Shomali Z, Asgari R. Spin transfer torque and exchange coupling in Josephson junctions with ferromagnetic superconductor reservoirs.
JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2020;
32:035806. [PMID:
31585455 DOI:
10.1088/1361-648x/ab4b1d]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In this paper, the spin transfer torque (STT) and the exchange coupling of the Josephson junctions containing the interesting cases of diffusive/ballistic-triplet/singlet ferromagnetic superconductor (FS) materials are investigated. First, the diffusive FS1/F c /FS2 structures with F c being a junction consisting of ferromagnetic and normal metal parts as well as insulating barriers are investigated. Secondly, the ballistic Josephson junction containing the triplet chiral p/wave FS reservoirs is studied. Using the Nazarov quantum circuit theory for the diffusive structures, it is found that the antiparallel/parallel or vice versa parallel/antiparallel transition of the favorable exchange coupling takes place due to the appearance of the only out-of-plane STT. Furthermore, the analyze of the phase difference interval in which an interlayer length-induced antiparallel/parallel transition can be occurred, is performed. Afterward, the mentioned ballistic structure is dealt with solving the 16 [Formula: see text] 16 Bogoliubov-de-Gennes equation. It is found that although the exchange fields of the FS are laid in the z and y direction, the STT interestingly exists in all three directions of x, y and z. This exciting finding suggests that the favorable equilibrium configuration concerning the least exchange coupling occurs in the relative exchange field direction different from 0 or [Formula: see text].
Collapse