1
|
Vinutha HA, Marchand M, Caggioni M, Vasisht VV, Del Gado E, Trappe V. Memory of shear flow in soft jammed materials. PNAS NEXUS 2024; 3:pgae441. [PMID: 39416763 PMCID: PMC11482252 DOI: 10.1093/pnasnexus/pgae441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 09/17/2024] [Indexed: 10/19/2024]
Abstract
Cessation of flow in yield stress fluids results in a stress relaxation process that eventually leads to a finite residual stress. Both the rate of stress relaxation and the magnitude of the residual stresses systematically depend on the preceding flow conditions. To assess the microscopic origin of this memory effect, we combine experiments with large-scale computer simulations, exploring the behavior of jammed suspensions of soft repulsive particles. A spatiotemporal analysis of particle motion reveals that memory formation during flow is primarily governed by the emergence of domains of spatially correlated nonaffine displacements. These domains imprint the configuration of stress imbalances that drive dynamics upon flow cessation, as evidenced by a striking equivalence of the spatial correlation patterns in particle displacements observed during flow and upon flow cessation. Additional contributions to stress relaxation result from the particle packing that reorganizes to minimize the resistance to flow by decreasing the number of locally stiffer configurations. Regaining rigidity upon flow cessation drives further relaxation and effectively sets the magnitude of the residual stress. Our findings highlight that flow in yield stress fluids can be seen as a training process during which the material stores information of the flowing state through the development of domains of correlated particle displacements and the reorganization of particle packings optimized to sustain the flow. This encoded memory can then be retrieved in flow cessation experiments.
Collapse
Affiliation(s)
- H A Vinutha
- Department of Physics, Institute for Soft Matter Synthesis and Metrology, Georgetown University, Washington, DC, USA
| | - Manon Marchand
- Department of Physics, University of Fribourg, Fribourg, Switzerland
| | - Marco Caggioni
- Complex Fluid Microstructures, Corporate Engineering, Procter & Gamble Company, West Chester, OH 45069, USA
| | - Vishwas V Vasisht
- Department of Physics, Indian Institute of Technology Palakkad, Nila Campus, Kanjikode, Palakkad, Kerala 678623, India
| | - Emanuela Del Gado
- Department of Physics, Institute for Soft Matter Synthesis and Metrology, Georgetown University, Washington, DC, USA
| | - Veronique Trappe
- Department of Physics, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
2
|
He H, Liang H, Chu M, Jiang Z, de Pablo JJ, Tirrell MV, Narayanan S, Chen W. Transport coefficient approach for characterizing nonequilibrium dynamics in soft matter. Proc Natl Acad Sci U S A 2024; 121:e2401162121. [PMID: 39042671 PMCID: PMC11295068 DOI: 10.1073/pnas.2401162121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 06/16/2024] [Indexed: 07/25/2024] Open
Abstract
Nonequilibrium states in soft condensed matter require a systematic approach to characterize and model materials, enhancing predictability and applications. Among the tools, X-ray photon correlation spectroscopy (XPCS) provides exceptional temporal and spatial resolution to extract dynamic insight into the properties of the material. However, existing models might overlook intricate details. We introduce an approach for extracting the transport coefficient, denoted as [Formula: see text], from the XPCS studies. This coefficient is a fundamental parameter in nonequilibrium statistical mechanics and is crucial for characterizing transport processes within a system. Our method unifies the Green-Kubo formulas associated with various transport coefficients, including gradient flows, particle-particle interactions, friction matrices, and continuous noise. We achieve this by integrating the collective influence of random and systematic forces acting on the particles within the framework of a Markov chain. We initially validated this method using molecular dynamics simulations of a system subjected to changes in temperatures over time. Subsequently, we conducted further verification using experimental systems reported in the literature and known for their complex nonequilibrium characteristics. The results, including the derived [Formula: see text] and other relevant physical parameters, align with the previous observations and reveal detailed dynamical information in nonequilibrium states. This approach represents an advancement in XPCS analysis, addressing the growing demand to extract intricate nonequilibrium dynamics. Further, the methods presented are agnostic to the nature of the material system and can be potentially expanded to hard condensed matter systems.
Collapse
Affiliation(s)
- HongRui He
- Materials Science Division and Center for Molecular Engineering, Argonne National Laboratory, Lemont, IL60439
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL60637
| | - Heyi Liang
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL60637
| | - Miaoqi Chu
- X-Ray Science Division, Advanced Photon Source, Argonne National Laboratory, Lemont, IL60439
| | - Zhang Jiang
- X-Ray Science Division, Advanced Photon Source, Argonne National Laboratory, Lemont, IL60439
| | - Juan J. de Pablo
- Materials Science Division and Center for Molecular Engineering, Argonne National Laboratory, Lemont, IL60439
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL60637
| | - Matthew V. Tirrell
- Materials Science Division and Center for Molecular Engineering, Argonne National Laboratory, Lemont, IL60439
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL60637
| | - Suresh Narayanan
- X-Ray Science Division, Advanced Photon Source, Argonne National Laboratory, Lemont, IL60439
| | - Wei Chen
- Materials Science Division and Center for Molecular Engineering, Argonne National Laboratory, Lemont, IL60439
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL60637
| |
Collapse
|
3
|
Pelusi F, Filippi D, Derzsi L, Pierno M, Sbragaglia M. Emulsions in microfluidic channels with asymmetric boundary conditions and directional surface roughness: stress and rheology. SOFT MATTER 2024; 20:5203-5211. [PMID: 38899535 DOI: 10.1039/d4sm00041b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
The flow of emulsions in confined microfluidic channels is affected by surface roughness. Directional roughness effects have recently been reported in channels with asymmetric boundary conditions featuring a flat wall, and a wall textured with directional roughness, the latter promoting a change in the velocity profiles when the flow direction of emulsions is inverted [D. Filippi et al., Adv. Mater. Technol., 2023, 8, 2201748]. An operative protocol is needed to reconstruct the stress profile inside the channel from velocity data to shed light on the trigger of the directional response. To this aim, we performed lattice Boltzmann numerical simulations of the flow of model emulsions with a minimalist model of directional roughness in two dimensions: a confined microfluidic channel with one flat wall and the other patterned by right-angle triangular-shaped posts. Simulations are essential to develop a protocol based on mechanical arguments to reconstruct stress profiles. Hence, one can analyze data to relate directional effects in velocity profiles to different rheological responses close to the rough walls associated with opposite flow directions. We finally show the universality of this protocol by applying it to other realizations of directional roughness by considering experimental data on emulsions in a microfluidic channel featuring a flat wall and a wall textured by herringbone-shaped roughness.
Collapse
Affiliation(s)
- Francesca Pelusi
- Istituto per le Applicazioni del Calcolo, CNR, Via dei Taurini 19, 00185 Rome, Italy.
| | - Daniele Filippi
- Dipartimento di Fisica e Astronomia 'G. Galilei' - DFA, Università di Padova, Via F. Marzolo 8, 35131 Padova, Italy
| | - Ladislav Derzsi
- Institute of Physical Chemistry Polish Academy of Sciences, Kasprzaka 44/52, Warsaw 01-224, Poland
| | - Matteo Pierno
- Dipartimento di Fisica e Astronomia 'G. Galilei' - DFA, Università di Padova, Via F. Marzolo 8, 35131 Padova, Italy
| | - Mauro Sbragaglia
- Department of Physics & INFN, Tor Vergata University of Rome, Via della Ricerca Scientifica 1, 00133 Rome, Italy
| |
Collapse
|
4
|
Mangal D, Nabizadeh M, Jamali S. Predicting yielding in attractive colloidal gels. Phys Rev E 2024; 109:014602. [PMID: 38366429 DOI: 10.1103/physreve.109.014602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 12/06/2023] [Indexed: 02/18/2024]
Abstract
One of the defining characteristics of soft glassy materials is their ability to exhibit a yield stress, which can result in an overall elasto-visco-plastic mechanics. To design soft materials with specific properties, it is essential to gain a comprehensive understanding of the topological and structural failure points that occur during yielding. However, predicting these failure points, which lead to yielding, is challenging due to the dynamic nature of structure development and its cooccurrence with other complicated processes, such as local rearrangements and anisotropy. In this study, we employ a series of tools from network science to investigate colloidal gels as a model for soft glassy materials during yielding. Our findings reveal that edge betweenness centrality can be utilized as a universal predictor for yielding across various state variables, including the volume fraction of solids, the strength, and the range of attraction between colloids.
