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| | - Kazuyoshi Kawakami
- Department of Medical Microbiology, Mycology, and Immunology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Naoko Mori
- Department of Radiology, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita 010-8543, Japan
| | - Toshimi Aizawa
- Department of Orthopedic Surgery, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan
| | - Naoya Masahashi
- Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| |
Collapse
|
10
|
Experimental Study on Kinetics and Mechanism of Ciprofloxacin Degradation in Aqueous Phase Using Ag-TiO2/rGO/Halloysite Photocatalyst. Catalysts 2023. [DOI: 10.3390/catal13020225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
In this study, Ag-TiO2/rGO/halloysite nanotubes were synthesised from natural sources using a simple method. The material was characterised by X-ray diffraction (XRD), Fourier-transform infrared (FTIR), Raman spectroscopy, BET, scanning electron microscopy (SEM) and UV-vis DRS techniques. The as-synthesised material has a sandwich-like shape, with the active phase distributed evenly over the rGO/HNT support. Compared to pure TiO2, the material has a lower band gap energy (~2.7 eV) and a suitable specific surface area (~80 m2/g), making it able to participate effectively in the photochemical degradation of pollutants. The catalyst showed exceptional activity in the degradation of CIP antibiotics in water, achieving a conversion of about 90% after 5 h of irradiation at an initial CIP concentration of 20 ppm. This efficiency was significantly higher than that of pure TiO2 and Ag-TiO2, which could prove the important effect of the support and silver doping. The results of the experiments show that the process follows a pseudo-first-order kinetic model in the case of (1%)Ag wt. and pseudo-second-order in the case of (3%)Ag wt., which could be explained by the aggregation of silver and the increasing role of chemisorption. Tests with radical scavengers showed that the •OH radical had the greatest effect on CIP decomposition, while •O2− had the least. The neutral pH value and the high degree of mineralisation (approx. 80%) confirm the potential of the material for use in wastewater treatment.
Collapse
|
11
|
Al-Nuaim MA, Alwasiti AA, Shnain ZY. The photocatalytic process in the treatment of polluted water. CHEMICAL PAPERS 2023; 77:677-701. [PMID: 36213320 PMCID: PMC9527146 DOI: 10.1007/s11696-022-02468-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 09/01/2022] [Indexed: 12/01/2022]
Abstract
Wastewaters often contain toxic organic pollutants with a possible adverse effect on human health and aquatic life upon exposure. Persistent organic pollutants such as dyes and pesticides, pharmaceuticals, and other chemicals are gaining extensive attention. Water treatment utilizing photocatalysis has recently received a lot of interest. Photocatalysis is cutting-edge, alternative technology. It has various advantages, including functioning at normal temperatures and atmospheric pressure, cheap prices, no secondary waste creation, and being readily available and easily accessible. This review presented a comprehensive overview of the advances in the application of the photocatalytic process in the treatment of highly polluted industrial wastewater. The analysis of various literature revealed that TiO2-based photocatalysts are highly effective in degrading organic pollutants from wastewater compared to other forms of wastewater treatment technologies. The electrical structure of a semiconductor plays a vital role in the photocatalyst's mechanism. The morphology of a photocatalyst is determined by the synthesis method, chemical content, and technical characteristics. The scaled-up of the photoreactors will significantly help in curbing the effect of organic pollutants in wastewater.
Collapse
Affiliation(s)
- Marwah A. Al-Nuaim
- Chemical Engineering, Department, University of Technology, Baghdad, Iraq
| | - Asawer A. Alwasiti
- Chemical Engineering, Department, University of Technology, Baghdad, Iraq
| | - Zainab Y. Shnain
- Chemical Engineering, Department, University of Technology, Baghdad, Iraq
| |
Collapse
|
12
|
Bathe AS, Sanz Arjona A, Regan A, Wallace C, Nerney CR, O'Donoghue N, Crosland JM, Simonian T, Walton RI, Dunne PW. Solvothermal synthesis of soluble, surface modified anatase and transition metal doped anatase hybrid nanocrystals. NANOSCALE ADVANCES 2022; 4:5343-5354. [PMID: 36540114 PMCID: PMC9724697 DOI: 10.1039/d2na00640e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 11/03/2022] [Indexed: 06/17/2023]
Abstract
Titanium dioxide, or titania, is perhaps the most well-known and widely studied photocatalytic material, with myriad applications, due to a high degree of tunability achievable through the incorporation of dopants and control of phase composition and particle size. Many of the applications of titanium dioxide require particular forms, such as gels, coatings, or thin films, making the development of hybrid solution processable nanoparticles increasingly attractive. Here we report a simple solvothermal route to highly dispersible anatase phase titanium dioxide hybrid nanoparticles from amorphous titania. Solvothermal treatment of the amorphous titania in trifluoroacetic acid leads to the formation of anatase phase nanoparticles with a high degree of size control and near complete surface functionalisation. This renders the particles highly dispersible in simple organic solvents such as acetone. Dopant ions may be readily incorporated into the amorphous precursor by co-precipitation, with no adverse effect on subsequent crystallisation and surface modification.
Collapse
Affiliation(s)
- A S Bathe
- School of Chemistry, Trinity College Dublin, College Green Dublin 2 Ireland
| | - A Sanz Arjona
- School of Chemistry, Trinity College Dublin, College Green Dublin 2 Ireland
| | - A Regan
- School of Chemistry, Trinity College Dublin, College Green Dublin 2 Ireland
- CDT ACM, AMBER, Trinity College Dublin, College Green Dublin 2 Ireland
| | - C Wallace
- School of Chemistry, Trinity College Dublin, College Green Dublin 2 Ireland
| | - C R Nerney
- School of Chemistry, Trinity College Dublin, College Green Dublin 2 Ireland
| | - N O'Donoghue
- School of Chemistry, Trinity College Dublin, College Green Dublin 2 Ireland
| | - J M Crosland
- School of Chemistry, University of Warwick Gibbet Hill Coventry CV4 7AL UK
| | - T Simonian
- School of Chemistry, Trinity College Dublin, College Green Dublin 2 Ireland
- CDT ACM, AMBER, Trinity College Dublin, College Green Dublin 2 Ireland
| | - R I Walton
- School of Chemistry, University of Warwick Gibbet Hill Coventry CV4 7AL UK
| | - P W Dunne
- School of Chemistry, Trinity College Dublin, College Green Dublin 2 Ireland
| |
Collapse
|
13
|
Synthesis, Characterization and Photocatalytic Activity of Spherulite-like r-TiO2 in Hydrogen Evolution Reaction and Methyl Violet Photodegradation. Catalysts 2022. [DOI: 10.3390/catal12121546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Synthesis and characterization of spherulite-like nanocrystalline titania with rutile structure (r-TiO2) are described herein. The r-TiO2 particles were synthesized via the convenient and low-cost hydrothermal treatment of TiO(C6H6O7) titanyl citrate. The r-TiO2 spherulites are micron-sized agglomerates of rod-shaped nanocrystals with characteristic sizes of 7(±2) × 43(±10) nm, oriented along (101) crystallographic direction, and separated by micropores, as revealed by SEM and TEM. PXRD and Raman spectroscopy confirmed the nanocrystalline nature of r-TiO2 crystallites. BET analysis showed a high specific surface area of 102.6 m2/g and a pore volume of 6.22 mm3/g. Photocatalytic performances of the r-TiO2 spherulites were investigated for the processes of methyl violet (MV) degradation in water and hydrogen evolution reaction (HER) in aqueous solutions of ethanol. The (MV) degradation kinetics was found to be first-order and the degradation rate coefficient is 2.38 × 10−2 min−1. The HER was performed using pure r-TiO2 spherulites and nanocomposite r-TiO2 spherulites with platinum deposited on the surface (r-TiO2/Pt). It was discovered that the r-TiO2/Pt nanocomposite has a 15-fold higher hydrogen evolution rate than pure r-TiO2; their rates are 161 and 11 nmol/min, respectively. Thus, the facile synthesis route and the high photocatalytic performances of the obtained nanomaterials make them promising for commercial use in such photocatalytic processes as organic contamination degradation and hydrogen evolution.
Collapse
|
14
|
Younis AB, Haddad Y, Kosaristanova L, Smerkova K. Titanium dioxide nanoparticles: Recent progress in antimicrobial applications. WIRES NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 15:e1860. [PMID: 36205103 DOI: 10.1002/wnan.1860] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 08/22/2022] [Accepted: 09/20/2022] [Indexed: 11/05/2022]
Abstract
For decades, the antimicrobial applications of nanoparticles (NPs) have attracted the attention of scientists as a strategy for controlling the ever-increasing threat of multidrug-resistant microorganisms. The photo-induced antimicrobial properties of titanium dioxide (TiO2 ) NPs by ultraviolet (UV) light are well known. This review elaborates on the modern methods and antimicrobial mechanisms of TiO2 NPs and their modifications to better understand and utilize their potential in various biomedical applications. Additional compounds can be grafted onto TiO2 nanomaterial, leading to hybrid metallic or non-metallic materials. To improve the antimicrobial properties, many approaches involving TiO2 have been tested. The results of selected studies from the past few years covering the most recent trends in this field are discussed in this review. There is extensive evidence to show that TiO2 NPs can exhibit certain antimicrobial features with disputable roles of UV light. Hence, they are effective in treating bacterial infections, although the majority of these conclusions came from in vitro studies and in the presence of some additional nanomaterials. The methods of evaluation varied depending on the nature of the research while researchers incorporated different techniques, including determining the minimum inhibitory concentration, cell count, and using disk and well diffusion methods, with a noticeable indication that cell count was the most and dominant criterion used to evaluate the antimicrobial activity. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Emerging Technologies Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease.
