1
|
Lin MK, Hlevyack JA, Zhao C, Dudin P, Avila J, Mo SK, Cheng CM, Abbamonte P, Shoemaker DP, Chiang TC. Unconventional Spectral Gaps Induced by Charge Density Waves in the Weyl Semimetal (TaSe 4) 2I. NANO LETTERS 2024; 24:8778-8783. [PMID: 38976362 PMCID: PMC11261618 DOI: 10.1021/acs.nanolett.4c02701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/02/2024] [Accepted: 07/02/2024] [Indexed: 07/10/2024]
Abstract
Coupling Weyl quasiparticles and charge density waves (CDWs) can lead to fascinating band renormalization and many-body effects beyond band folding and Peierls gaps. For the quasi-one-dimensional chiral compound (TaSe4)2I with an incommensurate CDW transition at TC = 263 K, photoemission mappings thus far are intriguing due to suppressed emission near the Fermi level. Models for this unconventional behavior include axion insulator phases, correlation pseudogaps, polaron subbands, bipolaron bound states, etc. Our photoemission measurements show sharp quasiparticle bands crossing the Fermi level at T > TC, but for T < TC, these bands retain their dispersions with no Peierls or axion gaps at the Weyl points. Instead, occupied band edges recede from the Fermi level, opening a spectral gap. Our results confirm localization of quasiparticles (holes created by photoemission) is the key physics, which suppresses spectral weights over an energy window governed by incommensurate modulation and inherent phase defects of CDW.
Collapse
Affiliation(s)
- Meng-Kai Lin
- Department
of Physics, National Central University, Taoyuan 32001, Taiwan
| | - Joseph Andrew Hlevyack
- Department
of Physics, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Chengxi Zhao
- Department
of Materials Science and Engineering, University
of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Pavel Dudin
- Synchrotron
SOLEIL and Universite Paris-Saclay, L’Orme des Merisiers, BP48, 91190 Saint-Aubin, France
| | - José Avila
- Synchrotron
SOLEIL and Universite Paris-Saclay, L’Orme des Merisiers, BP48, 91190 Saint-Aubin, France
| | - Sung-Kwan Mo
- Advanced
Light Source, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Cheng-Maw Cheng
- National
Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Peter Abbamonte
- Department
of Physics, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Daniel P. Shoemaker
- Department
of Materials Science and Engineering, University
of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Tai-Chang Chiang
- Department
of Physics, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
2
|
Kalimuddin S, Chatterjee S, Bera A, Afzal H, Bera S, Roy DS, Das S, Debnath T, Bansal B, Mondal M. Exceptionally Slow, Long-Range, and Non-Gaussian Critical Fluctuations Dominate the Charge Density Wave Transition. PHYSICAL REVIEW LETTERS 2024; 132:266504. [PMID: 38996319 DOI: 10.1103/physrevlett.132.266504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 05/02/2024] [Accepted: 05/23/2024] [Indexed: 07/14/2024]
Abstract
(TaSe_{4})_{2}I is a well-studied quasi-one-dimensional compound long-known to have a charge-density wave (CDW) transition around 263 K. We argue that the critical fluctuations of the pinned CDW order parameter near the transition can be inferred from the resistance noise on account of their coupling to the dissipative normal carriers. Remarkably, the critical fluctuations of the CDW order parameter are slow enough to survive the thermodynamic limit and dominate the low-frequency resistance noise. The noise variance and relaxation time show rapid growth (critical opalescence and critical slowing down) within a temperature window of ϵ≈±0.1, where ϵ is the reduced temperature. This is very wide but consistent with the Ginzburg criterion. We further show that this resistance noise can be quantitatively used to extract the associated critical exponents. Below |ϵ|≲0.02, we observe a crossover from mean-field to a fluctuation-dominated regime with the critical exponents taking anomalously low values. The distribution of fluctuations in the critical transition region is skewed and strongly non-Gaussian. This non-Gaussianity is interpreted as the breakdown of the validity of the central limit theorem as the diverging coherence volume becomes comparable to the macroscopic sample size. The large magnitude critical fluctuations observed over an extended temperature range, as well as the crossover from the mean-field to the fluctuation-dominated regime highlight the role of the quasi-one-dimensional character in controlling the phase transition.
