1
|
Mehta R, Rana B, Saha S. Magnetization dynamics in quasiperiodic magnonic crystals. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2024; 36:443003. [PMID: 38959908 DOI: 10.1088/1361-648x/ad5ee8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 07/03/2024] [Indexed: 07/05/2024]
Abstract
Quasiperiodic magnonic crystals, in contrast to their periodic counterparts, lack strict periodicity which gives rise to complex and localised spin wave spectra characterized by numerous band gaps and fractal features. Despite their intrinsic structural complexity, quasiperiodic nature of these magnonic crystals enables better tunability of spin wave spectra over their periodic counterparts and therefore holds promise for the applications in reprogrammable magnonic devices. In this article, we provide an overview of magnetization reversal and precessional magnetization dynamics studied so far in various quasiperiodic magnonic crystals, illustrating how their quasiperiodic nature gives rise to tailored band structure, enabling unparalleled control over spin waves. The review is concluded by highlighting the possible potential applications of these quasiperiodic magnonic crystals, exploring potential avenues for future exploration followed by a brief summary.
Collapse
Affiliation(s)
- Riya Mehta
- Department of Physics, Ashoka University, Sonipat, Haryana 131029, India
| | - Bivas Rana
- Institute of Spintronics and Quantum Information, Faculty of Physics, Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 2, 61-614 Poznan, Poland
| | - Susmita Saha
- Department of Physics, Ashoka University, Sonipat, Haryana 131029, India
| |
Collapse
|
2
|
Lopez-Bezanilla A, Raymond J, Boothby K, Carrasquilla J, Nisoli C, King AD. Kagome qubit ice. Nat Commun 2023; 14:1105. [PMID: 36849545 PMCID: PMC9970994 DOI: 10.1038/s41467-023-36760-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 02/13/2023] [Indexed: 03/01/2023] Open
Abstract
Topological phases of spin liquids with constrained disorder can host a kinetics of fractionalized excitations. However, spin-liquid phases with distinct kinetic regimes have proven difficult to observe experimentally. Here we present a realization of kagome spin ice in the superconducting qubits of a quantum annealer, and use it to demonstrate a field-induced kinetic crossover between spin-liquid phases. Employing fine control over local magnetic fields, we show evidence of both the Ice-I phase and an unconventional field-induced Ice-II phase. In the latter, a charge-ordered yet spin-disordered topological phase, the kinetics proceeds via pair creation and annihilation of strongly correlated, charge conserving, fractionalized excitations. As these kinetic regimes have resisted characterization in other artificial spin ice realizations, our results demonstrate the utility of quantum-driven kinetics in advancing the study of topological phases of spin liquids.
Collapse
Affiliation(s)
- Alejandro Lopez-Bezanilla
- grid.148313.c0000 0004 0428 3079Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545 USA
| | | | | | - Juan Carrasquilla
- grid.17063.330000 0001 2157 2938Vector Institute, University of Toronto, Toronto, ON M5G 1M1 Canada ,grid.46078.3d0000 0000 8644 1405Department of Physics and Astronomy, University of Waterloo, Waterloo, ON N2L 3G1 Canada
| | - Cristiano Nisoli
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA.
| | | |
Collapse
|
3
|
Schánilec V, Brunn O, Horáček M, Krátký S, Meluzín P, Šikola T, Canals B, Rougemaille N. Approaching the Topological Low-Energy Physics of the F Model in a Two-Dimensional Magnetic Lattice. PHYSICAL REVIEW LETTERS 2022; 129:027202. [PMID: 35867462 DOI: 10.1103/physrevlett.129.027202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/11/2022] [Accepted: 06/15/2022] [Indexed: 06/15/2023]
Abstract
We demonstrate that the physics of the F model can be approached very closely in a two-dimensional artificial magnetic system. Faraday lines spanning across the lattice and carrying a net polarization, together with chiral Faraday loops characterized by a zero magnetic susceptibility, are imaged in real space using magnetic force microscopy. Our measurements reveal the proliferation of Faraday lines and Faraday loops as the system is brought from low- to high-energy magnetic configurations. They also reveal a link between the Faraday loop density and icelike spin-spin correlations in the magnetic structure factor. Key for this Letter, the density of topological defects remains small, on the order of 1% or less, and negligible compared to the density of Faraday loops. This is made possible by replacing the spin degree of freedom used in conventional lattices of interacting nanomagnets by a micromagnetic knob, which can be finely tuned to adjust the vertex energy directly, rather than modifying the two-body interactions.