Collapse
Affiliation(s)
- Almotasem Bellah Younis
- Department of Chemistry and Biochemistry Mendel University in Brno Brno Czech Republic
- Central European Institute of Technology Brno University of Technology Brno Czech Republic
| | - Yazan Haddad
- Department of Chemistry and Biochemistry Mendel University in Brno Brno Czech Republic
- Central European Institute of Technology Brno University of Technology Brno Czech Republic
| | - Ludmila Kosaristanova
- Department of Chemistry and Biochemistry Mendel University in Brno Brno Czech Republic
- Central European Institute of Technology Brno University of Technology Brno Czech Republic
| | - Kristyna Smerkova
- Department of Chemistry and Biochemistry Mendel University in Brno Brno Czech Republic
- Central European Institute of Technology Brno University of Technology Brno Czech Republic
| |
Collapse
|
15
|
Zhang C, Shi Y, Si Y, Liu M, Guo L, Zhao J, Prezhdo OV. Improved Carrier Lifetime in BiVO 4 by Spin Protection. NANO LETTERS 2022; 22:6334-6341. [PMID: 35895620 DOI: 10.1021/acs.nanolett.2c02070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Mechanistic understanding of the effect bulk defects have on carrier dynamics at the quantum level is crucial to suppress associated midgap mediated charge recombination in semiconductors yet many questions remain unexplored. Here, by employing ab initio quantum dynamics simulation and taking BiVO4 with oxygen vacancies (Ov) as a model system we demonstrate a spin protection mechanism for suppressed charge recombination. The carrier lifetime is significantly improved in the high spin defect system. The lifetime can be optimized by tuning the Ov concentration to minimize the nonradiative relaxation. Our work addresses literature ambiguities and contradictions about the role of bulk Ov in charge recombination and provides a route for defect engineering of semiconductors with enhanced carrier dynamics.
Collapse
Affiliation(s)
- Chunyang Zhang
- International Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P.R. China
| | - Yongliang Shi
- Center for Spintronics and Quantum Systems, State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Yitao Si
- International Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P.R. China
| | - Maochang Liu
- International Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P.R. China
- Suzhou Academy of Xi'an Jiaotong University, Suzhou, Jiangsu 215123, P.R. China
| | - Liejin Guo
- International Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P.R. China
| | - Jin Zhao
- ICQD/Hefei National Laboratory for Physical Sciences at the Microscale, and CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, and Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Oleg V Prezhdo
- Deparments of Chemistry, Physics, and Astronomy, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
16
|
Cheng C, English NJ, Fang WH, Long R. Understanding Competitive Photo-Induced Molecular Oxygen Dissociation and Desorption Dynamics atop a Reduced Rutile TiO 2(110) Surface: A Time-Domain Ab Initio Study. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01599] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Cheng Cheng
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing 100875, P. R. China
| | - Niall J. English
- School of Chemical and Bioprocess Engineering, University College Dublin, Belfield, Dublin 4, Ireland
| | - Wei-Hai Fang
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing 100875, P. R. China
| | - Run Long
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing 100875, P. R. China
| |
Collapse
|
17
|
Kurishima H, Mori Y, Ishii K, Inoue H, Mokudai T, Fujimori S, Itoi E, Hanada S, Masahashi N, Aizawa T. Antibacterial Activity of an Anodized TiNbSn Alloy Prepared in Sodium Tartrate Electrolyte. Front Bioeng Biotechnol 2022; 10:883335. [PMID: 35480976 PMCID: PMC9035674 DOI: 10.3389/fbioe.2022.883335] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 03/18/2022] [Indexed: 11/13/2022] Open
Abstract
In this study, we anodized a TiNbSn alloy with low Young’s modulus in an electrolyte of sodium tartrate with and without hydrogen peroxide (H2O2). The photo-induced characteristics of the anodized alloy were analyzed for crystallinity and electrochemical conditions with comparisons to the effect with the addition of H2O2. The antibacterial activity was evaluated using methicillin-resistant Staphylococcus aureus and other pathogenic bacteria according to ISO 27447, and time decay antibacterial tests were also conducted. The anodized oxide had a porous microstructure with anatase- and rutile-structured titanium dioxide (TiO2). In contrast, the peaks of rutile-structured TiO2 were accelerated in the anodized TiNbSn alloy with H2O2. The formation of hydroxyl radicals and methylene blue breaching performance under ultraviolet irradiation was confirmed in the anodic oxide on TiNbSn alloy with and without H2O2. The anodic oxide on TiNbSn alloy had a robust antibacterial activity, and no significant difference was detected with or without H2O2. We conclude that anodized TiNbSn alloy with sodium tartrate electrolyte may be a functional biomaterial with a low Young’s modulus and an antibacterial function.
Collapse
Affiliation(s)
- Hiroaki Kurishima
- Department of Orthopedic Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yu Mori
- Department of Orthopedic Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
- *Correspondence: Yu Mori,
| | - Keiko Ishii
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroyuki Inoue
- Department of Materials Science, Graduate School of Engineering, Osaka Prefecture University, Sakai, Japan
| | - Takayuki Mokudai
- Institute for Materials Research, Tohoku University, Sendai, Japan
| | - Satoko Fujimori
- Department of Orthopedic Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Eiji Itoi
- Department of Orthopedic Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shuji Hanada
- Institute for Materials Research, Tohoku University, Sendai, Japan
| | - Naoya Masahashi
- Institute for Materials Research, Tohoku University, Sendai, Japan
| | - Toshimi Aizawa
- Department of Orthopedic Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
18
|
Zhang L, Chu W, Zheng Q, Zhao J. Effects of oxygen vacancies on the photoexcited carrier lifetime in rutile TiO 2. Phys Chem Chem Phys 2022; 24:4743-4750. [PMID: 35142307 DOI: 10.1039/d1cp04248c] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The photoexcited carrier lifetime in semiconductors plays a crucial role in solar energy conversion processes. The defects or impurities in semiconductors are usually proposed to introduce electron-hole (e-h) recombination centers and consequently reduce the photoexcited carrier lifetime. In this report, we investigate the effects of oxygen vacancies (OV) on the carrier lifetime in rutile TiO2, which has important applications in photocatalysis and photovoltaics. It is found that an OV introduces two excess electrons which form two defect states in the band gap. The lower state is localized on one Ti atom and behaves as a small polaron, and the higher one is a hybrid state contributed by three Ti atoms around the OV. Both the polaron and hybrid states exhibit strong electron-phonon (e-ph) coupling and their charge distributions become more and more delocalized when the temperature increases from 100 to 700 K. Such strong e-ph coupling and charge delocalization enhance the nonadibatic coupling between the electronic states along the hole relaxation path, where the defect states behave as intermediate states, leading to a distinct acceleration of e-h recombination. Our study provides valuable insights to understand the role of defects on photoexcited carrier lifetime in semiconductors.
Collapse
Affiliation(s)
- Lili Zhang
- Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, China. .,Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
| | - Weibin Chu
- Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, China. .,Departments of Chemistry, and Physics and Astronomy, University of Southern California, Los Angeles, CA 90089, USA
| | - Qijing Zheng
- Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Jin Zhao
- Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, China.
| |
Collapse
|
19
|
Khatibnezhad H, Ambriz-Vargas F, Ben Ettouil F, Moreau C. Role of phase content on the photocatalytic performance of TiO2 coatings deposited by suspension plasma spray. Ann Ital Chir 2022. [DOI: 10.1016/j.jeurceramsoc.2022.02.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
20
|
Cheng C, Zhu Y, Fang WH, Long R, Prezhdo OV. CO Adsorbate Promotes Polaron Photoactivity on the Reduced Rutile TiO 2(110) Surface. JACS AU 2022; 2:234-245. [PMID: 35098240 PMCID: PMC8790733 DOI: 10.1021/jacsau.1c00508] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Indexed: 06/14/2023]
Abstract
Polarons play a major role in determining the chemical properties of transition-metal oxides. Recent experiments show that adsorbates can attract inner polarons to surface sites. These findings require an atomistic understanding of the adsorbate influence on polaron dynamics and lifetime. We consider reduced rutile TiO2(110) with an oxygen vacancy as a prototypical surface and a CO molecule as a classic probe and perform ab initio adiabatic molecular dynamics, time-domain density functional theory, and nonadiabatic molecular dynamics simulations. The simulations show that subsurface polarons have little influence on CO adsorption and CO can desorb easily. On the contrary, surface polarons strongly enhance CO adsorption. At the same time, the adsorbed CO attracts polarons to the surface, allowing them to participate in catalytic processes with CO. The CO interaction with polarons changes their orbital origin, suppresses polaron hopping, and stabilizes them at surface sites. Partial delocalization of polarons onto CO decouples them from free holes, decreasing the nonadiabatic coupling and shortening the quantum coherence time, thereby reducing charge recombination. The calculations demonstrate that CO prefers to adsorb at the next-nearest-neighbor five-coordinated Ti3+ surface electron polaron sites. The reported results provide a fundamental understanding of the influence of electron polarons on the initial stage of reactant adsorption and the effect of the adsorbate-polaron interaction on the polaron dynamics and lifetime. The study demonstrates how charge and polaron properties can be controlled by adsorbed species, allowing one to design high-performance transition-metal oxide catalysts.