Collapse
|
3
|
Nhat Quyen N, Tzeng WY, Hsu CE, Lin IA, Chen WH, Jia HH, Wang SC, Liu CE, Chen YS, Chen WL, Chou TL, Wang IT, Kuo CN, Lin CL, Wu CT, Lin PH, Weng SC, Cheng CM, Kuo CY, Tu CM, Chu MW, Chang YM, Lue CS, Hsueh HC, Luo CW. Three-dimensional ultrafast charge-density-wave dynamics in CuTe. Nat Commun 2024; 15:2386. [PMID: 38493205 PMCID: PMC10944522 DOI: 10.1038/s41467-024-46615-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 03/04/2024] [Indexed: 03/18/2024] Open
Abstract
Charge density waves (CDWs) involved with electronic and phononic subsystems simultaneously are a common quantum state in solid-state physics, especially in low-dimensional materials. However, CDW phase dynamics in various dimensions are yet to be studied, and their phase transition mechanism is currently moot. Here we show that using the distinct temperature evolution of orientation-dependent ultrafast electron and phonon dynamics, different dimensional CDW phases are verified in CuTe. When the temperature decreases, the shrinking of c-axis length accompanied with the appearance of interchain and interlayer interactions causes the quantum fluctuations (QF) of the CDW phase until 220 K. At T < 220 K, the CDWs on the different ab-planes are finally locked with each other in anti-phase to form a CDW phase along the c-axis. This study shows the dimension evolution of CDW phases in one CDW system and their stabilized mechanisms in different temperature regimes.
Collapse
Grants
- 112-2119-M-A49-012-MBK Ministry of Science and Technology, Taiwan (Ministry of Science and Technology of Taiwan)
- 109-2112-M-009-020-MY3 Ministry of Science and Technology, Taiwan (Ministry of Science and Technology of Taiwan)
- 109-2124-M-009-003-MY3 Ministry of Science and Technology, Taiwan (Ministry of Science and Technology of Taiwan)
- 109-2119-M-002 -026 -MY3 Ministry of Science and Technology, Taiwan (Ministry of Science and Technology of Taiwan)
- 108-2112-M-002-013-MY3 Ministry of Science and Technology, Taiwan (Ministry of Science and Technology of Taiwan)
- 111-2124-M-213-001 Ministry of Science and Technology, Taiwan (Ministry of Science and Technology of Taiwan)
- 108-2112-M-002 -013 -MY3 Ministry of Science and Technology, Taiwan (Ministry of Science and Technology of Taiwan)
- 109-2119-M-002 -026 -MY3 Ministry of Science and Technology, Taiwan (Ministry of Science and Technology of Taiwan)
- 112-2124-M-006-009 Ministry of Science and Technology, Taiwan (Ministry of Science and Technology of Taiwan)
- 110-2112-M-032-014-MY3 Ministry of Science and Technology, Taiwan (Ministry of Science and Technology of Taiwan)
- Ministry of Education (Ministry of Education, Republic of China (Taiwan))
Collapse
Affiliation(s)
- Nguyen Nhat Quyen
- Department of Electrophysics, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan
| | - Wen-Yen Tzeng
- Department of Electronic Engineering, National Formosa University, Yunlin, 632, Taiwan
| | - Chih-En Hsu
- Department of Physics, Tamkang University, New Taipei City, 251301, Taiwan
| | - I-An Lin
- Department of Physics, Tamkang University, New Taipei City, 251301, Taiwan
| | - Wan-Hsin Chen
- Department of Electrophysics, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan
| | - Hao-Hsiang Jia
- National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan
| | - Sheng-Chiao Wang
- Department of Electrophysics, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan
| | - Cheng-En Liu
- Department of Electrophysics, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan
| | - Yu-Sheng Chen
- National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan
| | - Wei-Liang Chen
- Center for Condensed Matter Sciences, National Taiwan University, Taipei, 10617, Taiwan
| | - Ta-Lei Chou
- Center for Condensed Matter Sciences, National Taiwan University, Taipei, 10617, Taiwan
| | - I-Ta Wang
- Center for Condensed Matter Sciences, National Taiwan University, Taipei, 10617, Taiwan