Collapse
Affiliation(s)
- V Schánilec
- Université Grenoble Alpes, CNRS, Grenoble INP, Institut NEEL, 38000 Grenoble, France
- Central European Institute of Technology, CEITEC BUT, Brno University of Technology, Purkyňova 123, Brno 612 00, Czech Republic
| | - O Brunn
- Université Grenoble Alpes, CNRS, Grenoble INP, Institut NEEL, 38000 Grenoble, France
- Institute of Scientific Instruments of the Czech Academy of Sciences, Královopolská 147, 612 64 Brno, Czech Republic
- Institute of Physical Engineering, Brno University of Technology, Technická 2, 616 69 Brno, Czech Republic
| | - M Horáček
- Institute of Scientific Instruments of the Czech Academy of Sciences, Královopolská 147, 612 64 Brno, Czech Republic
| | - S Krátký
- Institute of Scientific Instruments of the Czech Academy of Sciences, Královopolská 147, 612 64 Brno, Czech Republic
| | - P Meluzín
- Institute of Scientific Instruments of the Czech Academy of Sciences, Královopolská 147, 612 64 Brno, Czech Republic
| | - T Šikola
- Central European Institute of Technology, CEITEC BUT, Brno University of Technology, Purkyňova 123, Brno 612 00, Czech Republic
- Institute of Physical Engineering, Brno University of Technology, Technická 2, 616 69 Brno, Czech Republic
| | - B Canals
- Université Grenoble Alpes, CNRS, Grenoble INP, Institut NEEL, 38000 Grenoble, France
| | - N Rougemaille
- Université Grenoble Alpes, CNRS, Grenoble INP, Institut NEEL, 38000 Grenoble, France
| |
Collapse
|
4
|
Caravelli F, Saccone M, Nisoli C. On the degeneracy of spin ice graphs, and its estimate via the Bethe permanent. Proc Math Phys Eng Sci 2021. [DOI: 10.1098/rspa.2021.0108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The concept of spin ice can be extended to a general graph. We study the degeneracy of spin ice graph on arbitrary interaction structures via graph theory. We map spin ice graphs to the Ising model on a graph and clarify whether the inverse mapping is possible via a modified Krausz construction. From the gauge freedom of frustrated Ising systems, we derive exact, general results about frustration and degeneracy. We demonstrate for the first time that every spin ice graph, with the exception of the one-dimensional Ising model, is degenerate. We then study how degeneracy scales in size, using the mapping between Eulerian trails and spin ice manifolds, and a permanental identity for the number of Eulerian orientations. We show that the Bethe permanent technique provides both an estimate and a lower bound to the frustration of spin ices on arbitrary graphs of even degree. While such a technique can also be used to obtain an upper bound, we find that in all finite degree examples we studied, another upper bound based on Schrijver inequality is tighter.
Collapse
Affiliation(s)
- Francesco Caravelli
- Theoretical Division (T4), Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Michael Saccone
- Theoretical Division (T4), Los Alamos National Laboratory, Los Alamos, NM 87545, USA
- Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Cristiano Nisoli
- Theoretical Division (T4), Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| |
Collapse
|
5
|
Chen XM, Farmer B, Woods JS, Dhuey S, Hu W, Mazzoli C, Wilkins SB, Chopdekar RV, Scholl A, Robinson IK, De Long LE, Roy S, Hastings JT. Spontaneous Magnetic Superdomain Wall Fluctuations in an Artificial Antiferromagnet. PHYSICAL REVIEW LETTERS 2019; 123:197202. [PMID: 31765174 DOI: 10.1103/physrevlett.123.197202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 10/16/2019] [Indexed: 06/10/2023]
Abstract
Collective dynamics often play an important role in determining the stability of ground states for both naturally occurring materials and metamaterials. We studied the temperature dependent dynamics of antiferromagnetically ordered superdomains in a square artificial spin lattice using soft x-ray photon correlation spectroscopy. We observed an exponential slowing down of superdomain wall motion below the antiferromagnetic onset temperature, similar to the behavior of typical bulk antiferromagnets. Using a continuous time random walk model we show that these superdomain walls undergo low-temperature ballistic and high-temperature diffusive motions.
