1
|
Vasenin AV, Kadyrmetov SV, Bolgar AN, Dmitriev AY, Astafiev OV. Evolution of Propagating Coherent Pulses Driving a Single Superconducting Artificial Atom. PHYSICAL REVIEW LETTERS 2024; 133:073602. [PMID: 39213571 DOI: 10.1103/physrevlett.133.073602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 07/03/2024] [Indexed: 09/04/2024]
Abstract
An electromagnetic wave propagating through a waveguide with a strongly coupled two-level superconducting artificial atom exhibits an evolving superposition with the atom. The Rabi oscillations in the atom result from a single excitation-relaxation, corresponding to photon absorption and stimulated emission from and to the field. In this study, we experimentally investigated the time-dependent behavior of the field transmitted through a waveguide with a strongly coupled transmon. The scattered fields agree well with the predictions of the input-output theory. We demonstrate that the time evolution of the propagating fields, because of the interaction, encapsulates all information about the atom. Furthermore, we deduced the dynamics of the incoherent radiation component from the first-order correlation function of the measured field.
Collapse
|
2
|
Lin WJ, Lu Y, Wen PY, Cheng YT, Lee CP, Lin KT, Chiang KH, Hsieh MC, Chen CY, Chien CH, Lin JJ, Chen JC, Lin YH, Chuu CS, Nori F, Frisk Kockum A, Lin GD, Delsing P, Hoi IC. Deterministic Loading of Microwaves onto an Artificial Atom Using a Time-Reversed Waveform. NANO LETTERS 2022; 22:8137-8142. [PMID: 36200986 PMCID: PMC9615994 DOI: 10.1021/acs.nanolett.2c02578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/28/2022] [Indexed: 06/16/2023]
Abstract
Loading quantum information deterministically onto a quantum node is an important step toward a quantum network. Here, we demonstrate that coherent-state microwave photons with an optimal temporal waveform can be efficiently loaded onto a single superconducting artificial atom in a semi-infinite one-dimensional (1D) transmission-line waveguide. Using a weak coherent state (the number of photons (N) contained in the pulse ≪1) with an exponentially rising waveform, whose time constant matches the decoherence time of the artificial atom, we demonstrate a loading efficiency of 94.2% ± 0.7% from 1D semifree space to the artificial atom. The high loading efficiency is due to time-reversal symmetry: the overlap between the incoming wave and the time-reversed emitted wave is up to 97.1% ± 0.4%. Our results open up promising applications in realizing quantum networks based on waveguide quantum electrodynamics.
Collapse
Affiliation(s)
- Wei-Ju Lin
- Department
of Physics, National Tsing Hua University, Hsinchu30013, Taiwan
| | - Yong Lu
- Department
of Microtechnology and Nanoscience (MC2), Chalmers University of Technology, SE-412 96Gothenburg, Sweden
- 3rd
Institute of Physics, IQST, and Research Centre SCoPE, University of Stuttgart, Stuttgart70049, Germany
| | - Ping Yi Wen
- Department
of Physics, National Chung Cheng University, Chiayi621301, Taiwan
| | - Yu-Ting Cheng
- Department
of Physics, National Tsing Hua University, Hsinchu30013, Taiwan
| | - Ching-Ping Lee
- Department
of Physics, National Tsing Hua University, Hsinchu30013, Taiwan
| | - Kuan Ting Lin
- CQSE,
Department of Physics, National Taiwan University, Taipei10617, Taiwan
| | - Kuan Hsun Chiang
- Department
of Physics, National Central University, Jhongli32001, Taiwan
| | - Ming Che Hsieh
- Department
of Physics, National Tsing Hua University, Hsinchu30013, Taiwan
| | - Ching-Yeh Chen
- Department
of Physics, National Tsing Hua University, Hsinchu30013, Taiwan
| | - Chin-Hsun Chien
- Department
of Physics, National Tsing Hua University, Hsinchu30013, Taiwan
| | - Jia Jhan Lin
- Department
of Physics, National Tsing Hua University, Hsinchu30013, Taiwan
