1
|
Mo R, Xu D, Xu N. Thinning by cluster breaking: Active matter and shear flows share thinning mechanisms. Proc Natl Acad Sci U S A 2024; 121:e2318917121. [PMID: 38843185 PMCID: PMC11181082 DOI: 10.1073/pnas.2318917121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 05/04/2024] [Indexed: 06/19/2024] Open
Abstract
Among many unexpected phenomena of active matter is the recently observed superfluid-like thinning (viscosity drop) behavior of bacteria suspensions. Understanding this peculiar self-propelled thinning by active matter is of theoretical and practical importance. Here, we find that, although distinct in driving mechanisms, active matter and shear flows exhibit similar thinning behaviors upon the increase of self-propulsion and shear forces, respectively. Our structural characterizations reveal that they actually share the same cluster-breaking mechanism of thinning. How fast and how shattered the cluster is broken determines the (dis)continuity of the thinning. This explains why adding active particles to Newtonian fluids can cause thinning, in which rotation of active particles play a key role in breaking clusters. Our work proposes a mechanism of self-propelled thinning and further establishes the underlying connections between active matter and shear flows.
Collapse
Affiliation(s)
- Ruoyang Mo
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei230026, People’s Republic of China
- Chinese Academy of Sciences Key Laboratory of Microscale Magnetic Resonance, University of Science and Technology of China, Hefei230026, People’s Republic of China
- Department of Physics, University of Science and Technology of China, Hefei230026, People’s Republic of China
| | - Ding Xu
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei230026, People’s Republic of China
- Chinese Academy of Sciences Key Laboratory of Microscale Magnetic Resonance, University of Science and Technology of China, Hefei230026, People’s Republic of China
- Department of Physics, University of Science and Technology of China, Hefei230026, People’s Republic of China
| | - Ning Xu
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei230026, People’s Republic of China
- Chinese Academy of Sciences Key Laboratory of Microscale Magnetic Resonance, University of Science and Technology of China, Hefei230026, People’s Republic of China
- Department of Physics, University of Science and Technology of China, Hefei230026, People’s Republic of China
| |
Collapse
|
2
|
Kim S, Svetlizky I, Weitz DA, Spaepen F. Work hardening in colloidal crystals. Nature 2024; 630:648-653. [PMID: 38811735 PMCID: PMC11186786 DOI: 10.1038/s41586-024-07453-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 04/22/2024] [Indexed: 05/31/2024]
Abstract
Colloidal crystals exhibit interesting properties1-4 that are in many ways analogous to their atomic counterparts. They have the same crystal structures2,5-7, undergo the same phase transitions8-10, and possess the same crystallographic defects11-14. In contrast to these structural properties, the mechanical properties of colloidal crystals are quite different from those of atomic systems. For example, unlike in atomic systems, the elasticity of hard-sphere colloidal crystals is purely entropic15; as a result, they are so soft that they can be melted just by stirring16,17. Moreover, crystalline materials deform plastically when subjected to increasing shear and become stronger because of the ubiquitous process of work hardening18; but this has so far never been observed in colloidal crystals, to our knowledge. Here we show that hard-sphere colloidal crystals exhibit work hardening. Moreover, despite their softness, the shear strength of colloidal crystals can increase and approach the theoretical limit for crystals, a value reached in very few other materials so far. We use confocal microscopy to show that the strength of colloidal crystals increases with dislocation density, and ultimately reaches the classic Taylor scaling behaviour for atomic materials19-21, although hard-sphere interactions lack the complexity of atomic interactions. We demonstrate that Taylor hardening arises through the formation of dislocation junctions22. The Taylor hardening regime, however, is established only after a transient phase, and it ceases when the colloidal crystals become so hard that the strain is localized within a thin boundary layer in which slip results from an unconventional motion of dislocations. The striking resemblance between colloidal and atomic crystals, despite the many orders of magnitude difference in particle size and shear modulus, demonstrates the universality of work hardening.
Collapse
Affiliation(s)
- Seongsoo Kim
- School of Engineering and Applied Sciences (SEAS), Harvard University, Cambridge, MA, USA
| | - Ilya Svetlizky
- School of Engineering and Applied Sciences (SEAS), Harvard University, Cambridge, MA, USA.
| | - David A Weitz
- School of Engineering and Applied Sciences (SEAS), Harvard University, Cambridge, MA, USA
- Department of Physics, Harvard University, Cambridge, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Frans Spaepen
- School of Engineering and Applied Sciences (SEAS), Harvard University, Cambridge, MA, USA.
| |
Collapse
|
3
|
Hasan-nezhad H, Yazdani M, Akbari A, Salami-Kalajahi M, Kalhori MR. Study the effects of PEG modification methods on the resistance of 3D E-glass woven-STF composites at quasi-static and low-velocity impact loads. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
4
|
Dolganov PV, Shuravin NS, Dolganov VK, Kats EI, Stannarius R, Harth K, Trittel T, Park CS, Maclennan JE. Transient hexagonal structures in sheared emulsions of isotropic inclusions on smectic bubbles in microgravity conditions. Sci Rep 2021; 11:19144. [PMID: 34580344 PMCID: PMC8476617 DOI: 10.1038/s41598-021-98166-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 08/19/2021] [Indexed: 11/08/2022] Open
Abstract
We describe the collective behavior of isotropic droplets dispersed over a spherical smectic bubble, observed under microgravity conditions on the International Space Station (ISS). We find that droplets can form two-dimensional hexagonal structures changing with time. Our analysis indicates the possibility of spatial and temporal periodicity of such structures of droplets. Quantitative analysis of the hexagonal structure including the first three coordination circles was performed. A peculiar periodic-in-time ordering of the droplets, related to one-dimensional motion of droplets with non-uniform velocity, was found.