Collapse
Affiliation(s)
- Deepak Mangal
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, Massachusetts 02115, USA
| | - Mohammad Nabizadeh
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, Massachusetts 02115, USA
| | - Safa Jamali
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, Massachusetts 02115, USA
| |
Collapse
|
5
|
Milc KW, Serial MR, Philippi J, Dijksman JA, van Duynhoven JPM, Terenzi C. Validation of temperature-controlled rheo-MRI measurements in a submillimeter-gap Couette geometry. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2022; 60:606-614. [PMID: 33788305 DOI: 10.1002/mrc.5157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 03/25/2021] [Accepted: 03/27/2021] [Indexed: 06/12/2023]
Abstract
A temperature-controlled submillimeter-gap (500 μm) rheo-magnetic resonance imaging (MRI) Couette cell has been developed to measure confined flow of soft structured materials under controlled temperature. The proposed setup enables performing rheo-MRI measurements using (i) a spatially uniform temperature control over the range 15°C to 40°C and (ii) a high spatial resolution up to 10 μm, as a consequence of the improved mechanical stability of the in-house developed rotating elements. Here, we demonstrate the performance of the cell for the rheo-MRI velocimetry study of a thixotropic fat crystal dispersion, a complex fluid commonly used in food manufacturing. The submillimeter-gap geometry and variable temperature capability of the cell enable observing the effects of shear- and temperature-induced fat recrystallization on both wall slip and shear banding under strongly confined flow. Our improved rheo-MRI setup opens new perspectives for the fundamental study of strongly confined flow, cooperative effects, and the underlying interparticle interactions and for ultimately aiding optimization of products involved in spreading/extrusion, such as cosmetics and foods.
Collapse
Affiliation(s)
- Klaudia W Milc
- Laboratory of Biophysics, Wageningen University, Wageningen, The Netherlands
| | - Maria R Serial
- Laboratory of Biophysics, Wageningen University, Wageningen, The Netherlands
| | - John Philippi
- Laboratory of Biophysics, Wageningen University, Wageningen, The Netherlands
| | - Joshua A Dijksman
- Laboratory of Physical Chemistry and Soft Matter, Wageningen University, Wageningen, The Netherlands
| | - John P M van Duynhoven
- Laboratory of Biophysics, Wageningen University, Wageningen, The Netherlands
- Science and Technology, Unilever Foods Innovation Centre Hive, Wageningen, The Netherlands
| | - Camilla Terenzi
- Laboratory of Biophysics, Wageningen University, Wageningen, The Netherlands
| |
Collapse
|
6
|
Ekeh T, Fodor É, Fielding SM, Cates ME. Power fluctuations in sheared amorphous materials: A minimal model. Phys Rev E 2022; 105:L052601. [PMID: 35706183 DOI: 10.1103/physreve.105.l052601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 02/09/2022] [Indexed: 06/15/2023]
Abstract
The importance of mesoscale fluctuations in flowing amorphous materials is widely accepted, without a clear understanding of their role. We propose a mean-field elastoplastic model that admits both stress and strain-rate fluctuations, and investigate the character of its power distribution under steady shear flow. The model predicts the suppression of negative power fluctuations near the liquid-solid transition; the existence of a fluctuation relation in limiting regimes but its replacement in general by stretched-exponential power-distribution tails; and a crossover between two distinct mechanisms for negative power fluctuations in the liquid and the yielding solid phases. We connect these predictions with recent results from particle-based, numerical microrheological experiments.
Collapse
Affiliation(s)
- Timothy Ekeh
- DAMTP, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, United Kingdom
| | - Étienne Fodor
- Department of Physics and Materials Science, University of Luxembourg, L-1511 Luxembourg, Luxembourg
| | - Suzanne M Fielding
- Department of Physics, Durham University, Science Laboratories, South Road, Durham DH1 3LE, United Kingdom
| | - Michael E Cates
- DAMTP, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, United Kingdom
| |
Collapse
|
7
|
Ono-Dit-Biot JC, Soulard P, Barkley S, Weeks ER, Salez T, Raphaël E, Dalnoki-Veress K. Mechanical properties of 2D aggregates of oil droplets as model mono-crystals. SOFT MATTER 2021; 17:1194-1201. [PMID: 33336662 DOI: 10.1039/d0sm01165g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We investigate the elastic and yielding properties of two dimensional defect-free mono-crystals made of highly monodisperse droplets. Crystals are compressed between two parallel boundaries of which one acts as a force sensor. As the available space between boundaries is reduced, the crystal goes through successive row-reduction transitions. For small compression forces, the crystal responds elastically until a critical force is reached and the assembly fractures in a single catastrophic global event. Correspondingly there is a peak in the force measurement associated with each row-reduction. The elastic properties of ideal mono-crystal samples are fully captured by a simple analytical model consisting of an assembly of individual capillary springs. The yielding properties of the crystal are captured with a minimal bond breaking model.
Collapse
Affiliation(s)
| | - Pierre Soulard
- UMR CNRS Gulliver 7083, ESPCI Paris, PSL Research University, 10 rue Vauquelin, 75005 Paris, France
| | - Solomon Barkley
- Department of Physics & Astronomy, McMaster University, Hamilton, ON L8S 4L8, Canada.
| | - Eric R Weeks
- Department of Physics, Emory University, Atlanta, GA 30322, USA
| | - Thomas Salez
- Univ. Bordeaux, CNRS, LOMA, UMR 5798, F-33405 Talence, France and Global Station for Soft Matter, Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo, Japan
| | - Elie Raphaël
- UMR CNRS Gulliver 7083, ESPCI Paris, PSL Research University, 10 rue Vauquelin, 75005 Paris, France
| | - Kari Dalnoki-Veress
- Department of Physics & Astronomy, McMaster University, Hamilton, ON L8S 4L8, Canada. and UMR CNRS Gulliver 7083, ESPCI Paris, PSL Research University, 10 rue Vauquelin, 75005 Paris, France
| |
Collapse
|
8
|
Vasisht VV, Del Gado E. Computational study of transient shear banding in soft jammed solids. Phys Rev E 2020; 102:012603. [PMID: 32795069 DOI: 10.1103/physreve.102.012603] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Accepted: 05/29/2020] [Indexed: 11/07/2022]
Abstract
We have designed three-dimensional numerical simulations of a soft spheres model, with size polidispersity and in athermal conditions, to study the transient shear banding that occurs during yielding of jammed soft solids. We analyze the effects of different types of drag coefficients used in the simulations and compare the results obtained using Lees-Edwards periodic boundary conditions with the case in which the same model solid is confined between two walls. The specific damping mechanism and the different boundary conditions indeed modify the load curves and the velocity profiles in the transient regime. Nevertheless, we find that the presence of a stress overshoot and of a related transient banding phenomenon, for large enough samples, is a robust feature for overdamped systems, where their presence do not depend on the specific drag used and on the different boundary conditions.