| | - Jeng-Chung Chen
- Department
of Physics, National Tsing Hua University, Hsinchu30013, Taiwan
- Center
for Quantum Technology, National Tsing Hua
University, Hsinchu30013, Taiwan
| | - Yen Hsiang Lin
- Department
of Physics, National Tsing Hua University, Hsinchu30013, Taiwan
- Center
for Quantum Technology, National Tsing Hua
University, Hsinchu30013, Taiwan
| | - Chih-Sung Chuu
- Department
of Physics, National Tsing Hua University, Hsinchu30013, Taiwan
- Center
for Quantum Technology, National Tsing Hua
University, Hsinchu30013, Taiwan
| | - Franco Nori
- Theoretical
Quantum Physics Laboratory, RIKEN Cluster
for Pioneering Research, Wako-shi, Saitama351-0198, Japan
- Physics
Department, The University of Michigan, Ann Arbor, Michigan48109-1040, United States
| | - Anton Frisk Kockum
- Department
of Microtechnology and Nanoscience (MC2), Chalmers University of Technology, SE-412 96Gothenburg, Sweden
| | - Guin Dar Lin
- CQSE,
Department of Physics, National Taiwan University, Taipei10617, Taiwan
- Physics
Division, National Center for Theoretical
Sciences, Taipei10617, Taiwan
- Trapped-Ion
Quantum Computing Laboratory, Hon Hai Research
Institute, Taipei11492, Taiwan
| | - Per Delsing
- Department
of Microtechnology and Nanoscience (MC2), Chalmers University of Technology, SE-412 96Gothenburg, Sweden
| | - Io-Chun Hoi
- Department
of Physics, National Tsing Hua University, Hsinchu30013, Taiwan
- Department
of Physics, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR999077, China
| |
Collapse
|
3
|
Stevens J, Szombati D, Maffei M, Elouard C, Assouly R, Cottet N, Dassonneville R, Ficheux Q, Zeppetzauer S, Bienfait A, Jordan AN, Auffèves A, Huard B. Energetics of a Single Qubit Gate. PHYSICAL REVIEW LETTERS 2022; 129:110601. [PMID: 36154409 DOI: 10.1103/physrevlett.129.110601] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 08/19/2022] [Accepted: 08/24/2022] [Indexed: 06/16/2023]
Abstract
Qubits are physical, a quantum gate thus not only acts on the information carried by the qubit but also on its energy. What is then the corresponding flow of energy between the qubit and the controller that implements the gate? Here we exploit a superconducting platform to answer this question in the case of a quantum gate realized by a resonant drive field. During the gate, the superconducting qubit becomes entangled with the microwave drive pulse so that there is a quantum superposition between energy flows. We measure the energy change in the drive field conditioned on the outcome of a projective qubit measurement. We demonstrate that the drive's energy change associated with the measurement backaction can exceed by far the energy that can be extracted by the qubit. This can be understood by considering the qubit as a weak measurement apparatus of the driving field.
Collapse
Affiliation(s)
- J Stevens
- Ecole Normale Supérieure de Lyon, CNRS, Laboratoire de Physique, F-69342 Lyon, France
| | - D Szombati
- Ecole Normale Supérieure de Lyon, CNRS, Laboratoire de Physique, F-69342 Lyon, France
| | - M Maffei
- CNRS and Université Grenoble Alpes, Institut Néel, F-38042 Grenoble, France
| | - C Elouard
- QUANTIC team, INRIA de Paris, 2 Rue Simone Iff, 75012 Paris, France
| | - R Assouly
- Ecole Normale Supérieure de Lyon, CNRS, Laboratoire de Physique, F-69342 Lyon, France
| | - N Cottet
- Ecole Normale Supérieure de Lyon, CNRS, Laboratoire de Physique, F-69342 Lyon, France
| | - R Dassonneville
- Ecole Normale Supérieure de Lyon, CNRS, Laboratoire de Physique, F-69342 Lyon, France
| | - Q Ficheux
- Ecole Normale Supérieure de Lyon, CNRS, Laboratoire de Physique, F-69342 Lyon, France
| | - S Zeppetzauer
- Ecole Normale Supérieure de Lyon, CNRS, Laboratoire de Physique, F-69342 Lyon, France
| | - A Bienfait
- Ecole Normale Supérieure de Lyon, CNRS, Laboratoire de Physique, F-69342 Lyon, France