Collapse
Affiliation(s)
- P V Dolganov
- Institute of Solid State Physics, Russian Academy of Sciences (ISSP RAS), 142432, Chernogolovka, Moscow Region, Russia
| | - N S Shuravin
- Institute of Solid State Physics, Russian Academy of Sciences (ISSP RAS), 142432, Chernogolovka, Moscow Region, Russia
| | - V K Dolganov
- Institute of Solid State Physics, Russian Academy of Sciences (ISSP RAS), 142432, Chernogolovka, Moscow Region, Russia.
| | - E I Kats
- L.D. Landau Institute for Theoretical Physics, Russian Academy of Sciences, 142432, Chernogolovka, Moscow Region, Russia
| | - R Stannarius
- Institute of Physics, Otto von Guericke University, 39106, Magdeburg, Germany
| | - K Harth
- Institute of Physics, Otto von Guericke University, 39106, Magdeburg, Germany
| | - T Trittel
- Institute of Physics, Otto von Guericke University, 39106, Magdeburg, Germany
| | - C S Park
- Department of Physics, University of Colorado Boulder, Boulder, CO, 80309, USA
| | - J E Maclennan
- Department of Physics, University of Colorado Boulder, Boulder, CO, 80309, USA
| |
Collapse
|
5
|
Miron A, Mukamel D, Posch HA. Attraction and condensation of driven tracers in a narrow channel. Phys Rev E 2021; 104:024123. [PMID: 34525576 DOI: 10.1103/physreve.104.024123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 07/28/2021] [Indexed: 11/07/2022]
Abstract
Emergent bath-mediated attraction and condensation arise when multiple particles are simultaneously driven through an equilibrated bath under geometric constraints. While such scenarios are observed in a variety of nonequilibrium phenomena with an abundance of experimental and numerical evidence, little quantitative understanding of how these interactions arise is currently available. Here we approach the problem by studying the behavior of two driven "tracer" particles, propagating through a bath in a 1D lattice with excluded-volume interactions. We apply the mean-field approximation to analytically explore the mechanism responsible for the tracers' emergent interactions and compute the resulting effective attractive potential. This mechanism is then numerically shown to extend to a realistic model of hard driven Brownian disks confined to a narrow 2D channel.
Collapse
Affiliation(s)
- Asaf Miron
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - David Mukamel
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Harald A Posch
- Computational Physics Group, Faculty of Physics, University of Vienna, Vienna 1090, Austria
| |
Collapse
|
6
|
Svetlizky I, Roichman Y. Spatial Crossover Between Far-From-Equilibrium and Near-Equilibrium Dynamics in Locally Driven Suspensions. PHYSICAL REVIEW LETTERS 2021; 127:038003. [PMID: 34328767 DOI: 10.1103/physrevlett.127.038003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 05/24/2021] [Accepted: 06/09/2021] [Indexed: 06/13/2023]
Abstract
We examine the response of a quasi-two-dimensional colloidal suspension to a localized circular driving induced by optical tweezers. This approach allows us to resolve over 3 orders of magnitude in the Péclet number (Pe) and provide a direct observation of a sharp spatial crossover from far- to near-thermal-equilibrium regions of the suspension. In particular, particles migrate from high to low Pe regions and form strongly inhomogeneous steady-state density profiles with an emerging length scale that does not depend on the particle density and is set by Pe≈1. We show that the phenomenological two phase fluid constitutive model is in line with our results.
Collapse
Affiliation(s)
- Ilya Svetlizky
- School of Chemistry, Tel-Aviv University, Tel-Aviv 6997801, Israel
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Yael Roichman
- School of Chemistry, Tel-Aviv University, Tel-Aviv 6997801, Israel
- School of Physics and Astronomy, Tel-Aviv University, Tel-Aviv 6997801, Israel
| |
Collapse
|
7
|
Dynamical processes of interstitial diffusion in a two-dimensional colloidal crystal. Proc Natl Acad Sci U S A 2020; 117:13220-13226. [PMID: 32467163 DOI: 10.1073/pnas.1918097117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In two-dimensional (2D) solids, point defects, i.e., vacancies and interstitials, are bound states of topological defects of edge dislocations and disclinations. They are expected to play an important role in the thermodynamics of the system. Yet very little is known about the detailed dynamical processes of these defects. Two-dimensional colloidal crystals of submicrometer microspheres provide a convenient model solid system in which the microscopic dynamics of these defects can be studied in real time using video microscopy. Here we report a study of the dynamical processes of interstitials in a 2D colloidal crystal. The diffusion constants of both mono- and diinterstitials are measured and found to be significantly larger than those of vacancies. Diinterstitials are clearly slower than monointerstitials. We found that, by plotting the accumulative positions of five- and sevenfold disclinations relative to the center-of-mass position of the defect, a sixfold symmetric pattern emerges for monointerstitials. This is indicative of an equilibrium behavior that satisfies local detailed balance that the lattice remains elastic and can be thermally excited between lattice configurations reversibly. However, for diinterstitials the sixfold symmetry is not observed in the same time window, and the local lattice distortions are too severe to recover quickly. This observation suggests a possible route to creating local melting of a lattice (similarly one can create local melting by creating divacancies). This work opens up an avenue for microscopic studies of the dynamics of melting in colloidal model systems.