Collapse
Affiliation(s)
- Cheng Cheng
- College
of Chemistry, Key Laboratory of Theoretical and Computational Photochemistry
of Ministry of Education, Beijing Normal
University, Beijing 100875, P.R. China
| | - Yonghao Zhu
- College
of Chemistry, Key Laboratory of Theoretical and Computational Photochemistry
of Ministry of Education, Beijing Normal
University, Beijing 100875, P.R. China
| | - Wei-Hai Fang
- College
of Chemistry, Key Laboratory of Theoretical and Computational Photochemistry
of Ministry of Education, Beijing Normal
University, Beijing 100875, P.R. China
| | - Run Long
- College
of Chemistry, Key Laboratory of Theoretical and Computational Photochemistry
of Ministry of Education, Beijing Normal
University, Beijing 100875, P.R. China
| | - Oleg V. Prezhdo
- Department
of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
21
|
Tanner AJ, Thornton G. TiO 2 Polarons in the Time Domain: Implications for Photocatalysis. J Phys Chem Lett 2022; 13:559-566. [PMID: 35014263 PMCID: PMC9097515 DOI: 10.1021/acs.jpclett.1c03677] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 01/03/2022] [Indexed: 06/14/2023]
Abstract
Exploiting the availability of solar energy to produce valuable chemicals is imperative in our quest for a sustainable energy cycle. TiO2 has emerged as an efficient photocatalyst, and as such its photochemistry has been studied extensively. It is well-known that polaronic defect states impact the activity of this chemistry. As such, understanding the fundamental excitation mechanisms deserves the attention of the scientific community. However, isolating the contribution of polarons to these processes has required increasingly creative experimental techniques and expensive theory. In this Perspective, we discuss recent advances in this field, with a particular focus on two-photon photoemission spectroscopy (2PPE) and density functional theory (DFT), and discuss the implications for photocatalysis.
Collapse
|
22
|
Kräuter J, Franz E, Waidhas F, Brummel O, Jörg Libuda, Al-Shamery K. The Role of Defects in the Photoconversion of 2-Propanol on Rutile Titania: Operando Spectroscopy Combined with Elementary Studies. J Catal 2022. [DOI: 10.1016/j.jcat.2021.12.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
23
|
Defective Grey TiO2 with Minuscule Anatase–Rutile Heterophase Junctions for Hydroxyl Radicals Formation in a Visible Light-Triggered Photocatalysis. Catalysts 2021. [DOI: 10.3390/catal11121500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The novelty of this work was to prepare a series of defect-rich colored TiO2 nanostructures, using a peroxo solvothermal-assisted, high-pressure nitrogenation method. Among these solids, certain TiO2 materials possessed a trace quantity of anatase–rutile heterojunctions, which are beneficial in obtaining high reaction rates in photocatalytic reactions. In addition, high surface area (above 100 m2/g), even when utilizing a high calcination temperature (500 °C), and absorption of light at higher wavelengths, due to the grey color of the synthesized titania, were observed as an added advantage for photocatalytic hydroxyl radical formation. In this work, we adopted a photoluminescent probe method to monitor the temporal evolution of hydroxyl radicals. As a result, promising hydroxyl radical formations were observed for all the colored samples synthesized at 400 and 500 °C, irrespective of the duration of calcination.
Collapse
|
24
|
Density Functional Theory Study of Metal and Metal-Oxide Nucleation and Growth on the Anatase TiO2(101) Surface. COMPUTATION 2021. [DOI: 10.3390/computation9110125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Experimental studies have shown the possible production of hydrogen through photocatalytic water splitting using metal oxide (MOy) nanoparticles attached to an anatase TiO2 surface. In this work, we performed density functional theory (DFT) calculations to provide a detailed description of the stability and geometry of MxOy clusters M = Cu, Ni, Co, Fe and Mn, x = 1–5, and y = 0–5 on the anatase TiO2(101) surface. It is found that unsaturated 2-fold-coordinated O-sites may serve as nucleation centers for the growth of metal clusters. The formation energy of Ni-containing clusters on the anatase surface is larger than for other M clusters. In addition, the Nin adsorption energy increases with cluster size n, which makes the formation of bigger Ni clusters plausible as confirmed by transition electron microscopy images. Another particularity for Ni-containing clusters is that the adsorption energy per atom gets larger when the O-content is reduced, while for other M atoms it remains almost constant or, as for Mn, even decreases. This trend is in line with experimental results. Also provided is a discussion of the oxidation states of M5Oy clusters based on their magnetic moments and Bader charges and their possible reduction with oxygen depletion.
Collapse
|
25
|
Yin H, Chen J, Guan P, Zheng D, Kong Q, Yang S, Zhou P, Yang B, Pullerits T, Han K. Controlling Photoluminescence and Photocatalysis Activities in Lead-Free Cs 2 Pt x Sn 1-x Cl 6 Perovskites via Ion Substitution. Angew Chem Int Ed Engl 2021; 60:22693-22699. [PMID: 34355483 DOI: 10.1002/anie.202108133] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/24/2021] [Indexed: 02/05/2023]
Abstract
Lead-free halide perovskites have triggered interest in the field of optoelectronics and photocatalysis because of their low toxicity, and tunable optical and charge-carrier properties. From an application point of view, it is desirable to develop stable multifunctional lead-free halide perovskites. We have developed a series of Cs2 Ptx Sn1-x Cl6 perovskites (0≤x≤1) with high stability, which show switchable photoluminescence and photocatalytic functions by varying the amount of Pt4+ substitution. A Cs2 Ptx Sn1-x Cl6 solid solution with a dominant proportion of Pt4+ shows broadband photoluminescence with a lifetime on the microsecond timescale. A Cs2 Ptx Sn1-x Cl6 solid solution with a small amount of Pt4+ substitution exhibits photocatalytic hydrogen evolution activity. An optical spectroscopy study reveals that the switch between photoluminescence and photocatalysis functions is controlled by sub-band gap states. Our finding provides a new way to develop lead-free multifunctional halide perovskites with high stability.
Collapse
Affiliation(s)
- Hang Yin
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, 266237, China.,State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, 116023, China
| | - Junsheng Chen
- Nano-Science Center & Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100, Copenhagen, Denmark
| | - Peng Guan
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, 116023, China
| | - Daoyuan Zheng
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, 266237, China
| | - Qingkun Kong
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, 266237, China
| | - Songqiu Yang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, 116023, China
| | - Panwang Zhou
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, 266237, China
| | - Bin Yang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, 116023, China
| | - Tönu Pullerits
- Chemical Physics and NanoLund, Lund University, Box 124, Lund, 22100, Sweden
| | - Keli Han
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, 266237, China.,State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, 116023, China
| |
Collapse
|
26
|
Yin H, Chen J, Guan P, Zheng D, Kong Q, Yang S, Zhou P, Yang B, Pullerits T, Han K. Controlling Photoluminescence and Photocatalysis Activities in Lead‐Free Cs
2
Pt
x
Sn
1−
x
Cl
6
Perovskites via Ion Substitution. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202108133] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Hang Yin
- Institute of Molecular Sciences and Engineering Institute of Frontier and Interdisciplinary Science Shandong University Qingdao 266237 China
- State Key Laboratory of Molecular Reaction Dynamics Dalian Institute of Chemical Physics Chinese Academy of Science Dalian 116023 China
| | - Junsheng Chen
- Nano-Science Center & Department of Chemistry University of Copenhagen Universitetsparken 5 2100 Copenhagen Denmark
| | - Peng Guan
- State Key Laboratory of Molecular Reaction Dynamics Dalian Institute of Chemical Physics Chinese Academy of Science Dalian 116023 China
| | - Daoyuan Zheng
- Institute of Molecular Sciences and Engineering Institute of Frontier and Interdisciplinary Science Shandong University Qingdao 266237 China
| | - Qingkun Kong
- Institute of Molecular Sciences and Engineering Institute of Frontier and Interdisciplinary Science Shandong University Qingdao 266237 China
| | - Songqiu Yang
- State Key Laboratory of Molecular Reaction Dynamics Dalian Institute of Chemical Physics Chinese Academy of Science Dalian 116023 China