| | - A N Jordan
- Institute for Quantum Studies, Chapman University, 1 University Drive, Orange, California 92866, USA
- Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627, USA
| | - A Auffèves
- CNRS and Université Grenoble Alpes, Institut Néel, F-38042 Grenoble, France
| | - B Huard
- Ecole Normale Supérieure de Lyon, CNRS, Laboratoire de Physique, F-69342 Lyon, France
| |
Collapse
|
4
|
Kannan B, Campbell DL, Vasconcelos F, Winik R, Kim DK, Kjaergaard M, Krantz P, Melville A, Niedzielski BM, Yoder JL, Orlando TP, Gustavsson S, Oliver WD. Generating spatially entangled itinerant photons with waveguide quantum electrodynamics. SCIENCE ADVANCES 2020; 6:eabb8780. [PMID: 33028523 PMCID: PMC7541065 DOI: 10.1126/sciadv.abb8780] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 08/21/2020] [Indexed: 05/31/2023]
Abstract
Realizing a fully connected network of quantum processors requires the ability to distribute quantum entanglement. For distant processing nodes, this can be achieved by generating, routing, and capturing spatially entangled itinerant photons. In this work, we demonstrate the deterministic generation of such photons using superconducting transmon qubits that are directly coupled to a waveguide. In particular, we generate two-photon N00N states and show that the state and spatial entanglement of the emitted photons are tunable via the qubit frequencies. Using quadrature amplitude detection, we reconstruct the moments and correlations of the photonic modes and demonstrate state preparation fidelities of 84%. Our results provide a path toward realizing quantum communication and teleportation protocols using itinerant photons generated by quantum interference within a waveguide quantum electrodynamics architecture.
Collapse
Affiliation(s)
- B Kannan
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - D L Campbell
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - F Vasconcelos
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - R Winik
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - D K Kim
- MIT Lincoln Laboratory, 244 Wood Street, Lexington, MA 02420, USA
| | - M Kjaergaard
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - P Krantz
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - A Melville
- MIT Lincoln Laboratory, 244 Wood Street, Lexington, MA 02420, USA
| | - B M Niedzielski
- MIT Lincoln Laboratory, 244 Wood Street, Lexington, MA 02420, USA
| | - J L Yoder
- MIT Lincoln Laboratory, 244 Wood Street, Lexington, MA 02420, USA
| | - T P Orlando
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - S Gustavsson
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - W D Oliver
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- MIT Lincoln Laboratory, 244 Wood Street, Lexington, MA 02420, USA
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
5
|
Wen PY, Lin KT, Kockum AF, Suri B, Ian H, Chen JC, Mao SY, Chiu CC, Delsing P, Nori F, Lin GD, Hoi IC. Large Collective Lamb Shift of Two Distant Superconducting Artificial Atoms. PHYSICAL REVIEW LETTERS 2019; 123:233602. [PMID: 31868475 DOI: 10.1103/physrevlett.123.233602] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Indexed: 06/10/2023]
Abstract
Virtual photons can mediate interaction between atoms, resulting in an energy shift known as a collective Lamb shift. Observing the collective Lamb shift is challenging, since it can be obscured by radiative decay and direct atom-atom interactions. Here, we place two superconducting qubits in a transmission line terminated by a mirror, which suppresses decay. We measure a collective Lamb shift reaching 0.8% of the qubit transition frequency and twice the transition linewidth. We also show that the qubits can interact via the transmission line even if one of them does not decay into it.