Collapse
|
8
|
Reichhardt C, Reichhardt CJO. Active microrheology, Hall effect, and jamming in chiral fluids. Phys Rev E 2019; 100:012604. [PMID: 31499805 DOI: 10.1103/physreve.100.012604] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Indexed: 06/10/2023]
Abstract
We examine the motion of a probe particle driven through a chiral fluid composed of circularly swimming disks. We find that the probe particle travels in both the longitudinal direction, parallel to the driving force, and in the transverse direction, perpendicular to the driving force, giving rise to a Hall angle. Under constant driving force, we show that the probe particle velocity in both the longitudinal and transverse directions exhibits nonmonotonic behavior as a function of the activity of the circle swimmers. The Hall angle is maximized when a resonance occurs between the frequency of the chiral disks and the motion of the probe particle. As the density of the chiral fluid increases, the Hall angle gradually decreases before reaching zero when the system enters a jammed state. We show that the onset of jamming depends on the chiral particle swimming frequency, with a fluid state appearing at low frequencies and a jammed solid occurring at high frequencies.
Collapse
Affiliation(s)
- C Reichhardt
- Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - C J O Reichhardt
- Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| |
Collapse
|
9
|
Bénichou O, Illien P, Oshanin G, Sarracino A, Voituriez R. Tracer diffusion in crowded narrow channels. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2018; 30:443001. [PMID: 30211693 DOI: 10.1088/1361-648x/aae13a] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We summarise different results on the diffusion of a tracer particle in lattice gases of hard-core particles with stochastic dynamics, which are confined to narrow channels-single-files, comb-like structures and quasi-one-dimensional channels with the width equal to several particle diameters. We show that in such geometries a surprisingly rich, sometimes even counter-intuitive, behaviour emerges, which is absent in unbounded systems. This is well-documented for the anomalous diffusion in single-files. Less known is the anomalous dynamics of a tracer particle in crowded branching single-files-comb-like structures, where several kinds of anomalous regimes take place. In narrow channels, which are broader than single-files, one encounters a wealth of anomalous behaviours in the case where the tracer particle is subject to a regular external bias: here, one observes an anomaly in the temporal evolution of the tracer particle velocity, super-diffusive at transient stages, and ultimately a giant diffusive broadening of fluctuations in the position of the tracer particle, as well as spectacular multi-tracer effects of self-clogging of narrow channels. Interactions between a biased tracer particle and a confined crowded environment also produce peculiar patterns in the out-of-equilibrium distribution of the environment particles, very different from the ones appearing in unbounded systems. For moderately dense systems, a surprising effect of a negative differential mobility takes place, such that the velocity of a biased tracer particle can be a non-monotonic function of the force. In some parameter ranges, both the velocity and the diffusion coefficient of a biased tracer particle can be non-monotonic functions of the density. We also survey different results obtained for a tracer particle diffusion in unbounded systems, which will permit a reader to have an exhaustively broad picture of the tracer diffusion in crowded environments.
Collapse
Affiliation(s)
- O Bénichou
- Sorbonne Université, CNRS, Laboratoire de Physique Théorique de la Matière Condensée (UMR 7600), 4 Place Jussieu, 75252 Paris Cedex 05, France
| | | | | | | | | |
Collapse
|
10
|
Solomon MJ. Tools and Functions of Reconfigurable Colloidal Assembly. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:11205-11219. [PMID: 29397742 DOI: 10.1021/acs.langmuir.7b03748] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We review work in reconfigurable colloidal assembly, a field in which rapid, back-and-forth transitions between the equilibrium states of colloidal self-assembly are accomplished by dynamic manipulation of the size, shape, and interaction potential of colloids, as well as the magnitude and direction of the fields applied to them. It is distinguished from the study of colloidal phase transitions by the centrality of thermodynamic variables and colloidal properties that are time switchable; by the applicability of these changes to generate transitions in assembled colloids that may be spatially localized; and by its incorporation of the effects of generalized potentials due to, for example, applied electric and magnetic fields. By drawing upon current progress in the field, we propose a matrix classification of reconfigurable colloidal systems based on the tool used and function performed by reconfiguration. The classification distinguishes between the multiple means by which reconfigurable assembly can be accomplished (i.e., the tools of reconfiguration) and the different kinds of structural transitions that can be achieved by it (i.e., the functions of reconfiguration). In the first case, the tools of reconfiguration can be broadly classed as (i) those that control the colloidal contribution to the system entropy-as through volumetric and/or shape changes of the particles; (ii) those that control the internal energy of the colloids-as through manipulation of colloidal interaction potentials; and (iii) those that control the spatially resolved potential energy that is imposed on the colloids-as through the introduction of field-induced phoretic mechanisms that yield colloidal displacement and accumulation. In the second case, the functions of reconfiguration include reversible: (i) transformation between different phases-including fluid, cluster, gel, and crystal structures; (ii) manipulation of the spacing between colloids in crystals and clusters; and (iii) translation, rotation, or shape-change of finite-size objects self-assembled from colloids. With this classification in hand, we correlate the current limits on the spatiotemporal scales for reconfigurable colloidal assembly and identify a set of future research challenges.
Collapse
|
11
|
Illien P, Bénichou O, Oshanin G, Sarracino A, Voituriez R. Nonequilibrium Fluctuations and Enhanced Diffusion of a Driven Particle in a Dense Environment. PHYSICAL REVIEW LETTERS 2018; 120:200606. [PMID: 29864325 DOI: 10.1103/physrevlett.120.200606] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 01/02/2018] [Indexed: 06/08/2023]
Abstract
We study the diffusion of a tracer particle driven out of equilibrium by an external force and traveling in a dense environment of arbitrary density. The system evolves on a discrete lattice and its stochastic dynamics is described by a master equation. Relying on a decoupling approximation that goes beyond the naive mean-field treatment of the problem, we calculate the fluctuations of the position of the tracer around its mean value on a lattice of arbitrary dimension, and with different boundary conditions. We reveal intrinsically nonequilibrium effects, such as enhanced diffusivity of the tracer induced by both the crowding interactions and the external driving. We finally consider the high-density and low-density limits of the model and show that our approximation scheme becomes exact in these limits.