| | - Panwang Zhou
- Institute of Molecular Sciences and Engineering Institute of Frontier and Interdisciplinary Science Shandong University Qingdao 266237 China
| | - Bin Yang
- State Key Laboratory of Molecular Reaction Dynamics Dalian Institute of Chemical Physics Chinese Academy of Science Dalian 116023 China
| | - Tönu Pullerits
- Chemical Physics and NanoLund Lund University Box 124 Lund 22100 Sweden
| | - Keli Han
- Institute of Molecular Sciences and Engineering Institute of Frontier and Interdisciplinary Science Shandong University Qingdao 266237 China
- State Key Laboratory of Molecular Reaction Dynamics Dalian Institute of Chemical Physics Chinese Academy of Science Dalian 116023 China
| |
Collapse
|
27
|
Miranda MO, Cabral Cavalcanti WE, Barbosa FF, Antonio de Sousa J, Ivan da Silva F, Pergher SBC, Braga TP. Photocatalytic degradation of ibuprofen using titanium oxide: insights into the mechanism and preferential attack of radicals. RSC Adv 2021; 11:27720-27733. [PMID: 35480690 PMCID: PMC9037810 DOI: 10.1039/d1ra04340d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/05/2021] [Indexed: 11/21/2022] Open
Abstract
The present work studied ibuprofen degradation using titanium dioxide as a photocatalyst. Mechanistic aspects were presented and the preferred attack sites by the OH˙ radical on the ibuprofen molecule were detailed, based on experimental and simple theoretical-computational results. Although some previous studies show mechanistic proposals, some aspects still need to be investigated, such as the participation of 4-isobutylacetophenone in the ibuprofen degradation and the preferred regions of attack by OH˙ radicals. The photodegradation was satisfactory using 0.03 g of TiO2 and pH = 5.0, reaching 100% decontamination in 5 min. The zeta potential curve showed the regions of attraction and repulsion between TiO2 and ibuprofen, depending on the pH range and charge of the species, influencing the amount of by-products formed. Different by-products have been identified by GC-MS, such as 4-isobutylacetophenone. Ibuprofen conversion to 4-isobutylacetophenone takes place through decarboxylation reaction followed by oxidation. The proposed mechanism indicates that the degradation of ibuprofen undergoes a series of elementary reactions in solution and on the surface. Three different radicals (OH˙, O2−˙ and OOH˙) are produced in the reaction sequence and contribute strongly to the oxidation and mineralization of ibuprofen and by-products, but the hydroxyl radical has a greater oxidation capacity. The simple study using the DFT approach demonstrated that the OH˙ radical attacks preferentially in the region of the ibuprofen molecule with high electronic density, which is located close to the aromatic ring (C
Created by potrace 1.16, written by Peter Selinger 2001-2019
]]>
C bond). The presence of the OH˙ radical was confirmed through a model reaction using salicylic acid as a probe molecule. The degradation of ibuprofen undergoes a series of elementary reactions, generating different radicals which attack preferentially in the region of the ibuprofen with high electron density.![]()
Collapse
Affiliation(s)
- Maicon Oliveira Miranda
- Laboratório de Peneiras Moleculares (LABPMOL), Programa de Pós-graduação em Química, Universidade Federal do Rio Grande do Norte (UFRN) Av. Sen. Salgado FIlho, Campus Universitário, Lagoa Nova 59.078-970 Natal RN Brazil +55 84 933422323.,Instituto Federal de Educação, Ciência e Tecnologia do Piauí (IFPI) Rodovia PI 213 Zona Rural 64235-000 Cocal PI Brazil
| | - Wesley Eulálio Cabral Cavalcanti
- Laboratório de Peneiras Moleculares (LABPMOL), Programa de Pós-graduação em Química, Universidade Federal do Rio Grande do Norte (UFRN) Av. Sen. Salgado FIlho, Campus Universitário, Lagoa Nova 59.078-970 Natal RN Brazil +55 84 933422323
| | - Felipe Fernandes Barbosa
- Laboratório de Peneiras Moleculares (LABPMOL), Programa de Pós-graduação em Química, Universidade Federal do Rio Grande do Norte (UFRN) Av. Sen. Salgado FIlho, Campus Universitário, Lagoa Nova 59.078-970 Natal RN Brazil +55 84 933422323
| | - José Antonio de Sousa
- Universidade Federal do Piauí, UFPI, Campus Universitário Ministro Petrônio Portella Ininga 64049-550 Teresina PI Brazil
| | | | - Sibele B C Pergher
- Laboratório de Peneiras Moleculares (LABPMOL), Programa de Pós-graduação em Química, Universidade Federal do Rio Grande do Norte (UFRN) Av. Sen. Salgado FIlho, Campus Universitário, Lagoa Nova 59.078-970 Natal RN Brazil +55 84 933422323
| | - Tiago Pinheiro Braga
- Laboratório de Peneiras Moleculares (LABPMOL), Programa de Pós-graduação em Química, Universidade Federal do Rio Grande do Norte (UFRN) Av. Sen. Salgado FIlho, Campus Universitário, Lagoa Nova 59.078-970 Natal RN Brazil +55 84 933422323
| |
Collapse
|
28
|
Tanner AJ, Wen B, Ontaneda J, Zhang Y, Grau-Crespo R, Fielding HH, Selloni A, Thornton G. Polaron-Adsorbate Coupling at the TiO 2(110)-Carboxylate Interface. J Phys Chem Lett 2021; 12:3571-3576. [PMID: 33819053 PMCID: PMC8054240 DOI: 10.1021/acs.jpclett.1c00678] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 03/31/2021] [Indexed: 06/12/2023]
Abstract
Understanding how adsorbates influence polaron behavior is of fundamental importance in describing the catalytic properties of TiO2. Carboxylic acids adsorb readily at TiO2 surfaces, yet their influence on polaronic states is unknown. Using UV photoemission spectroscopy (UPS), two-photon photoemission spectroscopy (2PPE), and density functional theory (DFT) we show that dissociative adsorption of formic and acetic acids has profound, yet different, effects on the surface density, crystal field, and photoexcitation of polarons in rutile TiO2(110). We also show that these variations are governed by the contrasting electrostatic properties of the acids, which impacts the extent of polaron-adsorbate coupling. The density of polarons in the surface region increases more in formate-terminated TiO2(110) relative to acetate. Consequently, increased coupling gives rise to new photoexcitation channels via states 3.83 eV above the Fermi level. The onset of this process is 3.45 eV, likely adding to the catalytic photoyield.
Collapse
Affiliation(s)
- Alex J. Tanner
- Department
of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, United Kingdom
- London
Centre for Nanotechnology, University College
London, 17-19 Gordon
Street, London WC1H 0AH, United Kingdom
| | - Bo Wen
- Department
of Chemistry, Princeton University, Princeton, New Jersey 08540, United States
| | - Jorge Ontaneda
- Department
of Chemistry, University of Reading, Whiteknights, Reading RG6 6AX, United Kingdom
| | - Yu Zhang
- Department
of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, United Kingdom
- London
Centre for Nanotechnology, University College
London, 17-19 Gordon
Street, London WC1H 0AH, United Kingdom
| | - Ricardo Grau-Crespo
- Department
of Chemistry, University of Reading, Whiteknights, Reading RG6 6AX, United Kingdom
| | - Helen H. Fielding
- Department
of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, United Kingdom
| | - Annabella Selloni
- Department
of Chemistry, Princeton University, Princeton, New Jersey 08540, United States
| | - Geoff Thornton
- Department
of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, United Kingdom
- London
Centre for Nanotechnology, University College
London, 17-19 Gordon
Street, London WC1H 0AH, United Kingdom
| |
Collapse
|
29
|
Fu C, Li F, Zhang J, Li D, Qian K, Liu Y, Tang J, Fan F, Zhang Q, Gong XQ, Huang W. Site Sensitivity of Interfacial Charge Transfer and Photocatalytic Efficiency in Photocatalysis: Methanol Oxidation on Anatase TiO 2 Nanocrystals. Angew Chem Int Ed Engl 2021; 60:6160-6169. [PMID: 33289198 DOI: 10.1002/anie.202014037] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Indexed: 11/10/2022]
Abstract
Photocatalytic oxidation of methanol on various anatase TiO2 nanocrystals was studied by in situ and time-resolved characterizations and DFT calculations. Surface site and resulting surface adsorbates affect the surface band bending/bulk-to-surface charge migration processes and interfacial electronic structure/interfacial charge transfer processes. TiO2 nanocrystals predominantly enclosed by the {001} facets expose a high density of reactive fourfold-coordinated Ti sites (Ti4c ) at which CH3 OH molecules dissociate to form the CH3 O adsorbate (CH3 O(a)Ti4c ). CH3 O(a)Ti4c localized density of states are almost at the valence band maximum of TiO2 surface, facilitating the interfacial hole transfer process; CH3 O(a)Ti4c with a high coverage promotes upward surface band bending, facilitating bulk-to-surface hole migration. CH3 O(a)Ti4c exhibits the highest photocatalytic oxidation rate constant. TiO2 nanocrystals enclosed by the {001} facets are most active in photocatalytic methanol oxidation.