Collapse
Affiliation(s)
- P Y Wen
- Department of Physics, National Tsing Hua University, Hsinchu 30013, Taiwan
- Center for Quantum Technology, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - K-T Lin
- CQSE, Department of Physics, National Taiwan University, Taipei 10617, Taiwan
| | - A F Kockum
- Department of Microtechnology and Nanoscience, Chalmers University of Technology, 412 96 Gothenburg, Sweden
- Theoretical Quantum Physics Laboratory, RIKEN Cluster for Pioneering Research, Wako-shi, Saitama 351-0198, Japan
| | - B Suri
- Department of Microtechnology and Nanoscience, Chalmers University of Technology, 412 96 Gothenburg, Sweden
- Department of Instrumentation and Applied Physics, Indian Institute of Science, Bengaluru 560012, India
| | - H Ian
- Institute of Applied Physics and Materials Engineering, University of Macau, Macau, China
- UMacau Zhuhai Research Institute, Zhuhai, Guangdong 519031, China
| | - J C Chen
- Department of Physics, National Tsing Hua University, Hsinchu 30013, Taiwan
- Center for Quantum Technology, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - S Y Mao
- Institute of Electro-Optical Engineering, National Chiao Tung University, Hsinchu 30013, Taiwan
| | - C C Chiu
- Department of Electrical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - P Delsing
- Department of Microtechnology and Nanoscience, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| | - F Nori
- Theoretical Quantum Physics Laboratory, RIKEN Cluster for Pioneering Research, Wako-shi, Saitama 351-0198, Japan
- Physics Department, The University of Michigan, Ann Arbor, Michigan 48109-1040, USA
| | - G-D Lin
- CQSE, Department of Physics, National Taiwan University, Taipei 10617, Taiwan
| | - I-C Hoi
- Department of Physics, National Tsing Hua University, Hsinchu 30013, Taiwan
- Center for Quantum Technology, National Tsing Hua University, Hsinchu 30013, Taiwan
| |
Collapse
|
6
|
Sundaresan NM, Lundgren R, Zhu G, Gorshkov AV, Houck AA. Interacting Qubit-Photon Bound States with Superconducting Circuits. PHYSICAL REVIEW. X 2019; 9:10.1103/physrevx.9.011021. [PMID: 32117578 PMCID: PMC7047877 DOI: 10.1103/physrevx.9.011021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Qubits strongly coupled to a photonic crystal give rise to qubit-photon dressed bound states. These bound states, comprising the qubits and spatially localized photonic modes induced around the qubits, are the basis for many exotic physical scenarios. The localization of these states changes with qubit detuning from the photonic crystal band edge, offering an avenue of in situ control of bound-state interaction. Here, we present experimental results from a device with two transmon qubits coupled to a superconducting microwave photonic crystal and realize tunable on-site and interbound state interactions. We observe a fourth-order two-photon virtual process between bound states indicating strong coupling between the photonic crystal and transmon qubits. Because of their localization-dependent interaction, these states offer the ability to realize one-dimensional chains of bound states with tunable and potentially long-range interactions that preserve the qubits' spatial organization. The widely tunable, strong, and robust interactions demonstrated with this system are promising benchmarks towards realizing larger, more complex systems that use bound states to build and study quantum spin models.
Collapse
Affiliation(s)
- Neereja M Sundaresan
- Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - Rex Lundgren
- Joint Quantum Institute, NIST/University of Maryland, College Park, Maryland 20742, USA
| | - Guanyu Zhu
- Joint Quantum Institute, NIST/University of Maryland, College Park, Maryland 20742, USA
| | - Alexey V Gorshkov
- Joint Quantum Institute and Joint Center for Quantum Information and Computer Science, NIST/University of Maryland, College Park, Maryland 20742, USA
| | - Andrew A Houck
- Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544, USA
| |
Collapse
|
7
|
Kockum AF, Johansson G, Nori F. Decoherence-Free Interaction between Giant Atoms in Waveguide Quantum Electrodynamics. PHYSICAL REVIEW LETTERS 2018; 120:140404. [PMID: 29694115 DOI: 10.1103/physrevlett.120.140404] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Indexed: 06/08/2023]
Abstract
In quantum-optics experiments with both natural and artificial atoms, the atoms are usually small enough that they can be approximated as pointlike compared to the wavelength of the electromagnetic radiation with which they interact. However, superconducting qubits coupled to a meandering transmission line, or to surface acoustic waves, can realize "giant artificial atoms" that couple to a bosonic field at several points which are wavelengths apart. Here, we study setups with multiple giant atoms coupled at multiple points to a one-dimensional (1D) waveguide. We show that the giant atoms can be protected from decohering through the waveguide, but still have exchange interactions mediated by the waveguide. Unlike in decoherence-free subspaces, here the entire multiatom Hilbert space (2^{N} states for N atoms) is protected from decoherence. This is not possible with "small" atoms. We further show how this decoherence-free interaction can be designed in setups with multiple atoms to implement, e.g., a 1D chain of atoms with nearest-neighbor couplings or a collection of atoms with all-to-all connectivity. This may have important applications in quantum simulation and quantum computing.