| | - Chia-Nung Kuo
- Department of Physics, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Chun-Liang Lin
- Department of Electrophysics, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan
| | - Chien-Te Wu
- Department of Electrophysics, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan
- Physics Division, National Center for Theoretical Sciences, Taipei, Taiwan
| | - Ping-Hui Lin
- National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan
| | - Shih-Chang Weng
- National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan
| | - Cheng-Maw Cheng
- National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan
| | - Chang-Yang Kuo
- Department of Electrophysics, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan
- National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan
| | - Chien-Ming Tu
- Department of Electrophysics, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan
- Undergraduate Degree Program of Systems Engineering and Technology, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan
- Chung Cheng Institute of Technology, National Defense University, Taoyuan, 335009, Taiwan
| | - Ming-Wen Chu
- Center for Condensed Matter Sciences, National Taiwan University, Taipei, 10617, Taiwan
- Center of Atomic Initiative for New Materials (AI-MAT), National Taiwan University, Taipei, 10617, Taiwan
| | - Yu-Ming Chang
- Center for Condensed Matter Sciences, National Taiwan University, Taipei, 10617, Taiwan
- Center of Atomic Initiative for New Materials (AI-MAT), National Taiwan University, Taipei, 10617, Taiwan
| | - Chin Shan Lue
- Department of Physics, National Cheng Kung University, Tainan, 70101, Taiwan.
- Taiwan Consortium of Emergent Crystalline Materials (TCECM), National Science and Technology Council, Taipei, 10601, Taiwan.
| | - Hung-Chung Hsueh
- Department of Physics, Tamkang University, New Taipei City, 251301, Taiwan.
| | - Chih-Wei Luo
- Department of Electrophysics, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan.
- National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan.
- Taiwan Consortium of Emergent Crystalline Materials (TCECM), National Science and Technology Council, Taipei, 10601, Taiwan.
- Institute of Physics and Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan.
- Department of Physics, University of Washington, Seattle, Washington, 98195, USA.
| |
Collapse
|
4
|
Cheng B, Cheng D, Jiang T, Xia W, Song B, Mootz M, Luo L, Perakis IE, Yao Y, Guo Y, Wang J. Chirality manipulation of ultrafast phase switches in a correlated CDW-Weyl semimetal. Nat Commun 2024; 15:785. [PMID: 38278821 PMCID: PMC10817907 DOI: 10.1038/s41467-024-45036-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 01/11/2024] [Indexed: 01/28/2024] Open
Abstract
Light engineering of correlated states in topological materials provides a new avenue of achieving exotic topological phases inaccessible by conventional tuning methods. Here we demonstrate a light control of correlation gaps in a model charge-density-wave (CDW) and polaron insulator (TaSe4)2I recently predicted to be an axion insulator. Our ultrafast terahertz photocurrent spectroscopy reveals a two-step, non-thermal melting of polarons and electronic CDW gap via the fluence dependence of a longitudinal circular photogalvanic current. This helicity-dependent photocurrent reveals continuous ultrafast phase switches from the polaronic state to the CDW (axion) phase, and finally to a hidden Weyl phase as the pump fluence increases. Additional distinctive attributes aligning with the light-induced switches include: the mode-selective coupling of coherent phonons to the polaron and CDW modulation, and the emergence of a non-thermal chiral photocurrent above the pump threshold of CDW-related phonons. The demonstrated ultrafast chirality control of correlated topological states here holds large potentials for realizing axion electrodynamics and advancing quantum-computing applications.