Collapse
Affiliation(s)
- Cong Fu
- Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, CAS Key Laboratory of Materials for Energy Conversion and Department of Chemical Physics, University of Science and Technology of China, Heifei, 230026, P. R. China
| | - Fei Li
- Key Laboratory for Advanced Materials, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Jiachen Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Heifei, 230026, P. R. China
| | - Dan Li
- Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, CAS Key Laboratory of Materials for Energy Conversion and Department of Chemical Physics, University of Science and Technology of China, Heifei, 230026, P. R. China
| | - Kun Qian
- Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, CAS Key Laboratory of Materials for Energy Conversion and Department of Chemical Physics, University of Science and Technology of China, Heifei, 230026, P. R. China
| | - Yong Liu
- State Key Laboratory of Catalysis, Dalian Institute of, Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
| | - Junwang Tang
- Department of Chemical Engineering, University College London, London, WC1E 7JE, UK
| | - Fengtao Fan
- State Key Laboratory of Catalysis, Dalian Institute of, Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China.,Dalian National Laboratory for Clean Energy, Dalian, 116023, P. R. China
| | - Qun Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Heifei, 230026, P. R. China
| | - Xue-Qing Gong
- Key Laboratory for Advanced Materials, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Weixin Huang
- Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, CAS Key Laboratory of Materials for Energy Conversion and Department of Chemical Physics, University of Science and Technology of China, Heifei, 230026, P. R. China.,Dalian National Laboratory for Clean Energy, Dalian, 116023, P. R. China
| |
Collapse
|
30
|
Iqbal S, Fakhar-E-Alam M, Alimgeer KS, Atif M, Hanif A, Yaqub N, Farooq WA, Ahmad S, Chu YM, Suleman Rana M, Fatehmulla A, Ahmad H. Mathematical modeling and experimental analysis of the efficacy of photodynamic therapy in conjunction with photo thermal therapy and PEG-coated Au-doped TiO 2 nanostructures to target MCF-7 cancerous cells. Saudi J Biol Sci 2021; 28:1226-1232. [PMID: 33613051 PMCID: PMC7878829 DOI: 10.1016/j.sjbs.2020.11.086] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 11/25/2020] [Accepted: 11/30/2020] [Indexed: 12/12/2022] Open
Abstract
Some nanoscale morphologies of titanium oxide nanostructures blend with gold nanoparticles and act as satellites and targeted weapon methodologies in biomedical applications. Simultaneously, titanium oxide can play an important role when combined with gold after blending with polyethylene glycol (PEG). Our experimental approach is novel with respect to the plasmonic role of metal nanoparticles as an efficient PDT drug. The current experimental strategy floats the comprehensive and facile way of experimental strategy on the critical influence that titanium with gold nanoparticles used as novel photosensitizing agents after significant biodistribution of proposed nanostructures toward targeted site. In addition, different morphologies of PEG-coated Au-doped titanium nanostructures were shown to provide various therapeutic effects due to a wide range of electromagnetic field development. This confirms a significantly amplified population of hot electron generation adjacent to the interface between Au and TiO2 nanostructures, leading to maximum cancerous cell injury in the MCF-7 cell line. The experimental results were confirmed by applying a least squares fit math model which verified our results with 99% goodness of fit. These results can pave the way for comprehensive rational designs for satisfactory response of performance phototherapeutic model mechanisms along with new horizons of photothermal therapy (HET) and photodynamic therapy (HET) operating under visible and near-infrared (NIR) light.
Collapse
Affiliation(s)
- Seemab Iqbal
- Department of Physics Govt. College University, 38000, Faisalabad, Pakistan
| | - M Fakhar-E-Alam
- Department of Physics Govt. College University, 38000, Faisalabad, Pakistan
| | - K S Alimgeer
- Department of Electrical and Computer Engineering, COMSATS University, Islamabad, Islamabad campus, Pakistan
| | - M Atif
- Department of Physics and Astronomy, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Atif Hanif
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Nafeesah Yaqub
- Department of Physics and Astronomy, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - W A Farooq
- Department of Physics and Astronomy, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Shafiq Ahmad
- Industrial Engineering Department, College of Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia
| | - Yu-Ming Chu
- Department of Mathematics, Huzhou University, Huzhou 313000, China.,Hunan Provincial Key Laboratory of Mathematical Modeling and Analysis in Engineering, Changasha, University of Science & Technology, Changsha 410114, China
| | | | - Amanullah Fatehmulla
- Department of Physics and Astronomy, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Hijaz Ahmad
- Department of Basic Sciences, University of Engineering and Technology, Peshawar 25000, Pakistan.,Section of Mathematics, International Telematic University Uninettuno, Corso Vittorio Emanuele II, 39, 00186 Roma, Italy
| |
Collapse
|
31
|
Fu C, Li F, Zhang J, Li D, Qian K, Liu Y, Tang J, Fan F, Zhang Q, Gong X, Huang W. Site Sensitivity of Interfacial Charge Transfer and Photocatalytic Efficiency in Photocatalysis: Methanol Oxidation on Anatase TiO
2
Nanocrystals. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202014037] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Cong Fu
- Hefei National Laboratory for Physical Sciences at the Microscale Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes CAS Key Laboratory of Materials for Energy Conversion and Department of Chemical Physics University of Science and Technology of China Heifei 230026 P. R. China
| | - Fei Li
- Key Laboratory for Advanced Materials, Centre for Computational Chemistry and Research Institute of Industrial Catalysis East China University of Science and Technology Shanghai 200237 P. R. China
| | - Jiachen Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale Department of Chemical Physics Synergetic Innovation Center of Quantum Information and Quantum Physics University of Science and Technology of China Heifei 230026 P. R. China
| | - Dan Li
- Hefei National Laboratory for Physical Sciences at the Microscale Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes CAS Key Laboratory of Materials for Energy Conversion and Department of Chemical Physics University of Science and Technology of China Heifei 230026 P. R. China
| | - Kun Qian
- Hefei National Laboratory for Physical Sciences at the Microscale Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes CAS Key Laboratory of Materials for Energy Conversion and Department of Chemical Physics University of Science and Technology of China Heifei 230026 P. R. China
| | - Yong Liu
- State Key Laboratory of Catalysis Dalian Institute of, Chemical Physics Chinese Academy of Sciences Dalian 116023 P. R. China
| | - Junwang Tang
- Department of Chemical Engineering University College London London WC1E 7JE UK
| | - Fengtao Fan
- State Key Laboratory of Catalysis Dalian Institute of, Chemical Physics Chinese Academy of Sciences Dalian 116023 P. R. China
- Dalian National Laboratory for Clean Energy Dalian 116023 P. R. China
| | - Qun Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale Department of Chemical Physics Synergetic Innovation Center of Quantum Information and Quantum Physics University of Science and Technology of China Heifei 230026 P. R. China
| | - Xue‐Qing Gong
- Key Laboratory for Advanced Materials, Centre for Computational Chemistry and Research Institute of Industrial Catalysis East China University of Science and Technology Shanghai 200237 P. R. China
| | - Weixin Huang
- Hefei National Laboratory for Physical Sciences at the Microscale Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes CAS Key Laboratory of Materials for Energy Conversion and Department of Chemical Physics University of Science and Technology of China Heifei 230026 P. R. China
- Dalian National Laboratory for Clean Energy Dalian 116023 P. R. China
| |
Collapse
|
32
|
Wang A, Wu Q, Han C, Yang H, Xue X. Significant influences of crystal structures on photocatalytic removal of NOx by TiO2. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2020.113020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
33
|
Luo Y, Lee H. Present and Future of Phase-Selectively Disordered Blue TiO 2 for Energy and Society Sustainability. NANO-MICRO LETTERS 2021; 13:45. [PMID: 33425475 PMCID: PMC7780919 DOI: 10.1007/s40820-020-00569-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 11/18/2020] [Indexed: 06/12/2023]
Abstract
Titanium dioxide (TiO2) has garnered attention for its promising photocatalytic activity, energy storage capability, low cost, high chemical stability, and nontoxicity. However, conventional TiO2 has low energy harvesting efficiency and charge separation ability, though the recently developed black TiO2 formed under high temperature or pressure has achieved elevated performance. The phase-selectively ordered/disordered blue TiO2 (BTO), which has visible-light absorption and efficient exciton disassociation, can be formed under normal pressure and temperature (NPT) conditions. This perspective article first discusses TiO2 materials development milestones and insights of the BTO structure and construction mechanism. Then, current applications of BTO and potential extensions are summarized and suggested, respectively, including hydrogen (H2) production, carbon dioxide (CO2) and nitrogen (N2) reduction, pollutant degradation, microbial disinfection, and energy storage. Last, future research prospects are proposed for BTO to advance energy and environmental sustainability by exploiting different strategies and aspects. The unique NPT-synthesized BTO can offer more societally beneficial applications if its potential is fully explored by the research community.