Collapse
Affiliation(s)
- Vishwas V Vasisht
- Indian Institute of Technology Palakkad, Ahalia Integrated Campus, Kozhippara P.O. - Palakkad, Kerala 678557, India.,Department of Physics, Institute for Soft Matter Synthesis and Metrology, Georgetown University, 37th and O Streets, N.W., Washington, DC 20057, USA
| | - Emanuela Del Gado
- Department of Physics, Institute for Soft Matter Synthesis and Metrology, Georgetown University, 37th and O Streets, N.W., Washington, DC 20057, USA
| |
Collapse
|
9
|
Golovkova I, Montel L, Wandersman E, Bertrand T, Prevost AM, Pontani LL. Depletion attraction impairs the plasticity of emulsions flowing in a constriction. SOFT MATTER 2020; 16:3294-3302. [PMID: 32173724 DOI: 10.1039/c9sm02343g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We study the elasto-plastic behavior of dense attractive emulsions under a mechanical perturbation. The attraction is introduced through non-specific depletion interactions between the droplets and is controlled by changing the concentration of surfactant micelles in the continuous phase. We find that such attractive forces are not sufficient to induce any measurable modification on the scalings between the local packing fraction and the deformation of the droplets. However, when the emulsions are flowed through 2D microfluidic constrictions, we uncover a measurable effect of attraction on their elasto-plastic response. Indeed, we measure higher levels of deformation inside the constriction for attractive droplets. In addition, we show that these measurements correlate with droplet rearrangements that are spatially delayed in the constriction for higher attraction forces.
Collapse
Affiliation(s)
- Iaroslava Golovkova
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine (IBPS), Laboratoire Jean Perrin (LJP), F-75005, Paris, France.
| | - Lorraine Montel
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine (IBPS), Laboratoire Jean Perrin (LJP), F-75005, Paris, France.
| | - Elie Wandersman
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine (IBPS), Laboratoire Jean Perrin (LJP), F-75005, Paris, France.
| | - Thibault Bertrand
- Department of Mathematics, Imperial College London, South Kensington Campus, London SW7 2AZ, UK.
| | - Alexis Michel Prevost
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine (IBPS), Laboratoire Jean Perrin (LJP), F-75005, Paris, France.
| | - Lea-Laetitia Pontani
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine (IBPS), Laboratoire Jean Perrin (LJP), F-75005, Paris, France.
| |
Collapse
|
10
|
Thomas AL, Tang Z, Daniels KE, Vriend NM. Force fluctuations at the transition from quasi-static to inertial granular flow. SOFT MATTER 2019; 15:8532-8542. [PMID: 31633145 DOI: 10.1039/c9sm01111k] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We analyse the rheology of gravity-driven, dry granular flows in experiments where individual forces within the flow bulk are measured. We release photoelastic discs at the top of an incline to create a quasi-static erodible bed over which flows a steady 2D avalanche. The flowing layers we produce are dense (φ ≈ 0.8), thin (h ≈ 10d), and in the slow to intermediate flow regime (I = 0.1 to 1). Using particle tracking and photoelastic force measurements we report coarse-grained profiles for packing fraction, velocity, shear rate, inertial number, and stress tensor components. In addition, we define a quantitative measure for the rate of generation of new force chain networks and we observe that fluctuations extend below the boundary between dense flow and quasi-static layers. Finally, we evaluate several existing definitions for granular fluidity, and make comparisons among them and the behaviour of our experimentally-measured stress tensor components. Our measurements of the non-dimensional stress ratio μ show that our experiments lie within the local rheological regime, yet we observe rearrangements of the force network extending into the quasi-static layer where shear rates vanish. This elucidates why non-local rheological models rely on the notion of stress diffusion, and we thus propose non-local effects may in fact be dependent on the local force network fluctuation rate.
Collapse
Affiliation(s)
- A L Thomas
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Wilberforce Rd, Cambridge CB3 0WA, UK.
| | | | | | | |
Collapse
|
11
|
Saitoh K, Tighe BP. Nonlocal Effects in Inhomogeneous Flows of Soft Athermal Disks. PHYSICAL REVIEW LETTERS 2019; 122:188001. [PMID: 31144889 DOI: 10.1103/physrevlett.122.188001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Indexed: 06/09/2023]
Abstract
We numerically investigate nonlocal effects on inhomogeneous flows of soft athermal disks close to but below their jamming transition. We employ molecular dynamics to simulate Kolmogorov flows, in which a sinusoidal flow profile with fixed wave number is externally imposed, resulting in a spatially inhomogeneous shear rate. We find that the resulting rheology is strongly wave-number-dependent, and that particle migration, while present, is not sufficient to describe the resulting stress profiles within a conventional local model. We show that, instead, stress profiles can be captured with nonlocal constitutive relations that account for gradients to fourth order. Unlike nonlocal flow in yield stress fluids, we find no evidence of a diverging length scale.
Collapse
Affiliation(s)
- Kuniyasu Saitoh
- Research Alliance Center for Mathematical Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
- WPI-Advanced Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| | - Brian P Tighe
- Delft University of Technology, Process and Energy Laboratory, Leeghwaterstraat 39, 2628 CB Delft, The Netherlands
| |
Collapse
|
12
|
Vasilyev OA, Bénichou O, Mejía-Monasterio C, Weeks ER, Oshanin G. Cooperative behavior of biased probes in crowded interacting systems. SOFT MATTER 2017; 13:7617-7624. [PMID: 28976526 DOI: 10.1039/c7sm00865a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We study, via extensive numerical simulations, dynamics of a crowded mixture of mutually interacting (with a short-range repulsive potential) colloidal particles immersed in a suspending solvent, acting as a heat bath. The mixture consists of a majority component - neutrally buoyant colloids subject to internal stimuli only, and a minority component - biased probes (BPs) also subject to a constant force. In such a system each of the BPs alters the distribution of the colloidal particles in its vicinity, driving their spatial distribution out of equilibrium. This induces effective long-range interactions and multi-tag correlations between the BPs, mediated by an out-of-equilibrium majority component, and prompts the BPs to move collectively assembling in clusters. We analyse the size-distribution of the self-assembling clusters in the steady-state, their specific force-velocity relations and also properties of the effective interactions emerging between the BPs.
Collapse
Affiliation(s)
- Oleg A Vasilyev
- Max-Planck-Institut für Intelligente Systeme, Heisenbergstr. 3, D-70569 Stuttgart, Germany
| | | | | | | | | |
Collapse
|
13
|
Gueudré T, Lin J, Rosso A, Wyart M. Scaling description of non-local rheology. SOFT MATTER 2017; 13:3794-3801. [PMID: 28492682 DOI: 10.1039/c7sm00434f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The plastic flow of amorphous materials displays non-local effects, characterized by a cooperativity length scale ξ. We argue that these effects enter in the more general description of surface phenomena near critical points. Using this approach, we obtain a scaling relation between exponents that describe the strain rate profiles in shear driven and pressure driven flow, which we confirm both in numerical models and experimental data. We find empirically that the cooperative length follows closely the characteristic length previously extracted in homogenous bulk flows. This analysis shows that the often used mean field exponents fail to capture quantitatively the non-local effects. Our analysis also explains the unusually large finite size effects previously observed in pressure driven flows.