Collapse
Affiliation(s)
| | - Göran Johansson
- Department of Microtechnology and Nanoscience (MC2), Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | - Franco Nori
- Theoretical Quantum Physics Laboratory, RIKEN, Saitama 351-0198, Japan
- Physics Department, The University of Michigan, Ann Arbor, Michigan 48109-1040, USA
| |
Collapse
|
8
|
Kukharchyk N, Sholokhov D, Morozov O, Korableva SL, Cole JH, Kalachev AA, Bushev PA. Optical vector network analysis of ultranarrow transitions in 166Er 3+ : 7LiYF 4 crystal. OPTICS LETTERS 2018; 43:935-938. [PMID: 29444031 DOI: 10.1364/ol.43.000935] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 01/19/2018] [Indexed: 06/08/2023]
Abstract
We present optical vector network analysis (OVNA) of an isotopically purified Er1663+:LiYF47 crystal. The OVNA method is based on generation and detection of a modulated optical sideband by using a radio-frequency vector network analyzer. This technique is widely used in the field of microwave photonics for the characterization of optical responses of optical devices such as filters and high-Q resonators. However, dense solid-state atomic ensembles induce a large phase shift on one of the optical sidebands that results in the appearance of extra features on the measured transmission response. We present a simple theoretical model that accurately describes the observed spectra and helps to reconstruct the absorption profile of a solid-state atomic ensemble as well as corresponding change of the refractive index in the vicinity of atomic resonances.
Collapse
|
9
|
Wen PY, Kockum AF, Ian H, Chen JC, Nori F, Hoi IC. Reflective Amplification without Population Inversion from a Strongly Driven Superconducting Qubit. PHYSICAL REVIEW LETTERS 2018; 120:063603. [PMID: 29481213 DOI: 10.1103/physrevlett.120.063603] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 12/14/2017] [Indexed: 06/08/2023]
Abstract
Amplification of optical or microwave fields is often achieved by strongly driving a medium to induce population inversion such that a weak probe can be amplified through stimulated emission. Here we strongly couple a superconducting qubit, an artificial atom, to the field in a semi-infinite waveguide. When driving the qubit strongly on resonance such that a Mollow triplet appears, we observe a 7% amplitude gain for a weak probe at frequencies in between the triplet. This amplification is not due to population inversion, neither in the bare qubit basis nor in the dressed-state basis, but instead results from a four-photon process that converts energy from the strong drive to the weak probe. We find excellent agreement between the experimental results and numerical simulations without any free fitting parameters. Since our device consists of a single two-level artificial atom, the simplest possible quantum system, it can be viewed as the most fundamental version of a four-wave-mixing parametric amplifier.
Collapse
Affiliation(s)
- P Y Wen
- Department of Physics, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - A F Kockum
- Center for Emergent Matter Science, RIKEN, Saitama 351-0198, Japan
| | - H Ian
- Institute of Applied Physics and Materials Engineering, University of Macau, Macau
- UMacau Zhuhai Research Institute, Zhuhai, Guangdong 519031, China
| | - J C Chen
- Department of Physics, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - F Nori
- Center for Emergent Matter Science, RIKEN, Saitama 351-0198, Japan
- Physics Department, The University of Michigan, Ann Arbor, Michigan 48109-1040, USA
| | - I-C Hoi
- Department of Physics, National Tsing Hua University, Hsinchu 30013, Taiwan
| |
Collapse
|
10
|
Dmitriev AY, Shaikhaidarov R, Antonov VN, Hönigl-Decrinis T, Astafiev OV. Quantum wave mixing and visualisation of coherent and superposed photonic states in a waveguide. Nat Commun 2017; 8:1352. [PMID: 29116086 PMCID: PMC5676721 DOI: 10.1038/s41467-017-01471-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 09/20/2017] [Indexed: 11/13/2022] Open
Abstract
Superconducting quantum systems (artificial atoms) have been recently successfully used to demonstrate on-chip effects of quantum optics with single atoms in the microwave range. In particular, a well-known effect of four wave mixing could reveal a series of features beyond classical physics, when a non-linear medium is scaled down to a single quantum scatterer. Here we demonstrate the phenomenon of quantum wave mixing (QWM) on a single superconducting artificial atom. In the QWM, the spectrum of elastically scattered radiation is a direct map of the interacting superposed and coherent photonic states. Moreover, the artificial atom visualises photon-state statistics, distinguishing coherent, one- and two-photon superposed states with the finite (quantised) number of peaks in the quantum regime. Our results may give a new insight into nonlinear quantum effects in microwave optics with artificial atoms. The phenomenon of wave mixing is expected to show peculiar features when scaled down to the quantum level. Here, the authors show how coherent electromagnetic waves propagating in a 1D transmission line with an embedded two-level artificial atom are mapped into a quantised spectrum of narrow peaks.