Collapse
Affiliation(s)
- X M Chen
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
- Department of Electrical and Computer Engineering, University of Kentucky, Lexington, Kentucky 40506, USA
| | - B Farmer
- Department of Physics and Astronomy, University of Kentucky, Lexington, Kentucky 40506, USA
| | - J S Woods
- Department of Physics and Astronomy, University of Kentucky, Lexington, Kentucky 40506, USA
- Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - S Dhuey
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - W Hu
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - C Mazzoli
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - S B Wilkins
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - R V Chopdekar
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - A Scholl
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - I K Robinson
- Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, New York 11973, USA
- London Centre for Nanotechnology, University College, Gower Street, London WC1E 6BT, United Kingdom
| | - L E De Long
- Department of Physics and Astronomy, University of Kentucky, Lexington, Kentucky 40506, USA
| | - S Roy
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - J T Hastings
- Department of Electrical and Computer Engineering, University of Kentucky, Lexington, Kentucky 40506, USA
| |
Collapse
|
6
|
Pancaldi M, Leo N, Vavassori P. Selective and fast plasmon-assisted photo-heating of nanomagnets. NANOSCALE 2019; 11:7656-7666. [PMID: 30951080 DOI: 10.1039/c9nr01628g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Thermal relaxation of nanoscale magnetic islands, mimicking Ising macrospins, is indispensable for studies of geometrically frustrated artificial spin systems and low-energy nanomagnetic computation. Currently-used heating schemes based on contact to a thermal reservoir, however, lack the speed and spatial selectivity required for the implementation in technological applications. Applying a hybrid approach by combining a plasmonic nanoheater with a magnetic element, in this work we establish the robust and reliable control of local temperatures in nanomagnetic arrays by contactless optical means. Plasmon-assisted photo-heating allows for temperature increases of up to several hundred kelvins, which lead to thermally-activated moment reversals and a pronounced reduction of the magnetic coercive field. Furthermore, the polarization-dependent absorption cross section of elongated plasmonic elements enables sublattice-specific heating on sub-nanosecond time scales. Using optical degrees of freedom, i.e. focal position, polarization, power, and pulse length, thermoplasmonic heating of nanomagnets offers itself for the use in flexible, fast, spatially-, and element-selective thermalization for functional magnetic metamaterials.
Collapse
|
7
|
Guruciaga PC, Tarzia M, Ferreyra MV, Cugliandolo LF, Grigera SA, Borzi RA. Field-Tuned Order by Disorder in Frustrated Ising Magnets with Antiferromagnetic Interactions. PHYSICAL REVIEW LETTERS 2016; 117:167203. [PMID: 27792395 DOI: 10.1103/physrevlett.117.167203] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Indexed: 06/06/2023]
Abstract
We demonstrate the appearance of thermal order by disorder in Ising pyrochlores with staggered antiferromagnetic order frustrated by an applied magnetic field. We use a mean-field cluster variational method, a low-temperature expansion, and Monte Carlo simulations to characterize the order-by-disorder transition. By direct evaluation of the density of states, we quantitatively show how a symmetry-broken state is selected by thermal excitations. We discuss the relevance of our results to experiments in 2D and 3D samples and evaluate how anomalous finite-size effects could be exploited to detect this phenomenon experimentally in two-dimensional artificial systems, or in antiferromagnetic all-in-all-out pyrochlores like Nd_{2}Hf_{2}O_{7} or Nd_{2}Zr_{2}O_{7}, for the first time.