Collapse
Affiliation(s)
- Thomas Gueudré
- DISAT, Politecnico Corso Duca degli Abruzzi, I-10129 Torino, Italy.
| | | | | | | |
Collapse
|
14
|
Srivastava I, Fisher TS. Slow creep in soft granular packings. SOFT MATTER 2017; 13:3411-3421. [PMID: 28429808 DOI: 10.1039/c7sm00237h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Transient creep mechanisms in soft granular packings are studied numerically using a constant pressure and constant stress simulation method. Rapid compression followed by slow dilation is predicted on the basis of a logarithmic creep phenomenon. Characteristic scales of creep strain and time exhibit a power-law dependence on jamming pressure, and they diverge at the jamming point. Microscopic analysis indicates the existence of a correlation between rheology and nonaffine fluctuations. Localized regions of large strain appear during creep and grow in magnitude and size at short times. At long times, the spatial structure of highly correlated local deformation becomes time-invariant. Finally, a microscale connection between local rheology and local fluctuations is demonstrated in the form of a linear scaling between granular fluidity and nonaffine velocity.
Collapse
Affiliation(s)
- Ishan Srivastava
- School of Mechanical Engineering and Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907, USA.
| | | |
Collapse
|
15
|
Derzsi L, Filippi D, Mistura G, Pierno M, Lulli M, Sbragaglia M, Bernaschi M, Garstecki P. Fluidization and wall slip of soft glassy materials by controlled surface roughness. Phys Rev E 2017; 95:052602. [PMID: 28618470 DOI: 10.1103/physreve.95.052602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Indexed: 05/04/2023]
Abstract
We present a comprehensive study of concentrated emulsions flowing in microfluidic channels, one wall of which is patterned with micron-size equally spaced grooves oriented perpendicularly to the flow direction. We find a scaling law describing the roughness-induced fluidization as a function of the density of the grooves, thus fluidization can be predicted and quantitatively regulated. This suggests common scenarios for droplet trapping and release, potentially applicable for other jammed systems as well. Numerical simulations confirm these views and provide a direct link between fluidization and the spatial distribution of plastic rearrangements.
Collapse
Affiliation(s)
- Ladislav Derzsi
- Dipartimento di Fisica e Astronomia "G. Galilei"-DFA and Sezione CNISM, Università di Padova, Via Marzolo 8, 35131 Padova, Italy
| | - Daniele Filippi
- Dipartimento di Fisica e Astronomia "G. Galilei"-DFA and Sezione CNISM, Università di Padova, Via Marzolo 8, 35131 Padova, Italy
| | - Giampaolo Mistura
- Dipartimento di Fisica e Astronomia "G. Galilei"-DFA and Sezione CNISM, Università di Padova, Via Marzolo 8, 35131 Padova, Italy
| | - Matteo Pierno
- Dipartimento di Fisica e Astronomia "G. Galilei"-DFA and Sezione CNISM, Università di Padova, Via Marzolo 8, 35131 Padova, Italy
| | - Matteo Lulli
- Dipartimento di Fisica, Università di Roma "Tor Vergata" and INFN, Via della Ricerca Scientifica, 1, 00133 Roma, Italy
| | - Mauro Sbragaglia
- Dipartimento di Fisica, Università di Roma "Tor Vergata" and INFN, Via della Ricerca Scientifica, 1, 00133 Roma, Italy
| | - Massimo Bernaschi
- Istituto per le Applicazioni del Calcolo CNR, Via dei Taurini, 9, 00185 Roma, Italy
| | - Piotr Garstecki
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| |
Collapse
|
16
|
Zhang Q, Kamrin K. Microscopic Description of the Granular Fluidity Field in Nonlocal Flow Modeling. PHYSICAL REVIEW LETTERS 2017; 118:058001. [PMID: 28211739 DOI: 10.1103/physrevlett.118.058001] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Indexed: 06/06/2023]
Abstract
A recent granular rheology based on an implicit "granular fluidity" field has been shown to quantitatively predict many nonlocal phenomena. However, the physical nature of the field has not been identified. Here, the granular fluidity is found to be a kinematic variable given by the velocity fluctuation and packing fraction. This is verified with many discrete element simulations, which show that the operational fluidity definition, solutions of the fluidity model, and the proposed microscopic formula all agree. Kinetic theoretical and Eyring-like explanations shed insight into the obtained form.
Collapse
Affiliation(s)
- Qiong Zhang
- Department of Mechanical Engineering, MIT, Cambridge, Massachusetts 02139, USA
| | - Ken Kamrin
- Department of Mechanical Engineering, MIT, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
17
|
Géraud B, Jørgensen L, Ybert C, Delanoë-Ayari H, Barentin C. Structural and cooperative length scales in polymer gels. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2017; 40:5. [PMID: 28097479 DOI: 10.1140/epje/i2017-11490-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 12/01/2016] [Indexed: 06/06/2023]
Abstract
Understanding the relationship between the material structural details, the geometrical confining constraints, the local dynamical events and the global rheological response is at the core of present investigations on complex fluid properties. In the present article, this problem is addressed on a model yield stress fluid made of highly entangled polymer gels of Carbopol which follows at the macroscopic scale the well-known Herschel-Bulkley rheological law. First, performing local rheology measurements up to high shear rates ([Formula: see text] s-1)and under confinement, we evidence unambiguously the breakdown of bulk rheology associated with cooperative processes under flow. Moreover, we show that these behaviors are fully captured with a unique cooperativity length [Formula: see text] over the whole range of experimental conditions. Second, we introduce an original optical microscopy method to access structural properties of the entangled polymer gel in the direct space. Performing image correlation spectroscopy of fluorophore-loaded gels, the characteristic size D of carbopol gels microstructure is determined as a function of preparation protocol. Combining both dynamical and structural information shows that the measured cooperative length [Formula: see text] corresponds to 2-5 times the underlying structural size D, thus providing a strong grounding to the "Shear Transformation Zones" modeling approach.
Collapse
Affiliation(s)
- Baudouin Géraud
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, F-69622, VILLEURBANNE, France
| | - Loren Jørgensen
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, F-69622, VILLEURBANNE, France
| | - Christophe Ybert
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, F-69622, VILLEURBANNE, France
| | - Hélène Delanoë-Ayari
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, F-69622, VILLEURBANNE, France
| | - Catherine Barentin
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, F-69622, VILLEURBANNE, France.
| |
Collapse
|
18
|
Bénichou O, Illien P, Oshanin G, Sarracino A, Voituriez R. Nonlinear response and emerging nonequilibrium microstructures for biased diffusion in confined crowded environments. Phys Rev E 2016; 93:032128. [PMID: 27078313 DOI: 10.1103/physreve.93.032128] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Indexed: 06/05/2023]
Abstract
We study analytically the dynamics and the microstructural changes of a host medium caused by a driven tracer particle moving in a confined, quiescent molecular crowding environment. Imitating typical settings of active microrheology experiments, we consider here a minimal model comprising a geometrically confined lattice system (a two-dimensional striplike or a three-dimensional capillary-like system) populated by two types of hard-core particles with stochastic dynamics (a tracer particle driven by a constant external force and bath particles moving completely at random). Resorting to a decoupling scheme, which permits us to go beyond the linear-response approximation (Stokes regime) for arbitrary densities of the lattice gas particles, we determine the force-velocity relation for the tracer particle and the stationary density profiles of the host medium particles around it. These results are validated a posteriori by extensive numerical simulations for a wide range of parameters. Our theoretical analysis reveals two striking features: (a) We show that, under certain conditions, the terminal velocity of the driven tracer particle is a nonmonotonic function of the force, so in some parameter range the differential mobility becomes negative, and (b) the biased particle drives the whole system into a nonequilibrium steady state with a stationary particle density profile past the tracer, which decays exponentially, in sharp contrast with the behavior observed for unbounded lattices, where an algebraic decay is known to take place.