Collapse
Affiliation(s)
- A Yu Dmitriev
- Laboratory of Artificial Quantum Systems, Moscow Institute of Physics and Technology, Dolgoprudny, 141700, Russia. .,Institute of Solid State Physics, Russian Academy of Sciences, Chernogolovka, 142432, Russian Federation.
| | - R Shaikhaidarov
- Laboratory of Artificial Quantum Systems, Moscow Institute of Physics and Technology, Dolgoprudny, 141700, Russia.,Department of Physics, Royal Holloway, University of London, Egham, Surrey, TW20 0EX, UK
| | - V N Antonov
- Laboratory of Artificial Quantum Systems, Moscow Institute of Physics and Technology, Dolgoprudny, 141700, Russia.,Department of Physics, Royal Holloway, University of London, Egham, Surrey, TW20 0EX, UK
| | - T Hönigl-Decrinis
- Department of Physics, Royal Holloway, University of London, Egham, Surrey, TW20 0EX, UK.,National Physical Laboratory, Teddington, TW11 0LW, UK
| | - O V Astafiev
- Laboratory of Artificial Quantum Systems, Moscow Institute of Physics and Technology, Dolgoprudny, 141700, Russia. .,Department of Physics, Royal Holloway, University of London, Egham, Surrey, TW20 0EX, UK. .,National Physical Laboratory, Teddington, TW11 0LW, UK.
| |
Collapse
|
11
|
Cottet N, Jezouin S, Bretheau L, Campagne-Ibarcq P, Ficheux Q, Anders J, Auffèves A, Azouit R, Rouchon P, Huard B. Observing a quantum Maxwell demon at work. Proc Natl Acad Sci U S A 2017; 114:7561-7564. [PMID: 28674009 PMCID: PMC5530687 DOI: 10.1073/pnas.1704827114] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In apparent contradiction to the laws of thermodynamics, Maxwell's demon is able to cyclically extract work from a system in contact with a thermal bath, exploiting the information about its microstate. The resolution of this paradox required the insight that an intimate relationship exists between information and thermodynamics. Here, we realize a Maxwell demon experiment that tracks the state of each constituent in both the classical and quantum regimes. The demon is a microwave cavity that encodes quantum information about a superconducting qubit and converts information into work by powering up a propagating microwave pulse by stimulated emission. Thanks to the high level of control of superconducting circuits, we directly measure the extracted work and quantify the entropy remaining in the demon's memory. This experiment provides an enlightening illustration of the interplay of thermodynamics with quantum information.
Collapse
Affiliation(s)
- Nathanaël Cottet
- Laboratoire Pierre Aigrain, Ecole Normale Supérieure, PSL Research University, CNRS, Université Pierre et Marie Curie, Sorbonne Universités, Université Paris Diderot, Sorbonne Paris-Cité, 75231 Paris Cedex 05, France
| | - Sébastien Jezouin
- Laboratoire Pierre Aigrain, Ecole Normale Supérieure, PSL Research University, CNRS, Université Pierre et Marie Curie, Sorbonne Universités, Université Paris Diderot, Sorbonne Paris-Cité, 75231 Paris Cedex 05, France
| | - Landry Bretheau
- Laboratoire Pierre Aigrain, Ecole Normale Supérieure, PSL Research University, CNRS, Université Pierre et Marie Curie, Sorbonne Universités, Université Paris Diderot, Sorbonne Paris-Cité, 75231 Paris Cedex 05, France
| | - Philippe Campagne-Ibarcq
- Laboratoire Pierre Aigrain, Ecole Normale Supérieure, PSL Research University, CNRS, Université Pierre et Marie Curie, Sorbonne Universités, Université Paris Diderot, Sorbonne Paris-Cité, 75231 Paris Cedex 05, France
| | - Quentin Ficheux
- Laboratoire Pierre Aigrain, Ecole Normale Supérieure, PSL Research University, CNRS, Université Pierre et Marie Curie, Sorbonne Universités, Université Paris Diderot, Sorbonne Paris-Cité, 75231 Paris Cedex 05, France
| | - Janet Anders
- Physics and Astronomy, College of Engineering, Mathematics, and Physical Sciences University of Exeter, Exeter EX4 4QL, United Kingdom
| | - Alexia Auffèves
- Institut Néel, UPR2940 CNRS and Université Grenoble Alpes, 38042 Grenoble, France
| | - Rémi Azouit
- Centre Automatique et Systèmes, Mines ParisTech, PSL Research University, 75272 Paris Cedex 6, France
- Quantic Team, INRIA Paris, 75012 Paris, France
| | - Pierre Rouchon
- Centre Automatique et Systèmes, Mines ParisTech, PSL Research University, 75272 Paris Cedex 6, France
- Quantic Team, INRIA Paris, 75012 Paris, France
| | - Benjamin Huard
- Laboratoire Pierre Aigrain, Ecole Normale Supérieure, PSL Research University, CNRS, Université Pierre et Marie Curie, Sorbonne Universités, Université Paris Diderot, Sorbonne Paris-Cité, 75231 Paris Cedex 05, France;
- Laboratoire de Physique, Ecole Normale Supérieure de Lyon, 69364 Lyon Cedex 7, France
| |
Collapse
|
12
|