Collapse
Affiliation(s)
- Bing Cheng
- Ames National Laboratory, Ames, IA, 50011, USA.
| | - Di Cheng
- Ames National Laboratory, Ames, IA, 50011, USA
| | - Tao Jiang
- Ames National Laboratory, Ames, IA, 50011, USA
| | - Wei Xia
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- ShanghaiTech Laboratory for Topological Physics, Shanghai, 201210, China
| | - Boqun Song
- Ames National Laboratory, Ames, IA, 50011, USA
- Department of Physics and Astronomy, Iowa State University, Ames, IA, 50011, USA
| | - Martin Mootz
- Ames National Laboratory, Ames, IA, 50011, USA
- Department of Physics and Astronomy, Iowa State University, Ames, IA, 50011, USA
| | - Liang Luo
- Ames National Laboratory, Ames, IA, 50011, USA
| | - Ilias E Perakis
- Department of Physics, University of Alabama at Birmingham, Birmingham, AL, 35294-1170, USA
| | - Yongxin Yao
- Ames National Laboratory, Ames, IA, 50011, USA
| | - Yanfeng Guo
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- ShanghaiTech Laboratory for Topological Physics, Shanghai, 201210, China
| | - Jigang Wang
- Ames National Laboratory, Ames, IA, 50011, USA.
- Department of Physics and Astronomy, Iowa State University, Ames, IA, 50011, USA.
| |
Collapse
|
5
|
Zhang Y, Murthy C, Kafle TR, You W, Shi X, Min L, Wang HH, Li N, Gopalan V, Mao Z, Rossnagel K, Yang L, Kapteyn H, Nandkishore R, Murnane M. Bipolaronic Nature of the Pseudogap in Quasi-One-Dimensional (TaSe 4) 2I Revealed via Weak Photoexcitation. NANO LETTERS 2023; 23:8392-8398. [PMID: 37682637 DOI: 10.1021/acs.nanolett.3c01078] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/10/2023]
Abstract
The origin of the pseudogap in many strongly correlated materials has been a longstanding puzzle. Here, we present experimental evidence that many-body interactions among small Holstein polarons, i.e., the formation of bipolarons, are primarily responsible for the pseudogap in (TaSe4)2I. After weak photoexcitation of the material, we observe the appearance of both dispersive (single-particle bare band) and flat bands (single-polaron sub-bands) in the gap by using time- and angle-resolved photoemission spectroscopy. Based on Monte Carlo simulations of the Holstein model, we propose that the melting of pseudogap and emergence of new bands originate from a bipolaron to single-polaron crossover. We also observe dramatically different relaxation times for the excited in-gap states in (TaSe4)2I (∼600 fs) compared with another 1D material Rb0.3MoO3 (∼60 fs), which provides a new method for distinguishing between pseudogaps induced by polaronic or Luttinger-liquid many-body interactions.
Collapse
Affiliation(s)
- Yingchao Zhang
- Department of Physics and JILA, University of Colorado and NIST, Boulder, Colorado 80309, United States
| | - Chaitanya Murthy
- Department of Physics, Stanford University, Stanford, California 94305, United States
| | - Tika R Kafle
- Department of Physics and JILA, University of Colorado and NIST, Boulder, Colorado 80309, United States
| | - Wenjing You
- Department of Physics and JILA, University of Colorado and NIST, Boulder, Colorado 80309, United States
| | - Xun Shi
- Department of Physics and JILA, University of Colorado and NIST, Boulder, Colorado 80309, United States
| | - Lujin Min
- Materials Research Institute and Department of Materials Science & Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Huaiyu Hugo Wang
- Materials Research Institute and Department of Materials Science & Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Na Li
- Department of Physics and JILA, University of Colorado and NIST, Boulder, Colorado 80309, United States
| | - Venkatraman Gopalan
- Materials Research Institute and Department of Materials Science & Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Zhiqiang Mao
- Materials Research Institute and Department of Materials Science & Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Kai Rossnagel
- Institute of Experimental and Applied Physics, Kiel University, D-24098 Kiel, Germany