Collapse
Affiliation(s)
- Pierre Illien
- Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford OX1 3NP, United Kingdom
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Olivier Bénichou
- Laboratoire de Physique Théorique de la Matière Condensée, CNRS UMR 7600, Université Pierre-et-Marie-Curie, 4 Place Jussieu, 75005 Paris, France
| | - Gleb Oshanin
- Laboratoire de Physique Théorique de la Matière Condensée, CNRS UMR 7600, Université Pierre-et-Marie-Curie, 4 Place Jussieu, 75005 Paris, France
| | - Alessandro Sarracino
- Istituto dei Sistemi Complessi-CNR, P.le Aldo Moro 2, 00185 Rome, Italy
- Dipartimento di Fisica, Università di Roma Sapienza, P.le Aldo Moro 2, 00185 Rome, Italy
| | - Raphaël Voituriez
- Laboratoire de Physique Théorique de la Matière Condensée, CNRS UMR 7600, Université Pierre-et-Marie-Curie, 4 Place Jussieu, 75005 Paris, France
- Laboratoire Jean Perrin, CNRS UMR 8237, Université Pierre-et-Marie-Curie, 4 Place Jussieu, 75005 Paris, France
| |
Collapse
|
12
|
Wang FF, Zhang Y, Zhang H, Xu L, Wang P, Guo CB. The influence of graphene nanoplatelets (GNPs) on the semi-blunt puncture behavior of woven fabrics impregnated with shear thickening fluid (STF). RSC Adv 2018; 8:5268-5279. [PMID: 35542439 PMCID: PMC9078111 DOI: 10.1039/c7ra12802a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 01/12/2018] [Indexed: 11/21/2022] Open
Abstract
Fabrics are widely applied in various fields, such as body armor, aerospace industry and military equipment.
Collapse
Affiliation(s)
- Fei-Fei Wang
- National Engineering Laboratory for Modern Silk
- College of Textile and Clothing Engineering
- Soochow University
- Suzhou
- China
| | - Yan Zhang
- National Engineering Laboratory for Modern Silk
- College of Textile and Clothing Engineering
- Soochow University
- Suzhou
- China
| | - Hao Zhang
- National Engineering Laboratory for Modern Silk
- College of Textile and Clothing Engineering
- Soochow University
- Suzhou
- China
| | - Lan Xu
- National Engineering Laboratory for Modern Silk
- College of Textile and Clothing Engineering
- Soochow University
- Suzhou
- China
| | - Ping Wang
- National Engineering Laboratory for Modern Silk
- College of Textile and Clothing Engineering
- Soochow University
- Suzhou
- China
| | - Chong-bin Guo
- Shanghai Engineering Center for Microsatellites
- Shanghai
- China
| |
Collapse
|
13
|
Wulfert R, Seifert U, Speck T. Nonequilibrium depletion interactions in active microrheology. SOFT MATTER 2017; 13:9093-9102. [PMID: 29072752 DOI: 10.1039/c7sm01737e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Entropic depletion forces arise between mesoscopic bodies that are immersed in a suspension of macromolecules, such as colloid-polymer mixtures. Here we consider the case of a driven colloidal probe in the presence of another, passive colloidal particle, both solvated in an ideal bath of small spherical particles. We calculate the nonequilibrium forces mediated by the depletants on the two colloidal particles within a dynamical superposition approximation (DSA) scheme. In order to assess the quality of this approximation, and to obtain the colloidal microstructure around the driven probe, we corroborate our theoretical results with Brownian dynamics simulations.
Collapse
Affiliation(s)
- R Wulfert
- II. Institut für Theoretische Physik, Universität Stuttgart, 70550 Stuttgart, Germany
| | | | | |
Collapse
|
14
|
Reichhardt C, Olson Reichhardt CJ. Depinning and nonequilibrium dynamic phases of particle assemblies driven over random and ordered substrates: a review. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2017; 80:026501. [PMID: 27997373 DOI: 10.1088/1361-6633/80/2/026501] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We review the depinning and nonequilibrium phases of collectively interacting particle systems driven over random or periodic substrates. This type of system is relevant to vortices in type-II superconductors, sliding charge density waves, electron crystals, colloids, stripe and pattern forming systems, and skyrmions, and could also have connections to jamming, glassy behaviors, and active matter. These systems are also ideal for exploring the broader issues of characterizing transient and steady state nonequilibrium flow phases as well as nonequilibrium phase transitions between distinct dynamical phases, analogous to phase transitions between different equilibrium states. We discuss the differences between elastic and plastic depinning on random substrates and the different types of nonequilibrium phases which are associated with specific features in the velocity-force curves, fluctuation spectra, scaling relations, and local or global particle ordering. We describe how these quantities can change depending on the dimension, anisotropy, disorder strength, and the presence of hysteresis. Within the moving phase we discuss how there can be a transition from a liquid-like state to dynamically ordered moving crystal, smectic, or nematic states. Systems with periodic or quasiperiodic substrates can have multiple nonequilibrium second or first order transitions in the moving state between chaotic and coherent phases, and can exhibit hysteresis. We also discuss systems with competing repulsive and attractive interactions, which undergo dynamical transitions into stripes and other complex morphologies when driven over random substrates. Throughout this work we highlight open issues and future directions such as absorbing phase transitions, nonequilibrium work relations, inertia, the role of non-dissipative dynamics such as Magnus effects, and how these results could be extended to the broader issues of plasticity in crystals, amorphous solids, and jamming phenomena.