Tuneable on-demand single-photon source in the microwave range. Nat Commun 2016; 7:12588. [PMID: 27545689 PMCID: PMC4996936 DOI: 10.1038/ncomms12588] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 07/15/2016] [Indexed: 11/29/2022] Open
Abstract
An on-demand single-photon source is a key element in a series of prospective quantum technologies and applications. Here we demonstrate the operation of a tuneable on-demand microwave photon source based on a fully controllable superconducting artificial atom strongly coupled to an open-ended transmission line. The atom emits a photon upon excitation by a short microwave π-pulse applied through a control line. The intrinsically limited device efficiency is estimated to be in the range 65–80% in a wide frequency range from 7.75 to 10.5 GHz continuously tuned by an external magnetic field. The actual demonstrated efficiency is also affected by the excited state preparation, which is about 90% in our experiments. The single-photon generation from the single-photon source is additionally confirmed by anti-bunching in the second-order correlation function. The source may have important applications in quantum communication, quantum information processing and sensing. Microwave single photon sources are important for quantum applications, but their design often incorporates a resonator that fixes the frequency of the emitted photon. Here, the authors demonstrate a tuneable on-demand photon source based on an artificial atom asymmetrically coupled to two transmission lines.
Collapse
|
13
|
Peng ZH, Liu YX, Peltonen JT, Yamamoto T, Tsai JS, Astafiev O. Correlated Emission Lasing in Harmonic Oscillators Coupled via a Single Three-Level Artificial Atom. PHYSICAL REVIEW LETTERS 2015; 115:223603. [PMID: 26650305 DOI: 10.1103/physrevlett.115.223603] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Indexed: 06/05/2023]
Abstract
A single superconducting artificial atom can be used for coupling electromagnetic fields up to the single-photon level due to an easily achieved strong coupling regime. Bringing a pair of harmonic oscillators into resonance with the transitions of a three-level atom converts atomic spontaneous processes into correlated emission dynamics. We present the experimental demonstration of two-mode correlated emission lasing in harmonic oscillators coupled via a fully controllable three-level superconducting quantum system (artificial atom). The correlation of emissions with two different colors reveals itself as equally narrowed linewidths and quenching of their mutual phase diffusion. The mutual linewidth is more than 4 orders of magnitude narrower than the Schawlow-Townes limit. The interference between the different color lasing fields demonstrates that the two-mode fields are strongly correlated.
Collapse
Affiliation(s)
- Z H Peng
- Center for Emergent Matter Science, RIKEN, Wako, Saitama 351-0198, Japan
- Physics Department, Royal Holloway, University of London, Egham, Surrey TW20 0EX, United Kingdom
| | - Yu-Xi Liu
- Institute of Microelectronics, Tsinghua University, Beijing 100084, China
- Tsinghua National Laboratory for Information Science and Technology (TNList), Beijing 100084, China
| | - J T Peltonen
- Center for Emergent Matter Science, RIKEN, Wako, Saitama 351-0198, Japan
| | - T Yamamoto
- NEC Smart Energy Research Laboratories, Tsukuba, Ibaraki 305-8501, Japan
| | - J S Tsai
- Center for Emergent Matter Science, RIKEN, Wako, Saitama 351-0198, Japan
- Department of Physics, Tokyo University of Science, Kagurazaka, Tokyo 162-8601, Japan
| | - O Astafiev
- Center for Emergent Matter Science, RIKEN, Wako, Saitama 351-0198, Japan
- Physics Department, Royal Holloway, University of London, Egham, Surrey TW20 0EX, United Kingdom
- National Physical Laboratory, Teddington, TW11 0LW, United Kingdom
- Moscow Institute of Physics and Technology, Dolgoprudny, 141700, Russia
| |
Collapse
|
14
|
Silaev M, Heikkilä TT, Virtanen P. Lindblad-equation approach for the full counting statistics of work and heat in driven quantum systems. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 90:022103. [PMID: 25215685 DOI: 10.1103/physreve.90.022103] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Indexed: 06/03/2023]
Abstract
We formulate the general approach based on the Lindblad equation to calculate the full counting statistics of work and heat produced by driven quantum systems weakly coupled with a Markovian thermal bath. The approach can be applied to a wide class of dissipative quantum systems driven by an arbitrary force protocol. We show the validity of general fluctuation relations and consider several generic examples. The possibilities of using calorimetric measurements to test the presence of coherence and entanglement in the open quantum systems are discussed.