Collapse
Affiliation(s)
- P C Guruciaga
- Instituto de Investigaciones Físicas de Mar del Plata (IFIMAR), UNMdP-CONICET, 7600 Mar del Plata, Argentina
| | - M Tarzia
- Université Pierre et Marie Curie-Paris 6, Laboratoire de Physique Théorique de la Matière Condensée, 4, Place Jussieu, Tour 13, 5ème étage, 75252 Paris Cedex 05, France
| | - M V Ferreyra
- Instituto de Física de Líquidos y Sistemas Biológicos (IFLYSIB), UNLP-CONICET, 1900 La Plata, Argentina
| | - L F Cugliandolo
- Université Pierre et Marie Curie-Paris 6, Laboratoire de Physique Théorique et Hautes Energies, 4, Place Jussieu, Tour 13, 5ème étage, 75252 Paris Cedex 05, France
| | - S A Grigera
- Instituto de Física de Líquidos y Sistemas Biológicos (IFLYSIB), UNLP-CONICET, 1900 La Plata, Argentina
- School of Physics and Astronomy, University of St Andrews, St Andrews KY16 9SS, United Kingdom
| | - R A Borzi
- Instituto de Física de Líquidos y Sistemas Biológicos (IFLYSIB), UNLP-CONICET, 1900 La Plata, Argentina
| |
Collapse
|
8
|
Heyderman LJ, Stamps RL. Artificial ferroic systems: novel functionality from structure, interactions and dynamics. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2013; 25:363201. [PMID: 23948652 DOI: 10.1088/0953-8984/25/36/363201] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Lithographic processing and film growth technologies are continuing to advance, so that it is now possible to create patterned ferroic materials consisting of arrays of sub-1 μm elements with high definition. Some of the most fascinating behaviour of these arrays can be realised by exploiting interactions between the individual elements to create new functionality. The properties of these artificial ferroic systems differ strikingly from those of their constituent components, with novel emergent behaviour arising from the collective dynamics of the interacting elements, which are arranged in specific designs and can be activated by applying magnetic or electric fields. We first focus on artificial spin systems consisting of arrays of dipolar-coupled nanomagnets and, in particular, review the field of artificial spin ice, which demonstrates a wide range of fascinating phenomena arising from the frustration inherent in particular arrangements of nanomagnets, including emergent magnetic monopoles, domains of ordered macrospins, and novel avalanche behaviour. We outline how demagnetisation protocols have been employed as an effective thermal anneal in an attempt to reach the ground state, comment on phenomena that arise in thermally activated systems and discuss strategies for selectively generating specific configurations using applied magnetic fields. We then move on from slow field and temperature driven dynamics to high frequency phenomena, discussing spinwave excitations in the context of magnonic crystals constructed from arrays of patterned magnetic elements. At high frequencies, these arrays are studied in terms of potential applications including magnetic logic, linear and non-linear microwave optics, and fast, efficient switching, and we consider the possibility to create tunable magnonic crystals with artificial spin ice. Finally, we discuss how functional ferroic composites can be incorporated to realise magnetoelectric effects. Specifically, we discuss artificial multiferroics (or multiferroic composites), which hold promise for new applications that involve electric field control of magnetism, or electric and magnetic field responsive devices for high frequency integrated circuit design in microwave and terahertz signal processing. We close with comments on how enhanced functionality can be realised through engineering of nanostructures with interacting ferroic components, creating opportunities for novel spin electronic devices that, for example, make use of the transport of magnetic charges, thermally activated elements, and reprogrammable nanomagnet systems.
Collapse
Affiliation(s)
- L J Heyderman
- Laboratory for Mesoscopic Systems, Department of Materials, ETH Zurich, 8093 Zurich, Switzerland.
| | | |
Collapse
|
9
|
Farhan A, Derlet PM, Kleibert A, Balan A, Chopdekar RV, Wyss M, Perron J, Scholl A, Nolting F, Heyderman LJ. Direct observation of thermal relaxation in artificial spin ice. PHYSICAL REVIEW LETTERS 2013; 111:057204. [PMID: 23952441 DOI: 10.1103/physrevlett.111.057204] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 07/02/2013] [Indexed: 06/02/2023]
Abstract
We study the thermal relaxation of artificial spin ice with photoemission electron microscopy, and are able to directly observe how such a system finds its way from an energetically excited state to the ground state. On plotting vertex-type populations as a function of time, we can characterize the relaxation, which occurs in two stages, namely a string and a domain regime. Kinetic Monte Carlo simulations agree well with the temporal evolution of the magnetic state when including disorder, and the experimental results can be explained by considering the effective interaction energy associated with the separation of pairs of vertex excitations.
Collapse
Affiliation(s)
- A Farhan
- Laboratory for Micro- and Nanotechnology, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | | | | | | | | | | | | | | | | | | |
Collapse
|