Collapse
Affiliation(s)
- C Reichhardt
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | | |
Collapse
|
15
|
Buttinoni I, Steinacher M, Spanke HT, Pokki J, Bahmann S, Nelson B, Foffi G, Isa L. Colloidal polycrystalline monolayers under oscillatory shear. Phys Rev E 2017; 95:012610. [PMID: 28208468 DOI: 10.1103/physreve.95.012610] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Indexed: 11/07/2022]
Abstract
In this paper we probe the structural response to oscillatory shear deformations of polycrystalline monolayers of soft repulsive colloids with varying area fraction over a broad range of frequencies and amplitudes. The particles are confined at a fluid interface, sheared using a magnetic microdisk, and imaged through optical microscopy. The structural and mechanical response of soft materials is highly dependent on their microstructure. If crystals are well understood and deform through the creation and mobilization of specific defects, the situation is much more complex for disordered jammed materials, where identifying structural motifs defining plastically rearranging regions remains an elusive task. Our materials fall between these two classes and allow the identification of clear pathways for structural evolution. In particular, we demonstrate that large enough strains are able to fluidize the system, identifying critical strains that fulfill a local Lindemann criterion. Conversely, smaller strains lead to localized and erratic irreversible particle rearrangements due to the motion of structural defects. In this regime, oscillatory shear promotes defect annealing and leads to the growth of large crystalline domains. Numerical simulations help identify the population of rearranging particles with those exhibiting the largest deviatoric stresses and indicate that structural evolution proceeds towards the minimization of the stress stored in the system. The particles showing high deviatoric stresses are localized around grain boundaries and defects, providing a simple criterion to spot regions likely to rearrange plastically under oscillatory shear.
Collapse
Affiliation(s)
- Ivo Buttinoni
- Laboratory for Interfaces, Soft Matter and Assembly, Department of Materials, ETH Zurich, CH-8093, Zurich, Switzerland
| | - Mathias Steinacher
- Laboratory for Interfaces, Soft Matter and Assembly, Department of Materials, ETH Zurich, CH-8093, Zurich, Switzerland
| | - Hendrik Th Spanke
- Laboratory for Interfaces, Soft Matter and Assembly, Department of Materials, ETH Zurich, CH-8093, Zurich, Switzerland
| | - Juho Pokki
- Institute of Robotics and Intelligent Systems, ETH Zurich, CH-8092, Zurich, Switzerland
| | - Severin Bahmann
- Institute of Robotics and Intelligent Systems, ETH Zurich, CH-8092, Zurich, Switzerland
| | - Bradley Nelson
- Institute of Robotics and Intelligent Systems, ETH Zurich, CH-8092, Zurich, Switzerland
| | - Giuseppe Foffi
- Laboratoire de Physique des Solides, CNRS, Université Paris-Sud, Université Paris-Saclay, Orsay 91405, France
| | - Lucio Isa
- Laboratory for Interfaces, Soft Matter and Assembly, Department of Materials, ETH Zurich, CH-8093, Zurich, Switzerland
| |
Collapse
|
16
|
Cividini J, Mukamel D, Posch HA. Driven tracers in narrow channels. Phys Rev E 2017; 95:012110. [PMID: 28208398 DOI: 10.1103/physreve.95.012110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Indexed: 06/06/2023]
Abstract
Steady-state properties of a driven tracer moving in a narrow two-dimensional (2D) channel of quiescent medium are studied. The tracer drives the system out of equilibrium, perturbs the density and pressure fields, and gives the bath particles a nonzero average velocity, creating a current in the channel. Three models in which the confining effect of the channel is probed are analyzed and compared in this study: the first is the simple symmetric exclusion process (SSEP), for which the stationary density profile and the pressure on the walls in the frame of the tracer are computed. We show that the tracer acts like a dipolar source in an average velocity field. The spatial structure of this 2D strip is then simplified to a one-dimensional (1D) SSEP, in which exchanges of position between the tracer and the bath particles are allowed. Using a combination of mean-field theory and exact solution in the limit where no exchange is allowed gives good predictions of the velocity of the tracer and the density field. Finally, we show that results obtained for the 1D SSEP with exchanges also apply to a gas of overdamped hard disks in a narrow channel. The correspondence between the parameters of the SSEP and of the gas of hard disks is systematic and follows from simple intuitive arguments. Our analytical results are checked numerically.
Collapse
Affiliation(s)
- J Cividini
- Department of Physics of Complex Systems, Weizmann Institute of Science Rehovot, Israel 76100
| | - D Mukamel
- Department of Physics of Complex Systems, Weizmann Institute of Science Rehovot, Israel 76100
| | - H A Posch
- Computational Physics Group, Faculty of Physics, Universität Wien, Boltzmanngasse 5, 1090 Vienna, Austria
| |
Collapse
|
17
|
Thorneywork AL, Aarts DGAL, Horbach J, Dullens RPA. Self-diffusion in two-dimensional binary colloidal hard-sphere fluids. Phys Rev E 2017; 95:012614. [PMID: 28208506 DOI: 10.1103/physreve.95.012614] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Indexed: 06/06/2023]
Abstract
We present a systematic experimental study of the dynamic behavior of monodisperse and bidisperse two-dimensional colloidal hard-sphere fluids. We consider the diffusive behavior of the two types of particles for systems with a variety of compositions and total area fractions. In particular, we measure the short- and long-time diffusion coefficients for both species independently. We find that the short-time self-diffusion coefficients show an approximately linear dependence on the area fraction and that the long-time self-diffusion coefficients are well described by an expression dependent upon only the area fraction and contact value of the radial distribution function. Finally, we consider the effect of composition change and find some variation in the long-time self-diffusion coefficients, which we ascribe to the complex packing effects exhibited by binary systems.