Collapse
Affiliation(s)
- Mihail Silaev
- Low Temperature Laboratory, O.V. Lounasmaa Laboratory, Aalto University, P.O. Box 15100, FI-00076 AALTO, Finland and Department of Theoretical Physics, The Royal Institute of Technology, Stockholm SE-10691, Sweden
| | - Tero T Heikkilä
- Low Temperature Laboratory, O.V. Lounasmaa Laboratory, Aalto University, P.O. Box 15100, FI-00076 AALTO, Finland and Department of Physics, Nanoscience Center, University of Jyväskylä, P.O. Box 35, FI-40014 University of Jyväskylä, Finland
| | - Pauli Virtanen
- Low Temperature Laboratory, O.V. Lounasmaa Laboratory, Aalto University, P.O. Box 15100, FI-00076 AALTO, Finland
| |
Collapse
|
15
|
Campagne-Ibarcq P, Bretheau L, Flurin E, Auffèves A, Mallet F, Huard B. Observing interferences between past and future quantum states in resonance fluorescence. PHYSICAL REVIEW LETTERS 2014; 112:180402. [PMID: 24856677 DOI: 10.1103/physrevlett.112.180402] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Indexed: 06/03/2023]
Abstract
The fluorescence of a resonantly driven superconducting qubit is measured in the time domain, providing a weak probe of the qubit dynamics. Prior preparation and final, single-shot measurement of the qubit allows us to average fluorescence records conditionally on past and future knowledge. The resulting interferences reveal purely quantum features characteristic of weak values. We demonstrate conditional averages that go beyond classical boundaries and probe directly the jump operator associated with relaxation. The experimental results are remarkably captured by a recent theory, which generalizes quantum mechanics to open quantum systems whose past and future are known.
Collapse
Affiliation(s)
- P Campagne-Ibarcq
- Laboratoire Pierre Aigrain, Ecole Normale Supérieure, CNRS (UMR 8551), Université Pierre et Marie Curie, Université Denis Diderot 24, rue Lhomond, 75231 Paris Cedex 05, France
| | - L Bretheau
- Laboratoire Pierre Aigrain, Ecole Normale Supérieure, CNRS (UMR 8551), Université Pierre et Marie Curie, Université Denis Diderot 24, rue Lhomond, 75231 Paris Cedex 05, France
| | - E Flurin
- Laboratoire Pierre Aigrain, Ecole Normale Supérieure, CNRS (UMR 8551), Université Pierre et Marie Curie, Université Denis Diderot 24, rue Lhomond, 75231 Paris Cedex 05, France
| | - A Auffèves
- CNRS and Université Grenoble Alpes, Institut Néel, 38042 Grenoble, France
| | - F Mallet
- Laboratoire Pierre Aigrain, Ecole Normale Supérieure, CNRS (UMR 8551), Université Pierre et Marie Curie, Université Denis Diderot 24, rue Lhomond, 75231 Paris Cedex 05, France
| | - B Huard
- Laboratoire Pierre Aigrain, Ecole Normale Supérieure, CNRS (UMR 8551), Université Pierre et Marie Curie, Université Denis Diderot 24, rue Lhomond, 75231 Paris Cedex 05, France
| |
Collapse
|
16
|
van Loo AF, Fedorov A, Lalumiere K, Sanders BC, Blais A, Wallraff A. Photon-Mediated Interactions Between Distant Artificial Atoms. Science 2013; 342:1494-6. [DOI: 10.1126/science.1244324] [Citation(s) in RCA: 352] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|