- Ruprecht Haensel Laboratory, Deutsches Elektronen-Synchrotron DESY, D-22607 Hamburg, Germany
| | - Lexian Yang
- State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China
- Frontier Science Center for Quantum Information, Beijing 100084, China
| | - Henry Kapteyn
- Department of Physics and JILA, University of Colorado and NIST, Boulder, Colorado 80309, United States
- KMLabs Inc., Boulder, Colorado 80301, United States
| | - Rahul Nandkishore
- Department of Physics and Center for Theory of Quantum Matter, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Margaret Murnane
- Department of Physics and JILA, University of Colorado and NIST, Boulder, Colorado 80309, United States
| |
Collapse
|
6
|
Zhang SB, Liu X, Hossain MS, Yin JX, Hasan MZ, Neupert T. Emergent Edge Modes in Shifted Quasi-One-Dimensional Charge Density Waves. PHYSICAL REVIEW LETTERS 2023; 130:106203. [PMID: 36962034 DOI: 10.1103/physrevlett.130.106203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 11/05/2022] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
We propose and study a two-dimensional phase of shifted charge density waves (CDW), which is constructed from an array of weakly coupled 1D CDW wires whose phases shift from one wire to the next. We show that the fully gapped bulk CDW has topological properties, characterized by a nonzero Chern number, that imply edge modes within the bulk gap. Remarkably, these edge modes exhibit spectral pseudoflow as a function of position along the edge, and are thus dual to the chiral edge modes of Chern insulators with their spectral flow in momentum space. Furthermore, we show that the CDW edge modes are stable against interwire coupling. Our predictions can be tested experimentally in quasi-1D CDW compounds such as Ta_{2}Se_{8}I.
Collapse
Affiliation(s)
- Song-Bo Zhang
- Department of Physics, University of Zürich, Winterthurerstrasse 190, 8057, Zürich, Switzerland
| | - Xiaoxiong Liu
- Department of Physics, University of Zürich, Winterthurerstrasse 190, 8057, Zürich, Switzerland
| | - Md Shafayat Hossain
- Laboratory for Topological Quantum Matter and Advanced Spectroscopy (B7), Department of Physics, Princeton University, Princeton, New Jersey 08540, USA
| | - Jia-Xin Yin
- Department of physics, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - M Zahid Hasan
- Laboratory for Topological Quantum Matter and Advanced Spectroscopy (B7), Department of Physics, Princeton University, Princeton, New Jersey 08540, USA
- Princeton Institute for the Science and Technology of Materials, Princeton University, Princeton, New Jersey 08540, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
- Quantum Science Center, Oak Ridge, Tennessee 37831, USA
| | - Titus Neupert
- Department of Physics, University of Zürich, Winterthurerstrasse 190, 8057, Zürich, Switzerland
| |
Collapse
|
7
|
Vergniory MG, Wieder BJ, Elcoro L, Parkin SSP, Felser C, Bernevig BA, Regnault N. All topological bands of all nonmagnetic stoichiometric materials. Science 2022; 376:eabg9094. [PMID: 35587971 DOI: 10.1126/science.abg9094] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Topological quantum chemistry and symmetry-based indicators have facilitated large-scale searches for materials with topological properties at the Fermi energy (EF). We report the implementation of a publicly accessible catalog of stable and fragile topology in all of the bands both at and away from EF in the 96,196 processable entries in the Inorganic Crystal Structure Database. Our calculations, which represent the completion of the symmetry-indicated band topology of known nonmagnetic materials, have enabled the discovery of repeat-topological and supertopological materials, including rhombohedral bismuth and Bi2Mg3. We find that 52.65% of all materials are topological at EF, roughly two-thirds of bands across all materials exhibit symmetry-indicated stable topology, and 87.99% of all materials contain at least one stable or fragile topological band.