Collapse
Affiliation(s)
- O Bénichou
- Laboratoire de Physique Théorique de la Matière Condensée, UPMC, CNRS UMR 7600, Sorbonne Universités, 4 Place Jussieu, 75252 Paris Cedex 05, France
| | - P Illien
- Laboratoire de Physique Théorique de la Matière Condensée, UPMC, CNRS UMR 7600, Sorbonne Universités, 4 Place Jussieu, 75252 Paris Cedex 05, France
- Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford OX1 3NP, United Kingdom
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - G Oshanin
- Laboratoire de Physique Théorique de la Matière Condensée, UPMC, CNRS UMR 7600, Sorbonne Universités, 4 Place Jussieu, 75252 Paris Cedex 05, France
| | - A Sarracino
- Laboratoire de Physique Théorique de la Matière Condensée, UPMC, CNRS UMR 7600, Sorbonne Universités, 4 Place Jussieu, 75252 Paris Cedex 05, France
- CNR-ISC and Dipartimento di Fisica, Sapienza Università di Roma, p.le A. Moro 2, 00185 Roma, Italy
| | - R Voituriez
- Laboratoire de Physique Théorique de la Matière Condensée, UPMC, CNRS UMR 7600, Sorbonne Universités, 4 Place Jussieu, 75252 Paris Cedex 05, France
| |
Collapse
|
19
|
Gibaud T, Perge C, Lindström SB, Taberlet N, Manneville S. Multiple yielding processes in a colloidal gel under large amplitude oscillatory stress. SOFT MATTER 2016; 12:1701-1712. [PMID: 26685970 DOI: 10.1039/c5sm02587g] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Fatigue refers to the changes in material properties caused by repeatedly applied loads. It has been widely studied for, e.g., construction materials, but much less has been done on soft materials. Here, we characterize the fatigue dynamics of a colloidal gel. Fatigue is induced by large amplitude oscillatory stress (LAOStress), and the local displacements of the gel are measured through high-frequency ultrasonic imaging. We show that fatigue eventually leads to rupture and fluidization. We evidence four successive steps associated with these dynamics: (i) the gel first remains solid, (ii) it then slides against the walls, (iii) the bulk of the sample becomes heterogeneous and displays solid-fluid coexistence, and (iv) it is finally fully fluidized. It is possible to homogeneously scale the duration of each step with respect to the stress oscillation amplitude σ0. The data are compatible with both exponential and power-law scalings with σ0, which hints at two possible interpretations of delayed yielding in terms of activated processes or of the Basquin law. Surprisingly, we find that the model parameters behave nonmonotonically as we change the oscillation frequency and/or the gel concentration.
Collapse
Affiliation(s)
- Thomas Gibaud
- Laboratoire de Physique, CNRS/UMR 5672, Ecole Normale Supérieure de Lyon, Université de Lyon, 46 allée d'Italie, 69007 Lyon, France.
| | | | | | | | | |
Collapse
|
20
|
Langer JS. Shear-transformation-zone theory of yielding in athermal amorphous materials. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 92:012318. [PMID: 26274172 DOI: 10.1103/physreve.92.012318] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Indexed: 06/04/2023]
Abstract
Yielding transitions in athermal amorphous materials undergoing steady-state shear flow resemble critical phenomena. Historically, they have been described by the Herschel-Bulkley rheological formula, which implies singular behaviors at yield points. In this paper, I examine this class of phenomena using an elementary version of the thermodynamic shear-transformation-zone (STZ) theory, focusing on the role of the effective disorder temperature, and paying special attention to scaling and dimensional arguments. I find a wide variety of Herschel-Bulkley-like rheologies but, for fundamental reasons not specific to the STZ theory, conclude that the yielding transition is not truly critical. In particular, for realistic many-body models with short-range interactions, there is a correlation length that grows rapidly but ultimately saturates near the yield point.
Collapse
Affiliation(s)
- J S Langer
- Department of Physics, University of California, Santa Barbara, California 93106-9530, USA
| |
Collapse
|
21
|
Chen D, Desmond KW, Weeks ER. Experimental observation of local rearrangements in dense quasi-two-dimensional emulsion flow. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 91:062306. [PMID: 26172718 DOI: 10.1103/physreve.91.062306] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Indexed: 06/04/2023]
Abstract
We experimentally study rearranging regions in slow athermal flow by observing the flow of a concentrated oil-in-water emulsion in a thin chamber with a constricting hopper shape. The gap of the chamber is smaller than the droplet diameters, so that the droplets are compressed into quasi-two-dimensional pancakes. We focus on localized rearrangements known as "T1 events" where four droplets exchange neighbors. Flowing droplets are deformed due to forces from neighboring droplets, and these deformations are decreased by nearby T1 events, with a spatial dependence related to the local structure. We see a tendency of the T1 events to occur in small clusters.
Collapse
Affiliation(s)
- Dandan Chen
- School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, China
- Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, China
| | - Kenneth W Desmond
- Department of Physics, Emory University, Atlanta, Georgia 30322, USA
| | - Eric R Weeks
- Department of Physics, Emory University, Atlanta, Georgia 30322, USA
| |
Collapse
|
22
|
Non-locality and viscous drag effects on the shear localisation in soft-glassy materials. Colloids Surf A Physicochem Eng Asp 2015. [DOI: 10.1016/j.colsurfa.2015.01.090] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
23
|
Benzi R, Sbragaglia M, Scagliarini A, Perlekar P, Bernaschi M, Succi S, Toschi F. Internal dynamics and activated processes in soft-glassy materials. SOFT MATTER 2015; 11:1271-1280. [PMID: 25560202 DOI: 10.1039/c4sm02341b] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Plastic rearrangements play a crucial role in the characterization of soft-glassy materials, such as emulsions and foams. Based on numerical simulations of soft-glassy systems, we study the dynamics of plastic rearrangements at the hydrodynamic scales where thermal fluctuations can be neglected. Plastic rearrangements require an energy input, which can be either provided by external sources, or made available through time evolution in the coarsening dynamics, in which the total interfacial area decreases as a consequence of the slow evolution of the dispersed phase from smaller to large droplets/bubbles. We first demonstrate that our hydrodynamic model can quantitatively reproduce such coarsening dynamics. Then, considering periodically oscillating strains, we characterize the number of plastic rearrangements as a function of the external energy-supply, and show that they can be regarded as activated processes induced by a suitable "noise" effect. Here we use the word noise in a broad sense, referring to the internal non-equilibrium dynamics triggered by spatial random heterogeneities and coarsening. Finally, by exploring the interplay between the internal characteristic time-scale of the coarsening dynamics and the external time-scale associated with the imposed oscillating strain, we show that the system exhibits the phenomenon of stochastic resonance, thereby providing further credit to the mechanical activation scenario.
Collapse
Affiliation(s)
- R Benzi
- Department of Physics and INFN, University of "Tor Vergata", Via della Ricerca Scientifica 1, 00133 Rome, Italy.
| | | | | | | | | | | | | |
Collapse
|
24
|
Schembri F, Bodiguel H, Colin A. Velocimetry in microchannels using photobleached molecular tracers: a tool to discriminate solvent velocity in flows of suspensions. SOFT MATTER 2015; 11:169-178. [PMID: 25376855 DOI: 10.1039/c4sm02049a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We report the development and analysis of a velocimetry technique based on the short time displacement of molecular tracers, tagged thanks to photobleaching. We use confocal microscopy to achieve a good resolution transverse to the observation field in the direction of the velocity gradient. The intensity profiles are fitted by an approximate analytical model which accounts for hydrodynamic dispersion, and allow access to the local velocity. The method is validated using pressure driven flow in microfluidic slits having a thickness of a few tens of micrometers. We discuss the main drawbacks of this technique which is an overestimation of the velocity close to the walls due to the combination of molecular diffusion and shear. We demonstrate that this error, limited to a near wall region of a few micrometers thick, could be controlled by limiting the diffusion of fluorophore molecules or minimizing the bleaching time. The presented technique could be combined with standard particle imaging velocimetry to access velocity differences and allow particle trajectory analysis in microflows of suspensions.