Collapse
Affiliation(s)
- Alice L Thorneywork
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
| | - Dirk G A L Aarts
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
| | - Jürgen Horbach
- Institut für Theoretische Physik II, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Roel P A Dullens
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
| |
Collapse
|
18
|
Unified rheology of vibro-fluidized dry granular media: From slow dense flows to fast gas-like regimes. Sci Rep 2016; 6:38604. [PMID: 27924928 PMCID: PMC5141475 DOI: 10.1038/srep38604] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 11/09/2016] [Indexed: 11/08/2022] Open
Abstract
Granular media take on great importance in industry and geophysics, posing a severe challenge to materials science. Their response properties elude known soft rheological models, even when the yield-stress discontinuity is blurred by vibro-fluidization. Here we propose a broad rheological scenario where average stress sums up a frictional contribution, generalizing conventional μ(I)-rheology, and a kinetic collisional term dominating at fast fluidization. Our conjecture fairly describes a wide series of experiments in a vibrofluidized vane setup, whose phenomenology includes velocity weakening, shear thinning, a discontinuous thinning transition, and gaseous shear thickening. The employed setup gives access to dynamic fluctuations, which exhibit a broad range of timescales. In the slow dense regime the frequency of cage-opening increases with stress and enhances, with respect to μ(I)-rheology, the decrease of viscosity. Diffusivity is exponential in the shear stress in both thinning and thickening regimes, with a huge growth near the transition.
Collapse
|
19
|
Wulfert R, Seifert U, Speck T. Discontinuous thinning in active microrheology of soft complex matter. Phys Rev E 2016; 94:062610. [PMID: 28085442 DOI: 10.1103/physreve.94.062610] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Indexed: 06/06/2023]
Abstract
Employing theory and numerical simulations, we demonstrate discontinuous force thinning due to the driven motion of an external probe in a host medium. We consider two cases: an ideal structureless medium (modeling ultrasoft materials such as polymer melts) and a dilute bath of interacting repulsive particles. When the driving of the probe exceeds a critical force, the microviscosity of the medium drops abruptly by about an order of magnitude. This phenomenon occurs for strong attractive interactions between a large probe and a sufficiently dense host medium.
Collapse
Affiliation(s)
- R Wulfert
- II. Institut für Theoretische Physik, Universität Stuttgart, Pfaffenwaldring 57, 70550 Stuttgart, Germany
| | - U Seifert
- II. Institut für Theoretische Physik, Universität Stuttgart, Pfaffenwaldring 57, 70550 Stuttgart, Germany
| | - T Speck
- Institut für Physik, Johannes Gutenberg-Universität Mainz, Staudingerweg 7-9, 55128 Mainz, Germany
| |
Collapse
|
20
|
Waigh TA. Advances in the microrheology of complex fluids. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2016; 79:074601. [PMID: 27245584 DOI: 10.1088/0034-4885/79/7/074601] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
New developments in the microrheology of complex fluids are considered. Firstly the requirements for a simple modern particle tracking microrheology experiment are introduced, the error analysis methods associated with it and the mathematical techniques required to calculate the linear viscoelasticity. Progress in microrheology instrumentation is then described with respect to detectors, light sources, colloidal probes, magnetic tweezers, optical tweezers, diffusing wave spectroscopy, optical coherence tomography, fluorescence correlation spectroscopy, elastic- and quasi-elastic scattering techniques, 3D tracking, single molecule methods, modern microscopy methods and microfluidics. New theoretical techniques are also reviewed such as Bayesian analysis, oversampling, inversion techniques, alternative statistical tools for tracks (angular correlations, first passage probabilities, the kurtosis, motor protein step segmentation etc), issues in micro/macro rheological agreement and two particle methodologies. Applications where microrheology has begun to make some impact are also considered including semi-flexible polymers, gels, microorganism biofilms, intracellular methods, high frequency viscoelasticity, comb polymers, active motile fluids, blood clots, colloids, granular materials, polymers, liquid crystals and foods. Two large emergent areas of microrheology, non-linear microrheology and surface microrheology are also discussed.
Collapse
Affiliation(s)
- Thomas Andrew Waigh
- Biological Physics Group, School of Physics and Astronomy, University of Manchester, Oxford Rd., Manchester, M13 9PL, UK. Photon Science Institute, University of Manchester, Oxford Rd., Manchester, M13 9PL, UK
| |
Collapse
|
21
|
McDermott D, Reichhardt CJO, Reichhardt C. Avalanches, plasticity, and ordering in colloidal crystals under compression. Phys Rev E 2016; 93:062607. [PMID: 27415320 DOI: 10.1103/physreve.93.062607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Indexed: 06/06/2023]
Abstract
Using numerical simulations we examine colloids with a long-range Coulomb interaction confined in a two-dimensional trough potential undergoing dynamical compression. As the depth of the confining well is increased, the colloids move via elastic distortions interspersed with intermittent bursts or avalanches of plastic motion. In these avalanches, the colloids rearrange to minimize their colloid-colloid repulsive interaction energy by adopting an average lattice constant that is isotropic despite the anisotropic nature of the compression. The avalanches take the form of shear banding events that decrease or increase the structural order of the system. At larger compression, the avalanches are associated with a reduction of the number of rows of colloids that fit within the confining potential, and between avalanches the colloids can exhibit partially crystalline or anisotropic ordering. The colloid velocity distributions during the avalanches have a non-Gaussian form with power-law tails and exponents that are consistent with those found for the velocity distributions of gliding dislocations. We observe similar behavior when we subsequently decompress the system, and find a partially hysteretic response reflecting the irreversibility of the plastic events.