Collapse
Affiliation(s)
- Yongguang Luo
- Center for Integrated Nanostructure Physics (CINAP), Institute for Basic Science (IBS), 2066 Seoburo, Jangan-gu, Suwon, 16419 Republic of Korea
- Department of Chemistry, Sungkyunkwan University, 2066 Seoburo, Jangan-gu, Suwon, 16419 Republic of Korea
| | - Hyoyoung Lee
- Center for Integrated Nanostructure Physics (CINAP), Institute for Basic Science (IBS), 2066 Seoburo, Jangan-gu, Suwon, 16419 Republic of Korea
- Department of Chemistry, Sungkyunkwan University, 2066 Seoburo, Jangan-gu, Suwon, 16419 Republic of Korea
- Creative Research Institute (CRI), Sungkyunkwan University, 2066 Seoburo, Jangan-gu, Suwon, 16419 Republic of Korea
- Department of Biophysics, Sungkyunkwan University, 2066 Seoburo, Jangan-gu, Suwon, 16419 Republic of Korea
| |
Collapse
|
34
|
Wagstaffe M, Wenthaus L, Dominguez-Castro A, Chung S, Lana Semione GD, Palutke S, Mercurio G, Dziarzhytski S, Redlin H, Klemke N, Yang Y, Frauenheim T, Dominguez A, Kärtner F, Rubio A, Wurth W, Stierle A, Noei H. Ultrafast Real-Time Dynamics of CO Oxidation over an Oxide Photocatalyst. ACS Catal 2020. [DOI: 10.1021/acscatal.0c04098] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Lukas Wenthaus
- Deutsches Elektronen-Synchrotron, Hamburg D-22607, Germany
- Center for Free-Electron Laser Science, Hamburg D-22761, Germany
| | | | - Simon Chung
- Deutsches Elektronen-Synchrotron, Hamburg D-22607, Germany
- Fachbereich Physik Universität Hamburg, Hamburg D-20355, Germany
| | | | | | | | | | - Harald Redlin
- Deutsches Elektronen-Synchrotron, Hamburg D-22607, Germany
| | - Nicolai Klemke
- Center for Free-Electron Laser Science, Hamburg D-22761, Germany
| | - Yudong Yang
- Center for Free-Electron Laser Science, Hamburg D-22761, Germany
| | - Thomas Frauenheim
- Bremen Center for Computational Material Science (BCCMS), Bremen D-28359, Germany
- Computational Science and Applied Research Institute (CSAR), Shenzhen 518110, China
- Beijing Computational Science Research Center (CSRC), Beijing 100193, China
| | - Adriel Dominguez
- Bremen Center for Computational Material Science (BCCMS), Bremen D-28359, Germany
- Computational Science and Applied Research Institute (CSAR), Shenzhen 518110, China
- Beijing Computational Science Research Center (CSRC), Beijing 100193, China
- Nano-Bio Spectroscopy Group, Departamento de Fisica de Materiales, Universidad del País Vasco, UPV/EHU, San Sebastián 20018, Spain
| | - Franz Kärtner
- Center for Free-Electron Laser Science, Hamburg D-22761, Germany
| | - Angel Rubio
- Center for Free-Electron Laser Science, Hamburg D-22761, Germany
- Nano-Bio Spectroscopy Group, Departamento de Fisica de Materiales, Universidad del País Vasco, UPV/EHU, San Sebastián 20018, Spain
- Max Planck Institute for the Structure and Dynamics of Matter, Hamburg D-22761, Germany
- Center for Computational Quantum Physics, Flatiron Institute, New York 10010, United States
| | - Wilfried Wurth
- Deutsches Elektronen-Synchrotron, Hamburg D-22607, Germany
- Center for Free-Electron Laser Science, Hamburg D-22761, Germany
- Fachbereich Physik Universität Hamburg, Hamburg D-20355, Germany
| | - Andreas Stierle
- Deutsches Elektronen-Synchrotron, Hamburg D-22607, Germany
- Fachbereich Physik Universität Hamburg, Hamburg D-20355, Germany
| | - Heshmat Noei
- Deutsches Elektronen-Synchrotron, Hamburg D-22607, Germany
| |
Collapse
|
35
|
Deskins NA, Kimmel GA, Petrik NG. Observation of Molecular Hydrogen Produced from Bridging Hydroxyls on Anatase TiO 2(101). J Phys Chem Lett 2020; 11:9289-9297. [PMID: 33090788 DOI: 10.1021/acs.jpclett.0c02735] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Anatase TiO2 is used extensively in a wide range of catalytic and photocatalytic processes and is a promising catalyst for hydrogen production. Here, we show that molecular hydrogen was produced from bridging hydroxyls (HOb) on the (101) surface of single-crystal anatase (TiO2(101)). This stands in contrast to rutile TiO2(110), where HOb pairs react to form H2O. Electron bombardment at 30 K produced bridging oxygen vacancies in the surface. Deuterated bridging hydroxyls (DOb) were subsequently formed via dissociation of adsorbed D2O and confirmed by infrared reflection-absorption spectroscopy. During temperature-programmed desorption (TPD) spectroscopy, D2 desorption was observed at 520 K. Density functional theory calculations show that both H2 and H2O production from HOb are endothermic at 0 K on TiO2(101), but H2 (H2O) desorption is entropically driven above 230 K (800 K). The calculated activation barrier for H2 desorption is 1.40 eV, which is similar to the desorption energy obtained from analysis of the D2 TPD spectra. The H2 desorption likely proceeds in two steps: H atom diffusion on the surface and then recombination.
Collapse
Affiliation(s)
- N Aaron Deskins
- Department of Chemical Engineering, Worcester Polytechnic Institute, 100 Institute Road, Worcester, Massachusetts 01609, United States
| | - Greg A Kimmel
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, United States
| | - Nikolay G Petrik
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, United States
| |
Collapse
|
36
|
Zhao Y, Zhou S, Zhao J, Du Y, Dou SX. Control of Photocarrier Separation and Recombination at Bismuth Oxyhalide Interface for Nitrogen Fixation. J Phys Chem Lett 2020; 11:9304-9312. [PMID: 33086017 DOI: 10.1021/acs.jpclett.0c02480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Developing high-efficiency photocatalysts for clean energy generation is a grand challenge, which requires simultaneously steering photocarrier dynamics and chemical activity for a specific reaction. To this end, here for the first time, we explore the real-time photocarrier transport property and catalytic mechanism of nitrogen reduction reaction (NRR) at the interface of bismuth oxyhalides (BiOX, X = Cl, Br, and I), an inexpensive and green semiconductor. By time-dependent ab initio non-adiabatic molecular dynamics simulations, we show that the separation and recombination processes of excited carriers as well as the catalytic activity can be concurrently optimized by precise band structure engineering. The exact influence of impurity states and heterojunction on the reduction power and lifetime of photogenerated carriers, light absorbance, and NRR activity/selectivity of BiOX are clearly unveiled, to provide essential physical insights for improving the photocatalytic efficiency of semiconductors for practical solar energy conversion and hydrogen fuel storage.
Collapse
Affiliation(s)
- Yanyan Zhao
- Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Dalian University of Technology), Ministry of Education, Dalian 116024, China
| | - Si Zhou
- Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Dalian University of Technology), Ministry of Education, Dalian 116024, China
- Institute for Superconducting and Electronic Materials (ISEM), Australian Institute for Innovative Materials (AIIM), University of Wollongong, Wollongong, New South Wales 2500, Australia
| | - Jijun Zhao
- Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Dalian University of Technology), Ministry of Education, Dalian 116024, China
| | - Yi Du
- Institute for Superconducting and Electronic Materials (ISEM), Australian Institute for Innovative Materials (AIIM), University of Wollongong, Wollongong, New South Wales 2500, Australia
| | - Shi Xue Dou
- Institute for Superconducting and Electronic Materials (ISEM), Australian Institute for Innovative Materials (AIIM), University of Wollongong, Wollongong, New South Wales 2500, Australia
| |
Collapse
|
37
|
Mino L, Negri C, Santalucia R, Cerrato G, Spoto G, Martra G. Morphology, Surface Structure and Water Adsorption Properties of TiO 2 Nanoparticles: A Comparison of Different Commercial Samples. Molecules 2020; 25:molecules25204605. [PMID: 33050364 PMCID: PMC7587218 DOI: 10.3390/molecules25204605] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/01/2020] [Accepted: 10/03/2020] [Indexed: 02/06/2023] Open
Abstract
Water is a molecule always present in the reaction environment in photocatalytic and biomedical applications of TiO2 and a better understanding of its interaction with the surface of TiO2 nanoparticles is crucial to develop materials with improved performance. In this contribution, we first studied the nature and the surface structure of the exposed facets of three commercial TiO2 samples (i.e., TiO2 P25, SX001, and PC105) by electron microscopy and IR spectroscopy of adsorbed CO. The morphological information was then correlated with the water adsorption properties, investigated at the molecular level, moving from multilayers of adsorbed H2O to the monolayer, combining medium- and near-IR spectroscopies. Finally, we assessed in a quantitative way the surface hydration state at different water equilibrium pressures by microgravimetric measurements.
Collapse
Affiliation(s)
- Lorenzo Mino
- Department of Chemistry and NIS Centre, University of Torino, via Giuria 7, 10125 Torino, Italy; (C.N.); (R.S.); (G.S.); (G.M.)
- Correspondence: (L.M.); (G.C.)
| | - Chiara Negri
- Department of Chemistry and NIS Centre, University of Torino, via Giuria 7, 10125 Torino, Italy; (C.N.); (R.S.); (G.S.); (G.M.)
- Department of Chemistry, Center for materials science and nanotechnology, University of Oslo, Sem Sælands vei 26, 0371 Oslo, Norway
| | - Rosangela Santalucia
- Department of Chemistry and NIS Centre, University of Torino, via Giuria 7, 10125 Torino, Italy; (C.N.); (R.S.); (G.S.); (G.M.)
| | - Giuseppina Cerrato
- Department of Chemistry and NIS Centre, University of Torino, via Giuria 7, 10125 Torino, Italy; (C.N.); (R.S.); (G.S.); (G.M.)