Collapse
|
25
|
Clara-Rahola J, Brzinski TA, Semwogerere D, Feitosa K, Crocker JC, Sato J, Breedveld V, Weeks ER. Affine and nonaffine motions in sheared polydisperse emulsions. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 91:010301. [PMID: 25679553 DOI: 10.1103/physreve.91.010301] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Indexed: 05/27/2023]
Abstract
We study dense and highly polydisperse emulsions at droplet volume fractions ϕ≥0.65. We apply oscillatory shear and observe droplet motion using confocal microscopy. The presence of droplets with sizes several times the mean size dramatically changes the motion of smaller droplets. Both affine and nonaffine droplet motions are observed, with the more nonaffine motion exhibited by the smaller droplets which are pushed around by the larger droplets. Droplet motions are correlated over length scales from one to four times the mean droplet diameter, with larger length scales corresponding to higher strain amplitudes (up to strains of about 6%).
Collapse
Affiliation(s)
- J Clara-Rahola
- Department of Physics, Emory University, Atlanta, Georgia 30322, USA
| | - T A Brzinski
- Department of Physics, Emory University, Atlanta, Georgia 30322, USA
| | - D Semwogerere
- Department of Physics, Emory University, Atlanta, Georgia 30322, USA
| | - K Feitosa
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - J C Crocker
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - J Sato
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - V Breedveld
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Eric R Weeks
- Department of Physics, Emory University, Atlanta, Georgia 30322, USA
| |
Collapse
|
26
|
Cohen-Addad S, Höhler R. Rheology of foams and highly concentrated emulsions. Curr Opin Colloid Interface Sci 2014. [DOI: 10.1016/j.cocis.2014.11.003] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
27
|
|
28
|
|
29
|
Louvet N, Bonn D, Kellay H. Nonuniversality in the pinch-off of yield stress fluids: role of nonlocal rheology. PHYSICAL REVIEW LETTERS 2014; 113:218302. [PMID: 25479525 DOI: 10.1103/physrevlett.113.218302] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Indexed: 06/04/2023]
Abstract
The pinch-off behavior of yield stress fluids is investigated using droplet and liquid-bridge breakup experiments. Contrary to expectations, the neck thinning behavior depends strongly on the way the breakup experiment is carried out. This nonuniversal behavior can be explained through an analysis of the thinning dynamics as well as the shapes of the fluid necks. Recent nonlocal models for the rheology of yield stress fluids are found to be compatible with the results presented.
Collapse
Affiliation(s)
- Nicolas Louvet
- Université de Bordeaux, Laboratoire Ondes et Matière d'Aquitaine, UMR 5798 U. Bx/CNRS, 351 Cours de la Libération, 33405 Talence, France
| | - Daniel Bonn
- Soft Matter Group, Van der Waals-Zeeman Institute, Institute of Physics, University of Amsterdam, Science Park 904, Amsterdam, Netherlands
| | - Hamid Kellay
- Université de Bordeaux, Laboratoire Ondes et Matière d'Aquitaine, UMR 5798 U. Bx/CNRS, 351 Cours de la Libération, 33405 Talence, France
| |
Collapse
|
30
|
Chaudhuri P, Horbach J. Poiseuille flow of soft glasses in narrow channels: from quiescence to steady state. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 90:040301. [PMID: 25375422 DOI: 10.1103/physreve.90.040301] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Indexed: 06/04/2023]
Abstract
Using numerical simulations, the onset of Poiseuille flow in a confined soft glass is investigated. Starting from the quiescent state, steady flow sets in at a time scale which increases with a decrease in applied forcing. At this onset time scale, a rapid transition occurs via the simultaneous fluidization of regions having different local stresses. In the absence of steady flow at long times, creep is observed even in regions where the local stress is larger than the bulk yielding threshold. Finally, we show that the time scale to attain steady flow depends strongly on the history of the initial state.
Collapse
Affiliation(s)
- Pinaki Chaudhuri
- Institut für Theoretische Physik II, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Jürgen Horbach
- Institut für Theoretische Physik II, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| |
Collapse
|
31
|
Knowlton ED, Pine DJ, Cipelletti L. A microscopic view of the yielding transition in concentrated emulsions. SOFT MATTER 2014; 10:6931-40. [PMID: 24920407 DOI: 10.1039/c4sm00531g] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
We use a custom shear cell coupled to an optical microscope to investigate at the particle level the yielding transition in concentrated emulsions subjected to an oscillatory shear deformation. By performing experiments lasting thousands of cycles on samples at several volume fractions and for a variety of applied strain amplitudes, we obtain a comprehensive, microscopic picture of the yielding transition. We find that irreversible particle motion sharply increases beyond a volume-fraction dependent critical strain, which is found to be in close agreement with the strain beyond which the stress-strain relation probed in rheology experiments significantly departs from linearity. The shear-induced dynamics are very heterogenous: quiescent particles coexist with two distinct populations of mobile and 'supermobile' particles. Dynamic activity exhibits spatial and temporal correlations, with rearrangements events organized in bursts of motion affecting localized regions of the sample. Analogies with other sheared soft materials and with recent work on the transition to irreversibility in sheared complex fluids are briefly discussed.
Collapse
Affiliation(s)
- E D Knowlton
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| | | | | |
Collapse
|
32
|
Mansard V, Bocquet L, Colin A. Boundary conditions for soft glassy flows: slippage and surface fluidization. SOFT MATTER 2014; 10:6984-6989. [PMID: 24854663 DOI: 10.1039/c4sm00230j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
We explore the question of surface boundary conditions for the flow of a dense emulsion. We make use of microlithographic tools to create surfaces with well controlled roughness patterns and measure using dynamic confocal microscopy both the slip velocity and the shear rate close to the wall, which we relate to the notion of surface fluidization. Both slippage and wall fluidization depend non-monotonously on the roughness. We interpret this behavior within a simple model in terms of the building of a stratified layer and the activation of plastic events by the surface roughness.
Collapse
Affiliation(s)
- Vincent Mansard
- Rhodia Laboratoire du Futur, Unité mixte Rhodia-CNRS, Université Bordeaux I, UMR 5258, Bordeaux, France.
| | | | | |
Collapse
|
33
|
Tamborini E, Cipelletti L, Ramos L. Plasticity of a colloidal polycrystal under cyclic shear. PHYSICAL REVIEW LETTERS 2014; 113:078301. [PMID: 25170734 DOI: 10.1103/physrevlett.113.078301] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Indexed: 06/03/2023]
Abstract
We use confocal microscopy and time-resolved light scattering to investigate plasticity in a colloidal polycrystal, following the evolution of the network of grain boundaries as the sample is submitted to thousands of shear deformation cycles. The grain boundary motion is found to be ballistic, with a velocity distribution function exhibiting nontrivial power law tails. The shear-induced dynamics initially slow down, similarly to the aging of the spontaneous dynamics in glassy materials, but eventually reach a steady state. Surprisingly, the crossover time between the initial aging regime and the steady state decreases with increasing probed length scale, hinting at a hierarchical organization of the grain boundary dynamics.