Collapse
Affiliation(s)
- D McDermott
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
- Department of Physics, Wabash College, Crawfordsville, Indiana 47933, USA
| | - C J Olson Reichhardt
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - C Reichhardt
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| |
Collapse
|
22
|
Nandi SK. Understanding the approximations of mode-coupling theory for sheared steady states of colloids. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 92:042306. [PMID: 26565239 DOI: 10.1103/physreve.92.042306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Indexed: 06/05/2023]
Abstract
The lack of clarity of various mode-coupling theory (MCT) approximations, even in equilibrium, makes it hard to understand the relation between various MCT approaches for sheared steady states as well as their regime of validity. Here we try to understand these approximations indirectly by deriving the MCT equations through two different approaches for a colloidal system under shear, first through a microscopic approach, as suggested by Zaccarelli et al., and second through fluctuating hydrodynamics, where the approximations used in the derivation are quite clear. The qualitative similarity of our theory with a number of existing theories show that linear response theory might play a role in various approximations employed in deriving those theories and one needs to be careful while applying them for systems arbitrarily far away from equilibrium, such as a granular system or when shear is very strong. As a by-product of our calculation, we obtain the extension of the Yvon-Born-Green (YBG) equation for a sheared system and under the assumption of random-phase approximation, the YBG equation yields the distorted structure factor that was earlier obtained through different approaches.
Collapse
Affiliation(s)
- Saroj Kumar Nandi
- Max-Planck-Institute für Physik Komplexer Systeme, Nöthnitzer Straße 38, 01187 Dresden, Germany
| |
Collapse
|
23
|
Kümmel F, Shabestari P, Lozano C, Volpe G, Bechinger C. Formation, compression and surface melting of colloidal clusters by active particles. SOFT MATTER 2015; 11:6187-91. [PMID: 26136053 DOI: 10.1039/c5sm00827a] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
We demonstrate with experiments and numerical simulations that the structure and dynamics of a suspension of passive particles is strongly altered by adding a very small (<1%) number of active particles. With increasing passive particle density, we observe first the formation of dynamic clusters comprised of passive particles being surrounded by active particles, then the merging and compression of these clusters, and eventually the local melting of crystalline regions by enclosed active particles.
Collapse
Affiliation(s)
- Felix Kümmel
- 2. Physikalisches Institut, Universität Stuttgart, D-70569 Stuttgart, Germany.
| | | | | | | | | |
Collapse
|
24
|
Zheng W, Shi Y, Xu N. Signatures of shear thinning-thickening transition in steady shear flows of dense non-Brownian yield stress systems. Sci China Chem 2015. [DOI: 10.1007/s11426-015-5335-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
25
|
Reichhardt C, Reichhardt CJO. Active microrheology in active matter systems: Mobility, intermittency, and avalanches. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 91:032313. [PMID: 25871116 DOI: 10.1103/physreve.91.032313] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Indexed: 06/04/2023]
Abstract
We examine the mobility and velocity fluctuations of a driven particle moving through an active matter bath of self-mobile disks for varied density or area coverage and varied activity. We show that the driven particle mobility can exhibit nonmonotonic behavior that is correlated with distinct changes in the spatiotemporal structures that arise in the active media. We demonstrate that the probe particle velocity distributions exhibit specific features in the different dynamic regimes and identify an activity-induced uniform crystallization that occurs for moderate activity levels and is distinct from the previously observed higher activity cluster phase. The velocity distribution in the cluster phase has telegraph noise characteristics produced when the probe particle moves alternately through high-mobility areas that are in the gas state and low-mobility areas that are in the dense phase. For higher densities and large activities, the system enters what we characterize as an active jamming regime. Here the probe particle moves in intermittent jumps or avalanches that have power-law-distributed sizes that are similar to the avalanche distributions observed for nonactive disk systems near the jamming transition.
Collapse
Affiliation(s)
- C Reichhardt
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - C J Olson Reichhardt
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| |
Collapse
|
26
|
Horn T, Löwen H. How does a thermal binary crystal break under shear? J Chem Phys 2014; 141:224505. [DOI: 10.1063/1.4903274] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
27
|
Highly cooperative stress relaxation in two-dimensional soft colloidal crystals. Proc Natl Acad Sci U S A 2014; 111:15356-61. [PMID: 25319262 DOI: 10.1073/pnas.1411215111] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Stress relaxation in crystalline solids is mediated by the formation and diffusion of defects. Although it is well established how externally generated stresses relax, through the proliferation and motion of dislocations in the lattice, it remains relatively unknown how crystals cope with internal stresses. We investigate, both experimentally and in simulations, how highly localized stresses relax in 2D soft colloidal crystals. When a single particle is actively excited, by means of optical tweezing, a rich variety of highly collective stress relaxation mechanisms results. These relaxation processes manifest in the form of open strings of cooperatively moving particles through the motion of dissociated vacancy-interstitial pairs, and closed loops of mobile particles, which either result from cooperative rotations in transiently generated circular grain boundaries or through the closure of an open string by annihilation of a vacancy-interstitial pair. Surprisingly, we find that the same collective events occur in crystals that are excited by thermal fluctuations alone; a large thermal agitation inside the crystal lattice can trigger the irreversible displacements of hundreds of particles. Our results illustrate how local stresses can induce large-scale cooperative dynamics in 2D soft colloidal crystals and shed light on the stabilization mechanisms in ultrasoft crystals.