- Correspondence: (L.M.); (G.C.)
| | - Giuseppe Spoto
- Department of Chemistry and NIS Centre, University of Torino, via Giuria 7, 10125 Torino, Italy; (C.N.); (R.S.); (G.S.); (G.M.)
| | - Gianmario Martra
- Department of Chemistry and NIS Centre, University of Torino, via Giuria 7, 10125 Torino, Italy; (C.N.); (R.S.); (G.S.); (G.M.)
| |
Collapse
|
38
|
Recent Advancements and Future Prospects in Ultrathin 2D Semiconductor-Based Photocatalysts for Water Splitting. Catalysts 2020. [DOI: 10.3390/catal10101111] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Ultrathin two-dimensional (2D) semiconductor-mediated photocatalysts have shown their compelling potential and have arguably received tremendous attention in photocatalysis because of their superior thickness-dependent physical, chemical, mechanical and optical properties. Although numerous comprehensions about 2D semiconductor photocatalysts have been amassed up to now, low cost efficiency, degradation, kinetics of charge transfer along with recycling are still the big challenges to realize a wide application of 2D semiconductor-based photocatalysis. At present, most photocatalysts still need rare or expensive noble metals to improve the photocatalytic activity, which inhibits their commercial-scale application extremely. Thus, developing less costly, earth-abundant semiconductor-based photocatalysts with efficient conversion of sunlight energy remains the primary challenge. In this review, it begins with a brief description of the general mechanism of overall photocatalytic water splitting. Then a concise overview of different types of 2D semiconductor-mediated photocatalysts is given to figure out the advantages and disadvantages for mentioned semiconductor-based photocatalysis, including the structural property and stability, synthesize method, electrochemical property and optical properties for H2/O2 production half reaction along with overall water splitting. Finally, we conclude this review with a perspective, marked on some remaining challenges and new directions of 2D semiconductor-mediated photocatalysts.
Collapse
|
39
|
Zakharova NV, Akkuleva KT, Malygin AA. Structural and Morphological Features of Polycrystalline Aluminum Oxide Surface after Nanocoating with Titanium Oxide of Different Thickness. RUSS J GEN CHEM+ 2020. [DOI: 10.1134/s1070363220090133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
40
|
Wei Y, Tokina MV, Benderskii AV, Zhou Z, Long R, Prezhdo OV. Quantum dynamics origin of high photocatalytic activity of mixed-phase anatase/rutile TiO2. J Chem Phys 2020; 153:044706. [DOI: 10.1063/5.0014179] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Yaqing Wei
- College of Chemistry, Key Laboratory of Theoretical and Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing 100875, People’s Republic of China
| | - Marina V. Tokina
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, USA
| | - Alexander V. Benderskii
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, USA
| | - Zhaohui Zhou
- Chemical Engineering and Technology, School of Environmental Science and Engineering, Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, Chang’an University, Xi’an 710064, China
| | - Run Long
- College of Chemistry, Key Laboratory of Theoretical and Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing 100875, People’s Republic of China
| | - Oleg V. Prezhdo
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, USA
| |
Collapse
|
41
|
Adler C, Mitoraj D, Krivtsov I, Beranek R. On the importance of catalysis in photocatalysis: Triggering of photocatalysis at well-defined anatase TiO2 crystals through facet-specific deposition of oxygen reduction cocatalyst. J Chem Phys 2020; 152:244702. [DOI: 10.1063/5.0013115] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Affiliation(s)
- Christiane Adler
- Institute of Electrochemistry, Ulm University, Albert-Einstein-Allee 47, 89081 Ulm, Germany
| | - Dariusz Mitoraj
- Institute of Electrochemistry, Ulm University, Albert-Einstein-Allee 47, 89081 Ulm, Germany
| | - Igor Krivtsov
- Institute of Electrochemistry, Ulm University, Albert-Einstein-Allee 47, 89081 Ulm, Germany
| | - Radim Beranek
- Institute of Electrochemistry, Ulm University, Albert-Einstein-Allee 47, 89081 Ulm, Germany
| |
Collapse
|
42
|
Synergistic Design of Anatase–Rutile TiO2 Nanostructured Heterophase Junctions toward Efficient Photoelectrochemical Water Oxidation. COATINGS 2020. [DOI: 10.3390/coatings10060557] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Synergistically designing porous nanostructures and appropriate band alignment for TiO2 heterophase junctions is key to efficient charge transfer, which is crucial in enhancing photoelectrochemical (PEC) water splitting for hydrogen production. Here, we investigate the efficiency of PEC water oxidation in anatase–rutile TiO2 nanostructured heterophase junctions that present the type-II band alignment. We specifically prove the importance of a phase alignment in heterophase junction for effective charge separation. The TiO2 heterophase junctions were prepared by transferring TiO2 nanotube (TNT) arrays onto FTO substrate with the help of a TiO2 nanoparticle (TNP) glue layer. The PEC characterization reveals that the rutile (R)-TNT/anatase (A)-TNP heterophase junction has a higher photocurrent density than those of A-TNT/R-TNP junction and anatase or rutile single phase, corresponding to twofold enhanced efficiency. This type-II band alignment of R-TNT/A-TNP for water oxidation, in which photogenerated electrons (holes) will flow from rutile (anatase) to anatase (rutile), enables to facilitate efficient electron-hole separation as well as lower the effective bandgap of heterophase junctions. This work provides insight into the functional role of heterophase junction for boosting the PEC performances of TiO2 nanostructures.
Collapse
|
43
|
Geiger J, Sprik M, May MM. Band positions of anatase (001) and (101) surfaces in contact with water from density functional theory. J Chem Phys 2020; 152:194706. [DOI: 10.1063/5.0004779] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Julian Geiger
- Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
- Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Michiel Sprik
- Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | - Matthias M. May
- Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
- Institute for Solar Fuels, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Berlin, Germany
| |
Collapse
|
44
|
Wu L, Fu C, Huang W. Surface chemistry of TiO 2 connecting thermal catalysis and photocatalysis. Phys Chem Chem Phys 2020; 22:9875-9909. [PMID: 32363360 DOI: 10.1039/c9cp07001j] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Chemical reactions catalyzed under heterogeneous conditions have recently expanded rapidly from traditional thermal catalysis to photocatalysis due to the rising concerns about sustainable development of energy and the environment. Adsorption of reactants on catalyst surfaces, subsequent surface reactions, and desorption of products from catalyst surfaces occur in both thermal catalysis and photocatalysis. TiO2 catalysts are widely used in thermal catalytic and photocatalytic reactions. Herein we review recent progress in surface chemistry, thermal catalysis and photocatalysis of TiO2 model catalysts from single crystals to nanocrystals with the aim of examining if the surface chemistry of TiO2 can bridge the fundamental understanding between thermal catalysis and photocatalysis. Following a brief introduction, the structures of major facets exposed on TiO2 catalysts, including surface reconstructions and defects, as well as the electronic structure and charge properties, are firstly summarized; then the recent progress in adsorption, thermal chemistry and photochemistry of small molecules on TiO2 single crystals and nanocrystals is comprehensively reviewed, focusing on manifesting the structure-(photo)activity relations and the commonalities/differences between thermal catalysis and photocatalysis; and finally concluding remarks and perspectives are given.
Collapse
Affiliation(s)
- Longxia Wu
- Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes and Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, P. R. China.
| | | | | |
Collapse
|
45
|
Cazzaniga M, Micciarelli M, Moriggi F, Mahmoud A, Gabas F, Ceotto M. Anharmonic calculations of vibrational spectra for molecular adsorbates: A divide-and-conquer semiclassical molecular dynamics approach. J Chem Phys 2020; 152:104104. [PMID: 32171221 DOI: 10.1063/1.5142682] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The vibrational spectroscopy of adsorbates is becoming an important investigation tool for catalysis and material science. This paper presents a semiclassical molecular dynamics method able to reproduce the vibrational energy levels of systems composed by molecules adsorbed on solid surfaces. Specifically, we extend our divide-and-conquer semiclassical method for power spectra calculations to gas-surface systems and interface it with plane-wave electronic structure codes. The Born-Oppenheimer classical dynamics underlying the semiclassical calculation is full dimensional, and our method includes not only the motion of the adsorbate but also those of the surface and the bulk. The vibrational spectroscopic peaks related to the adsorbate are accounted together with the most coupled phonon modes to obtain spectra amenable to physical interpretations. We apply the method to the adsorption of CO, NO, and H2O on the anatase-TiO2 (101) surface. We compare our semiclassical results with the single-point harmonic estimates and the classical power spectra obtained from the same trajectory employed in the semiclassical calculation. We find that CO and NO anharmonic effects of fundamental vibrations are similarly reproduced by the classical and semiclassical dynamics and that H2O adsorption is fully and properly described in its overtone and combination band relevant components only by the semiclassical approach.