Collapse
Affiliation(s)
- Elisa Tamborini
- Université Montpellier 2, Laboratoire Charles Coulomb UMR 5221, F-34095 Montpellier, France and CNRS, Laboratoire Charles Coulomb UMR 5221, F-34095 Montpellier, France
| | - Luca Cipelletti
- Université Montpellier 2, Laboratoire Charles Coulomb UMR 5221, F-34095 Montpellier, France and CNRS, Laboratoire Charles Coulomb UMR 5221, F-34095 Montpellier, France
| | - Laurence Ramos
- Université Montpellier 2, Laboratoire Charles Coulomb UMR 5221, F-34095 Montpellier, France and CNRS, Laboratoire Charles Coulomb UMR 5221, F-34095 Montpellier, France
| |
Collapse
|
34
|
Nicolas A, Martens K, Bocquet L, Barrat JL. Universal and non-universal features in coarse-grained models of flow in disordered solids. SOFT MATTER 2014; 10:4648-4661. [PMID: 24839104 DOI: 10.1039/c4sm00395k] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
We study the two-dimensional (2D) shear flow of amorphous solids within variants of an elastoplastic model, paying particular attention to spatial correlations and time fluctuations of, e.g., local stresses. The model is based on the local alternation between an elastic regime and plastic events during which the local stress is redistributed. The importance of a fully tensorial description of the stress and of the inclusion of (coarse-grained) convection in the model is investigated; scalar and tensorial models yield similar results, while convection enhances fluctuations and breaks the spurious symmetry between the flow and velocity gradient directions, for instance when shear localisation is observed. Besides, correlation lengths measured with diverse protocols are discussed. One class of such correlation lengths simply scale with the spacing between homogeneously distributed, simultaneous plastic events. This leads to a scaling of the correlation length with the shear rate as γ̇(-1/2) in 2D in the athermal regime, regardless of the details of the model. The radius of the cooperative disk, defined as the near-field region in which plastic events induce a stress redistribution that is not amenable to a mean-field treatment, notably follows this scaling. On the other hand, the cooperative volume measured from the four-point stress susceptibility and its dependence on the system size and the shear rate are model-dependent.
Collapse
|
35
|
Benzi R, Sbragaglia M, Perlekar P, Bernaschi M, Succi S, Toschi F. Direct evidence of plastic events and dynamic heterogeneities in soft-glasses. SOFT MATTER 2014; 10:4615-4624. [PMID: 24827455 DOI: 10.1039/c4sm00348a] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
By using fluid-kinetic simulations of confined and concentrated emulsion droplets, we investigate the nature of space non-homogeneity in soft-glassy dynamics and provide quantitative measurements of the statistical features of plastic events in the proximity of the yield-stress threshold. Above the yield stress, our results show the existence of a finite stress correlation scale, which can be mapped directly onto the cooperativity scale, recently introduced in the literature to capture non-local effects in the soft-glassy dynamics. In this regime, the emergence of a separate boundary (wall) rheology with higher fluidity than the bulk is highlighted in terms of near-wall spontaneous segregation of plastic events. Near the yield stress, where the cooperativity scale cannot be estimated with sufficient accuracy, the system shows a clear increase of the stress correlation scale, whereas plastic events exhibit intermittent clustering in time, with no preferential spatial location. A quantitative measurement of the space-time correlation associated with the motion of the interface of the droplets is key to spot the elastic rigidity of the system.
Collapse
Affiliation(s)
- R Benzi
- Department of Physics and INFN, University of "Tor Vergata", Via della Ricerca Scientifica 1, 00133 Rome, Italy.
| | | | | | | | | | | |
Collapse
|
36
|
Maiti M, Heussinger C. Rheology near jamming: the influence of lubrication forces. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 89:052308. [PMID: 25353801 DOI: 10.1103/physreve.89.052308] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Indexed: 06/04/2023]
Abstract
We study, by computer simulations, the roles of different dissipation forces in the rheological properties of highly dense particle-laden flows. In particular, we are interested in the close-packing limit (jamming) and the question of whether "universal" observables can be identified that do not depend on the details of the dissipation model. To this end, we define a simplified lubrication force and systematically vary the range h(c) of this interaction. For fixed h(c) a crossover is seen from a Newtonian flow regime at small strain rates to inertia-dominated flow at larger strain rates. The same crossover is observed as a function of the lubrication range h(c). At the same time, but only at high densities close to jamming, single-particle velocities as well as local density distributions are unaffected by changes in the lubrication range--they are candidates for universal behavior. At densities away from jamming, this invariance is lost: short-range lubrication forces lead to pronounced particle clustering, while longer-ranged lubrication does not. These findings highlight the importance of "geometric" packing constraints for particle motion--independent of the specific dissipation model. With the free volume vanishing at random close packing, particle motion is more and more constrained by the ever smaller amount of free space. On the other hand, macroscopic rheological observables as well as higher-order correlation functions retain the variability of the underlying dissipation model.
Collapse
Affiliation(s)
- Moumita Maiti
- Institute for Theoretical Physics, Georg-August University of Göttingen, Friedrich-Hund Platz 1, 37077 Göttingen, Germany
| | - Claus Heussinger
- Institute for Theoretical Physics, Georg-August University of Göttingen, Friedrich-Hund Platz 1, 37077 Göttingen, Germany
| |
Collapse
|
37
|
Chaudhuri P, Horbach J. Onset of flow in a confined colloidal glass under an imposed shear stress. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013; 88:040301. [PMID: 24229095 DOI: 10.1103/physreve.88.040301] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2012] [Indexed: 06/02/2023]
Abstract
A confined colloidal glass, under the imposition of a uniform shear stress, is investigated using numerical simulations. Both at macro- and microscales, the consequent dynamics during the onset of flow is studied. When the imposed stress is gradually decreased, the time scale for the onset of steady flow diverges, associated with long-lived spatial heterogeneities. Near this yield-stress regime, persistent creep in the form of shear-banded structures is observed.
Collapse
Affiliation(s)
- Pinaki Chaudhuri
- Institut für Theoretische Physik II, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany and Johannes-Gutenberg-Universität Mainz, Institut für Physik, WA 331, 55099 Mainz, Germany
| | | |
Collapse
|
38
|
Cipelletti L, Brambilla G, Maccarrone S, Caroff S. Simultaneous measurement of the microscopic dynamics and the mesoscopic displacement field in soft systems by speckle imaging. OPTICS EXPRESS 2013; 21:22353-22366. [PMID: 24104125 DOI: 10.1364/oe.21.022353] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The constituents of soft matter systems such as colloidal suspensions, emulsions, polymers, and biological tissues undergo microscopic random motion, due to thermal energy. They may also experience drift motion correlated over mesoscopic or macroscopic length scales, e.g. in response to an internal or applied stress or during flow. We present a new method for measuring simultaneously both the microscopic motion and the mesoscopic or macroscopic drift. The method is based on the analysis of spatio-temporal cross-correlation functions of speckle patterns taken in an imaging configuration. The method is tested on a translating Brownian suspension and a sheared colloidal glass.
Collapse
|
39
|
Nicolas A, Barrat JL. Spatial cooperativity in microchannel flows of soft jammed materials: a mesoscopic approach. PHYSICAL REVIEW LETTERS 2013; 110:138304. [PMID: 23581385 DOI: 10.1103/physrevlett.110.138304] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Indexed: 06/02/2023]
Abstract
The flow of amorphous solids results from a combination of elastic deformation and local structural rearrangements, which induce nonlocal elastic deformations. These elements are incorporated into a mechanically consistent mesoscopic model of interacting elastoplastic blocks. We investigate the specific case of channel flow with numerical simulations, paying particular attention to situations of strong confinement. We find that the simple picture of plastic events embedded in an elastic matrix successfully accounts for manifestations of spatial cooperativity. Shear rate fluctuations are observed in seemingly quiescent regions, and the velocity profiles in confined flows at high applied pressure deviate from those expected in the absence of nonlocal effects, in agreement with experimental data. However, we suggest a different physical origin for the large deviations observed when walls have rough surfaces, associated with "bumps" of the particles against the asperities of the walls.