Collapse
Affiliation(s)
- Maia G Vergniory
- Donostia International Physics Center, 20018 Donostia-San Sebastian, Spain.,IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.,Max Planck Institute for Chemical Physics of Solids, 01187 Dresden, Germany
| | - Benjamin J Wieder
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Department of Physics, Northeastern University, Boston, MA 02115, USA.,Department of Physics, Princeton University, Princeton, NJ 08544, USA
| | - Luis Elcoro
- Department of Condensed Matter Physics, University of the Basque Country UPV/EHU, 48080 Bilbao, Spain
| | - Stuart S P Parkin
- Max Planck Institute of Microstructure Physics, 06120 Halle, Germany
| | - Claudia Felser
- Max Planck Institute for Chemical Physics of Solids, 01187 Dresden, Germany
| | - B Andrei Bernevig
- Department of Physics, Princeton University, Princeton, NJ 08544, USA
| | - Nicolas Regnault
- Department of Physics, Princeton University, Princeton, NJ 08544, USA.,Laboratoire de Physique de l'École Normale Supérieure, PSL University, CNRS, Sorbonne Université, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
8
|
Bronsch W, Tuniz M, Crupi G, De Col M, Puntel D, Soranzio D, Giammarino A, Perlangeli M, Berger H, De Angelis D, Fainozzi D, Paltanin E, Pelli Cresi JS, Kurdi G, Foglia L, Mincigrucci R, Parmigiani F, Bencivenga F, Cilento F. Ultrafast dynamics in (TaSe 4) 2I triggered by valence and core-level excitation. Faraday Discuss 2022; 237:40-57. [DOI: 10.1039/d2fd00019a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Dimensionality plays a key role for the emergence of ordered phases such as charge-density-waves (CDW), which can couple to, and modulate, the topological properties of matter. In this work, we...
Collapse
|
9
|
An C, Zhou Y, Chen C, Fei F, Song F, Park C, Zhou J, Rubahn HG, Moshchalkov VV, Chen X, Zhang G, Yang Z. Long-Range Ordered Amorphous Atomic Chains as Building Blocks of a Superconducting Quasi-One-Dimensional Crystal. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2002352. [PMID: 32705735 DOI: 10.1002/adma.202002352] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 06/01/2020] [Indexed: 06/11/2023]
Abstract
Crystalline and amorphous structures are two of the most common solid-state phases. Crystals having orientational and periodic translation symmetries are usually both short-range and long-range ordered, while amorphous materials have no long-range order. Short-range ordered but long-range disordered materials are generally categorized into amorphous phases. In contrast to the extensively studied crystalline and amorphous phases, the combination of short-range disordered and long-range ordered structures at the atomic level is extremely rare and so far has only been reported for solvated fullerenes under compression. Here, a report on the creation and investigation of a superconducting quasi-1D material with long-range ordered amorphous building blocks is presented. Using a diamond anvil cell, monocrystalline (TaSe4 )2 I is compressed and a system is created where the TaSe4 atomic chains are in amorphous state without breaking the orientational and periodic translation symmetries of the chain lattice. Strikingly, along with the amorphization of the atomic chains, the insulating (TaSe4 )2 I becomes a superconductor. The data provide critical insight into a new phase of solid-state materials. The findings demonstrate a first ever case where superconductivity is hosted by a lattice with periodic but amorphous constituent atomic chains.
Collapse
Affiliation(s)
- Chao An
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
| | - Yonghui Zhou
- Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei, 230031, China
| | - Chunhua Chen
- Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei, 230031, China
| | - Fucong Fei
- National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, Nanjing, 210093, China
| | - Fengqi Song
- National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, Nanjing, 210093, China
| | - Changyong Park
- HPCAT, X-Ray Science Division, Argonne National Laboratory, Argonne, IL, 60439, USA
| | - Jianhui Zhou
- Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei, 230031, China
| | - Horst-Günter Rubahn
- NanoSYD, Mads Clausen Institute and DIAS Danish Institute for Advanced Study, University of Southern Denmark, Alsion 2, Sonderborg, DK-6400, Denmark
| | | | - Xuliang Chen
- Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei, 230031, China
| | - Gufei Zhang
- NanoSYD, Mads Clausen Institute and DIAS Danish Institute for Advanced Study, University of Southern Denmark, Alsion 2, Sonderborg, DK-6400, Denmark
| | - Zhaorong Yang
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
- Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei, 230031, China
| |
Collapse
|
10
|
Axionic charge-density wave in the Weyl semimetal (TaSe4)2I. Nature 2019; 575:315-319. [DOI: 10.1038/s41586-019-1630-4] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 07/19/2019] [Indexed: 11/08/2022]
|