Collapse
Affiliation(s)
- Marco Cazzaniga
- Dipartimento di Chimica, Università degli Studi di Milano, via Golgi 19, 20133 Milano, Italy
| | - Marco Micciarelli
- Dipartimento di Chimica, Università degli Studi di Milano, via Golgi 19, 20133 Milano, Italy
| | - Francesco Moriggi
- Dipartimento di Chimica, Università degli Studi di Milano, via Golgi 19, 20133 Milano, Italy
| | - Agnes Mahmoud
- Dipartimento di Chimica, Università degli Studi di Milano, via Golgi 19, 20133 Milano, Italy
| | - Fabio Gabas
- Dipartimento di Chimica, Università degli Studi di Milano, via Golgi 19, 20133 Milano, Italy
| | - Michele Ceotto
- Dipartimento di Chimica, Università degli Studi di Milano, via Golgi 19, 20133 Milano, Italy
| |
Collapse
|
46
|
Uddin N, Zhang H, Du Y, Jia G, Wang S, Yin Z. Structural-Phase Catalytic Redox Reactions in Energy and Environmental Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1905739. [PMID: 31957161 DOI: 10.1002/adma.201905739] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/11/2019] [Indexed: 06/10/2023]
Abstract
The structure-property engineering of phase-based materials for redox-reactive energy conversion and environmental decontamination nanosystems, which are crucial for achieving feasible and sustainable energy and environment treatment technology, is discussed. An exhaustive overview of redox reaction processes, including electrocatalysis, photocatalysis, and photoelectrocatalysis, is given. Through examples of applications of these redox reactions, how structural phase engineering (SPE) strategies can influence the catalytic activity, selectivity, and stability is constructively reviewed and discussed. As observed, to date, much progress has been made in SPE to improve catalytic redox reactions. However, a number of highly intriguing, unresolved issues remain to be discussed, including solar photon-to-exciton conversion efficiency, exciton dissociation into active reductive/oxidative electrons/holes, dual- and multiphase junctions, selective adsorption/desorption, performance stability, sustainability, etc. To conclude, key challenges and prospects with SPE-assisted redox reaction systems are highlighted, where further development for the advanced engineering of phase-based materials will accelerate the sustainable (active, reliable, and scalable) production of valuable chemicals and energy, as well as facilitate environmental treatment.
Collapse
Affiliation(s)
- Nasir Uddin
- Research School of Chemistry, Australian National University, Canberra, ACT, 2601, Australia
| | - Huayang Zhang
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Yaping Du
- School of Materials Science and Engineering, National Institute for Advanced Materials, Center for Rare Earth and Inorganic Functional Materials, Nankai University, Tianjin, 300350, China
| | - Guohua Jia
- Curtin Institute of Functional Molecules and Interfaces, School of Molecular and Life Sciences, Curtin University, Perth, WA, 6845, Australia
| | - Shaobin Wang
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Zongyou Yin
- Research School of Chemistry, Australian National University, Canberra, ACT, 2601, Australia
| |
Collapse
|
47
|
Cao Y, Luo J, Huang W, Ling Y, Zhu J, Li WX, Yang F, Bao X. Probing surface defects of ZnO using formaldehyde. J Chem Phys 2020; 152:074714. [PMID: 32087658 DOI: 10.1063/1.5138372] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The catalytic properties of metal oxides are often enabled by surface defects, and their characterization is thus vital to the understanding and application of metal oxide catalysts. Typically, surface defects for metal oxides show fingerprints in spectroscopic characterization. However, we found that synchrotron-radiation photoelectron spectroscopy (SRPES) is difficult to probe surface defects of ZnO. Meanwhile, CO as a probe molecule cannot be used properly to identify surface defect sites on ZnO in infrared (IR) spectroscopy. Instead, we found that formaldehyde could serve as a probe molecule, which is sensitive to surface defect sites and could titrate surface oxygen vacancies on ZnO, as evidenced in both SRPES and IR characterization. Density functional theory calculations revealed that formaldehyde dissociates to form formate species on the stoichiometric ZnO(101¯0) surface, while it dissociates to formyl species on Vo sites of the reduced ZnO(101¯0) surface instead. Furthermore, the mechanism of formaldehyde dehydrogenation on ZnO surfaces was also elucidated, while the generated hydrogen atoms are found to be stored in ZnO bulk from 423 K to 773 K, making ZnO an interesting (de)hydrogenation catalyst.
Collapse
Affiliation(s)
- Yunjun Cao
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Jie Luo
- School of Chemistry and Materials Science, Hefei National Laboratory for Physical Sciences at Microscales, University of Science and Technology of China, Hefei 230026, China
| | - Wugen Huang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yunjian Ling
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Junfa Zhu
- National Synchrotron Radiation Laboratory, Collaborative Innovation Center of Suzhou Nano Science and Technology, University of Science and Technology of China, Hefei 230029, China
| | - Wei-Xue Li
- School of Chemistry and Materials Science, Hefei National Laboratory for Physical Sciences at Microscales, University of Science and Technology of China, Hefei 230026, China
| | - Fan Yang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xinhe Bao
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
48
|
Calegari Andrade MF, Ko HY, Zhang L, Car R, Selloni A. Free energy of proton transfer at the water-TiO 2 interface from ab initio deep potential molecular dynamics. Chem Sci 2020; 11:2335-2341. [PMID: 34084393 PMCID: PMC8157430 DOI: 10.1039/c9sc05116c] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
TiO2 is a widely used photocatalyst in science and technology and its interface with water is important in fields ranging from geochemistry to biomedicine. Yet, it is still unclear whether water adsorbs in molecular or dissociated form on TiO2 even for the case of well-defined crystalline surfaces. To address this issue, we simulated the TiO2-water interface using molecular dynamics with an ab initio-based deep neural network potential. Our simulations show a dynamical equilibrium of molecular and dissociative adsorption of water on TiO2. Water dissociates through a solvent-assisted concerted proton transfer to form a pair of short-lived hydroxyl groups on the TiO2 surface. Molecular adsorption of water is ΔF = 8.0 ± 0.9 kJ mol-1 lower in free energy than the dissociative adsorption, giving rise to a 5.6 ± 0.5% equilibrium water dissociation fraction at room temperature. Due to the relevance of surface hydroxyl groups to the surface chemistry of TiO2, our model might be key to understanding phenomena ranging from surface functionalization to photocatalytic mechanisms.
Collapse
Affiliation(s)
| | - Hsin-Yu Ko
- Department of Chemistry, Princeton University Princeton NJ 08544 USA
| | - Linfeng Zhang
- Program in Applied and Computational Mathematics, Princeton University Princeton NJ 08544 USA
| | - Roberto Car
- Department of Chemistry, Princeton University Princeton NJ 08544 USA
| | - Annabella Selloni
- Department of Chemistry, Princeton University Princeton NJ 08544 USA
| |
Collapse
|
49
|
Mahmood A, Park JW. TiO2/CdS nanocomposite stabilized on a magnetic-cored dendrimer for enhanced photocatalytic activity and reusability. J Colloid Interface Sci 2019; 555:801-809. [DOI: 10.1016/j.jcis.2019.08.036] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 08/08/2019] [Accepted: 08/08/2019] [Indexed: 12/18/2022]
|
50
|
Wang Y, Du P, Pan H, Fu L, Zhang Y, Chen J, Du Y, Tang N, Liu G. Increasing Solar Absorption of Atomically Thin 2D Carbon Nitride Sheets for Enhanced Visible-Light Photocatalysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1807540. [PMID: 31441154 DOI: 10.1002/adma.201807540] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 07/22/2019] [Indexed: 05/27/2023]
Abstract
Atomically thin 2D carbon nitride sheets (CNS) are promising materials for photocatalytic applications due to their large surface area and very short charge-carrier diffusion distance from the bulk to the surface. However, compared to their bulk counterpart, CNS' applications always suffer from an enlarged bandgap and thus narrowed solar absorption range. Here, an approach to significantly increase solar absorption of the atomically thin CNS via fluorination followed by thermal defluorination is reported. This approach can greatly increase the visible-light absorption of CNS by extending the absorption edge up to 578 nm. The modulated CNS loaded with Pt cocatalyst as a photocatalyst shows a superior photocatalytic hydrogen production activity under visible-light irradiation to Pt-CNS. Combining experimental characterization with theoretical calculations shows that this approach can introduce cyano groups into the framework of CNS as well as the accompanied nitrogen vacancies at the edges, which leads to both narrowing the bandgap and changing the charge distribution. This study will provide an effective strategy to increase solar absorption of carbon-nitride-based photocatalysts for solar energy conversion applications.
Collapse
Affiliation(s)
- Yong Wang
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures and Jiangsu Provincial Key Laboratory for Nanotechnology, Nanjing University, Nanjing, 210093, China
| | - Peipei Du
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang, 110016, China
| | - Hongzhe Pan
- School of Physics and Electronic Engineering, Linyi University, Linyi, 276005, China
| | - Lin Fu
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures and Jiangsu Provincial Key Laboratory for Nanotechnology, Nanjing University, Nanjing, 210093, China
| | - Yu Zhang
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures and Jiangsu Provincial Key Laboratory for Nanotechnology, Nanjing University, Nanjing, 210093, China
| | - Jie Chen
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures and Jiangsu Provincial Key Laboratory for Nanotechnology, Nanjing University, Nanjing, 210093, China
| | - Youwei Du
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures and Jiangsu Provincial Key Laboratory for Nanotechnology, Nanjing University, Nanjing, 210093, China
| | - Nujiang Tang
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures and Jiangsu Provincial Key Laboratory for Nanotechnology, Nanjing University, Nanjing, 210093, China
| | - Gang Liu
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang, 110016, China
- School of Materials Science and Engineering, University of Science and Technology of China, 72 Wenhua Road, Shenyang, 110016, China
| |
Collapse
|