Collapse
Affiliation(s)
- Alexandre Nicolas
- Laboratoire Interdisciplinaire de Physique, Université Joseph Fourier Grenoble, CNRS UMR 5588, BP 87, 38402 Saint-Martin d'Hères, France
| | | |
Collapse
|
40
|
Geraud B, Bocquet L, Barentin C. Confined flows of a polymer microgel. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2013; 36:30. [PMID: 23546693 DOI: 10.1140/epje/i2013-13030-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Accepted: 03/01/2013] [Indexed: 06/02/2023]
Abstract
In this paper, we probe the influence of confinement on the flows of a polymer microgel, namely Carbopol. We compare its bulk rheological behavior, measured with a rheometer and well described by a Hershel-Bulkley law, to velocity profiles measured in rough microchannels, obtained with a particle tracking velocimetry technique. We show a strong disagreement between the bulk prediction for the velocity profiles and the measured ones in the microchannels. Velocity profiles in confined conditions are successfully analyzed within the framework of a non-local fluidity model introduced recently (J. Goyon et al. Nature, 454, 84 (2008)). This allows to determine a cooperativity length ξ, whose order of magnitude compares with the structure size of the microgel. Moreover, we measure flow curves using a rheometer for different gap conditions and also show that this set of data exhibit a strong effect of the confinement on the measured rheological properties. This is again characterized by a typical length of the same order as the cooperativity length scale ξ. We thus evidence confinement effects with two complementary experiments which both give the same typical length for the rearrangements in the flows.
Collapse
Affiliation(s)
- Baudouin Geraud
- Institut Lumière Matière, UMR5306 Université Lyon 1-CNRS, Université de Lyon, 69622, Villeurbanne cedex, France
| | | | | |
Collapse
|
41
|
Divoux T, Grenard V, Manneville S. Rheological hysteresis in soft glassy materials. PHYSICAL REVIEW LETTERS 2013; 110:018304. [PMID: 23383848 DOI: 10.1103/physrevlett.110.018304] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Indexed: 06/01/2023]
Abstract
The nonlinear rheology of a soft glassy material is captured by its constitutive relation, shear stress versus shear rate, which is most generally obtained by sweeping up or down the shear rate over a finite temporal window. For a huge amount of complex fluids, the up and down sweeps do not superimpose and define a rheological hysteresis loop. By means of extensive rheometry coupled to time-resolved velocimetry, we unravel the local scenario involved in rheological hysteresis for various types of well-studied soft materials. We introduce two observables that quantify the hysteresis in macroscopic rheology and local velocimetry, respectively, as a function of the sweep rate δt(-1). Strikingly, both observables present a robust maximum with δt, which defines a single material-dependent time scale that grows continuously from vanishingly small values in simple yield stress fluids to large values for strongly time-dependent materials. In line with recent theoretical arguments, these experimental results hint at a universal time scale-based framework for soft glassy materials, where inhomogeneous flows characterized by shear bands and/or pluglike flow play a central role.
Collapse
Affiliation(s)
- Thibaut Divoux
- Laboratoire de Physique, École Normale Supérieure de Lyon, Université de Lyon, CNRS UMR 5672, 46 Allée d'Italie, 69364 Lyon cedex 07, France
| | | | | |
Collapse
|
42
|
Nicolas A, Barrat JL. A mesoscopic model for the rheology of soft amorphous solids, with application to microchannel flows. Faraday Discuss 2013; 167:567-600. [PMID: 24640512 DOI: 10.1039/c3fd00067b] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We have studied a mesoscopic model for the flow of amorphous solids. The model is based on key features identified at the microscopic level, namely periods of elastic deformation interspersed with localised rearrangements of particles that induce long-range elastic deformations. These long-range deformations are derived following a continuum mechanics approach, in the presence of solid boundaries, and are included in full in the model. Indeed, they mediate spatial cooperativity in the flow, whereby a localised rearrangement may lead a distant region to yield. In particular, we have simulated a channel flow and found manifestations of spatial cooperativity that are consistent with published experimental observations for concentrated emulsions in microchannels. Two categories of effects are distinguished. On the one hand, the coupling of regions subject to different shear rates, for instance, leads to finite shear rate fluctuations in the seemingly unsheared "plug" in the centre of the channel. On the other hand, there is convincing experimental evidence of a specific rheology near rough walls. We discuss the diverse possible physical origins for this effect, and we suggest that it may be associated with the bumps of particles into surface asperities as they slide along the wall.
Collapse
|
43
|
Shahin A, Joshi YM. Physicochemical effects in aging aqueous Laponite suspensions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:15674-15686. [PMID: 23057660 DOI: 10.1021/la302544y] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
We study aging behavior of an aqueous suspension of Laponite as a function of concentration of Laponite, concentration of salt, time elapsed since preparation of suspension (idle time), and temperature by carrying extensive rheological and conductivity experiments. We observe that temporal evolution of elastic moduli, which describes structural build-up and aging, shifts to low times for experiments carried out for higher concentration of Laponite, higher concentration of salt, greater temperature, and longer idle time while preserving the curvature of evolution in the solid regime (elastic modulus greater than viscous modulus). Consequently appropriate shifting of evolution of elastic modulus in the solid regime leads to aging time-idle time-salt concentration-Laponite concentration-temperature superposition. The existence of such a superposition suggests the generic nature of microstructure buildup irrespective of mentioned variables in the explored range. The behavior of shift factors needed to obtain the superposition indicate that the energy barrier associated with structural buildup decreases with an increase in idle time and temperature and decreases linearly with an increase in concentration of Laponite and that of salt. The conductivity experiments show that ionic conductivity of the suspension increases with increasing Laponite concentration, salt concentration, temperature, and very importantly the idle time. We also analyze the interparticle interactions using DLVO theory that suggests an increase in idle time, temperature, and salt concentration increases the height of the repulsive energy barrier while it decreases the width of the same when particles approach each other in a parallel fashion. However when particles approach each other in a perpendicular fashion, owing to dissimilar charges on edge and face, the energy barrier for the attractive interaction is expected to decrease with an increase in idle time, temperature, and salt concentration. Analysis of rheological and conductivity experiments suggests a strong influence of attractive interactions on the low energy structures in an aqueous suspension of Laponite.
Collapse
Affiliation(s)
- A Shahin
- Department of Chemical Engineering, Indian Institute of Technology Kanpur, India
| | | |
Collapse
|
44
|
Chaudhuri P, Mansard V, Colin A, Bocquet L. Dynamical flow arrest in confined gravity driven flows of soft jammed particles. PHYSICAL REVIEW LETTERS 2012; 109:036001. [PMID: 22861872 DOI: 10.1103/physrevlett.109.036001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Indexed: 06/01/2023]
Abstract
Using numerical simulations, we study the gravity driven flow of jammed soft disks in confined channels. We demonstrate that confinement results in increasing the yield threshold for the Poiseuille flow, in contrast to the planar Couette flow. By solving a nonlocal flow model for such systems, we show that this effect is due to the correlated dynamics responsible for flow, coupled with the stress heterogeneity imposed for the Poiseuille flow. We also observe that with increasing confinement, the cooperative nature of the flow results in increasing intermittent behavior. Our studies indicate that such features are generic properties of a wide variety of jammed materials.
Collapse
Affiliation(s)
- Pinaki Chaudhuri
- Laboratoire PMCN, Université Lyon 1, UMR CNRS 5586, Villeurbanne, France
| | | | | | | |
Collapse
|