Collapse
|
28
|
Puertas AM, Voigtmann T. Microrheology of colloidal systems. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2014; 26:243101. [PMID: 24848328 DOI: 10.1088/0953-8984/26/24/243101] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Microrheology was proposed almost twenty years ago as a technique to obtain rheological properties in soft matter from the microscopic motion of colloidal tracers used as probes, either freely diffusing in the host medium, or subjected to external forces. The former case is known as passive microrheology, and is based on generalizations of the Stokes-Einstein relation between the friction experienced by the probe and the host-fluid viscosity. The latter is termed active microrheology, and extends the measurement of the friction coefficient to the nonlinear-response regime of strongly driven probes. In this review article, we discuss theoretical models available in the literature for both passive and active microrheology, focusing on the case of single-probe motion in model colloidal host media. A brief overview of the theory of passive microrheology is given, starting from the work of Mason and Weitz. Further developments include refined models of the host suspension beyond that of a Newtonian-fluid continuum, and the investigation of probe-size effects. Active microrheology is described starting from microscopic equations of motion for the whole system including both the host-fluid particles and the tracer; the many-body Smoluchowski equation for the case of colloidal suspensions. At low fluid densities, this can be simplified to a two-particle equation that allows the calculation of the friction coefficient with the input of the density distribution around the tracer, as shown by Brady and coworkers. The results need to be upscaled to agree with simulations at moderate density, in both the case of pulling the tracer with a constant force or dragging it at a constant velocity. The full many-particle equation has been tackled by Fuchs and coworkers, using a mode-coupling approximation and the scheme of integration through transients, valid at high densities. A localization transition is predicted for a probe embedded in a glass-forming host suspension. The nonlinear probe-friction coefficient is calculated from the tracer's position correlation function. Computer simulations show qualitative agreement with the theory, but also some unexpected features, such as superdiffusive motion of the probe related to the breaking of nearest-neighbor cages. We conclude with some perspectives and future directions of theoretical models of microrheology.
Collapse
Affiliation(s)
- A M Puertas
- Group of Complex Fluids Physics, Department of Applied Physics, University of Almeria, 04120 Almeria, Spain
| | | |
Collapse
|
29
|
Relation between ordering and shear thinning in colloidal suspensions. Proc Natl Acad Sci U S A 2013; 110:3771-6. [PMID: 23431185 DOI: 10.1073/pnas.1301055110] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Colloidal suspensions exhibit shear thinning and shear thickening. The most common interpretation of these phenomena identifies layering of the fluid perpendicular to the shear gradient as the driver for the observed behavior. However, studies of the particle configurations associated with shear thinning and thickening cast doubt on that conclusion and leave unsettled whether these nonequilibrium phenomena are caused primarily by correlated particle motions or by changes in particle packing structure. We report the results of stokesian dynamics simulations of suspensions of hard spheres that illuminate the relation among the suspension viscosity, shear rate, and particle configuration. Using a recently introduced sampling technique for nonequilibrium systems, we show that shear thinning can be decoupled from layering, thereby eliminating layering as the driver for shear thinning. In contrast, we find that there is a strong correlation between shear thinning and a two-particle measure of the shear stress. Our results are consistent with a recent experimental study.
Collapse
|
30
|
Libál A, Csíki BM, Reichhardt CJO, Reichhardt C. Colloidal lattice shearing and rupturing with a driven line of particles. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013; 87:022308. [PMID: 23496517 DOI: 10.1103/physreve.87.022308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Indexed: 06/01/2023]
Abstract
We examine the dynamics of two-dimensional colloidal systems using numerical simulations of a system with a drive applied to a thin region in the middle of the sample to produce a local shear. For a monodisperse colloidal assembly, we find a well-defined decoupling transition separating a regime of elastic motion from a plastic phase where the driven particles break away or decouple from the bulk particles and produce a shear band. For a bidisperse assembly, the onset of a bulk disordering transition coincides with the broadening of the shear band. We identify several distinct dynamical regimes that are correlated with features in the velocity-force curves. As a function of bidispersity, the decoupling force shows a nonmonotonic behavior associated with features in the noise fluctuations, power spectra, and bulk velocity profiles. When pinning is added in the bulk, we find that the shear band regions can become more localized, causing a decoupling of the driven particles from the bulk particles. For a system with thermal noise and no pinning, the shear band region becomes more extended and the average velocity of the driven particles drops at the thermal disordering transition of the bulk system.
Collapse
Affiliation(s)
- A Libál
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | | | | | | |
Collapse
|
31
|
|
32
|
Weeber R, Harting J. Hydrodynamic interactions in active colloidal crystal microrheology. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2012; 86:057302. [PMID: 23214913 DOI: 10.1103/physreve.86.057302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2011] [Indexed: 06/01/2023]
Abstract
In dense colloids it is commonly assumed that hydrodynamic interactions do not play a role. However, a found theoretical quantification is often missing. We present computer simulations that are motivated by experiments where a large colloidal particle is dragged through a colloidal crystal. To qualify the influence of long-ranged hydrodynamics, we model the setup by conventional Langevin dynamics simulations and by an improved scheme with limited hydrodynamic interactions. This scheme significantly improves our results and allows to show that hydrodynamics strongly impacts the development of defects, the crystal regeneration, as well as the jamming behavior.
Collapse
Affiliation(s)
- R Weeber
- Institute for Computational Physics, University of Stuttgart, Pfaffenwaldring 27, D-70569 Stuttgart, Germany
| | | |
Collapse
|