1
|
Dang Z, Chen Y, Fang Z. Cathodoluminescence Nanoscopy: State of the Art and Beyond. ACS NANO 2023; 17:24431-24448. [PMID: 38054434 DOI: 10.1021/acsnano.3c07593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Cathodoluminescence (CL) nanoscopy is proven to be a powerful tool to explore nanoscale optical properties, whereby free electron beams achieve a spatial resolution far beyond the diffraction limit of light. With developed methods for the control of electron beams and the collection of light, the dimension of information that CL can access has been expanded to include polarization, momentum, and time, holding promise to provide invaluable insights into the study of materials and optical near-field dynamics. With a focus on the burgeoning field of CL nanoscopy, this perspective outlines the recent advancements and applications of this technique, as illustrated by the salient experimental works. In addition, as an outlook for future research, several appealing directions that may bring about developments and discoveries are highlighted.
Collapse
Affiliation(s)
- Zhibo Dang
- School of Physics, State Key Laboratory of Artificial Microstructure and Mesoscopic Physics, Academy for Advanced Interdisciplinary Studies, Collaborative Innovation Center of Quantum Matter, and Nano-optoelectronics Frontier Center of Ministry of Education, Peking University, Beijing 100871, People's Republic of China
| | - Yuxiang Chen
- School of Physics, State Key Laboratory of Artificial Microstructure and Mesoscopic Physics, Academy for Advanced Interdisciplinary Studies, Collaborative Innovation Center of Quantum Matter, and Nano-optoelectronics Frontier Center of Ministry of Education, Peking University, Beijing 100871, People's Republic of China
| | - Zheyu Fang
- School of Physics, State Key Laboratory of Artificial Microstructure and Mesoscopic Physics, Academy for Advanced Interdisciplinary Studies, Collaborative Innovation Center of Quantum Matter, and Nano-optoelectronics Frontier Center of Ministry of Education, Peking University, Beijing 100871, People's Republic of China
| |
Collapse
|
2
|
Gong Z, Chen J, Chen R, Zhu X, Wang C, Zhang X, Hu H, Yang Y, Zhang B, Chen H, Kaminer I, Lin X. Interfacial Cherenkov radiation from ultralow-energy electrons. Proc Natl Acad Sci U S A 2023; 120:e2306601120. [PMID: 37695899 PMCID: PMC10515145 DOI: 10.1073/pnas.2306601120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 08/11/2023] [Indexed: 09/13/2023] Open
Abstract
Cherenkov radiation occurs only when a charged particle moves with a velocity exceeding the phase velocity of light in that matter. This radiation mechanism creates directional light emission at a wide range of frequencies and could facilitate the development of on-chip light sources except for the hard-to-satisfy requirement for high-energy particles. Creating Cherenkov radiation from low-energy electrons that has no momentum mismatch with light in free space is still a long-standing challenge. Here, we report a mechanism to overcome this challenge by exploiting a combined effect of interfacial Cherenkov radiation and umklapp scattering, namely the constructive interference of light emission from sequential particle-interface interactions with specially designed (umklapp) momentum-shifts. We find that this combined effect is able to create the interfacial Cherenkov radiation from ultralow-energy electrons, with kinetic energies down to the electron-volt scale. Due to the umklapp scattering for the excited high-momentum Bloch modes, the resulting interfacial Cherenkov radiation is uniquely featured with spatially separated apexes for its wave cone and group cone.
Collapse
Affiliation(s)
- Zheng Gong
- Interdisciplinary Center for Quantum Information, State Key Laboratory of Extreme Photonics and Instrumentation, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou310027, China
- International Joint Innovation Center, The Electromagnetics Academy at Zhejiang University, Zhejiang University, Haining314400, China
| | - Jialin Chen
- Interdisciplinary Center for Quantum Information, State Key Laboratory of Extreme Photonics and Instrumentation, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou310027, China
- International Joint Innovation Center, The Electromagnetics Academy at Zhejiang University, Zhejiang University, Haining314400, China
- Department of Electrical and Computer Engineering, Technion-Israel Institute of Technology, Haifa32000, Israel
| | - Ruoxi Chen
- Interdisciplinary Center for Quantum Information, State Key Laboratory of Extreme Photonics and Instrumentation, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou310027, China
- International Joint Innovation Center, The Electromagnetics Academy at Zhejiang University, Zhejiang University, Haining314400, China
| | - Xingjian Zhu
- School of Physics, Zhejiang University, Hangzhou310027, China
| | - Chan Wang
- Interdisciplinary Center for Quantum Information, State Key Laboratory of Extreme Photonics and Instrumentation, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou310027, China
- Key Laboratory of Advanced Micro/Nano Electronic Devices & Smart Systems of Zhejiang, Jinhua Institute of Zhejiang University, Zhejiang University, Jinhua321099, China
| | - Xinyan Zhang
- Interdisciplinary Center for Quantum Information, State Key Laboratory of Extreme Photonics and Instrumentation, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou310027, China
- International Joint Innovation Center, The Electromagnetics Academy at Zhejiang University, Zhejiang University, Haining314400, China
| | - Hao Hu
- College of Electronic and Information Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing211106, China
| | - Yi Yang
- Department of Physics, University of Hong Kong, Hong Kong999077, China
| | - Baile Zhang
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore637371, Singapore
- Centre for Disruptive Photonic Technologies, Nanyang Technological University, Singapore637371, Singapore
| | - Hongsheng Chen
- Interdisciplinary Center for Quantum Information, State Key Laboratory of Extreme Photonics and Instrumentation, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou310027, China
- International Joint Innovation Center, The Electromagnetics Academy at Zhejiang University, Zhejiang University, Haining314400, China
- Key Laboratory of Advanced Micro/Nano Electronic Devices & Smart Systems of Zhejiang, Jinhua Institute of Zhejiang University, Zhejiang University, Jinhua321099, China
- Shaoxing Institute of Zhejiang University, Zhejiang University, Shaoxing312000, China
| | - Ido Kaminer
- Department of Electrical and Computer Engineering, Technion-Israel Institute of Technology, Haifa32000, Israel
| | - Xiao Lin
- Interdisciplinary Center for Quantum Information, State Key Laboratory of Extreme Photonics and Instrumentation, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou310027, China
- International Joint Innovation Center, The Electromagnetics Academy at Zhejiang University, Zhejiang University, Haining314400, China
| |
Collapse
|
3
|
Chen R, Chen J, Gong Z, Zhang X, Zhu X, Yang Y, Kaminer I, Chen H, Zhang B, Lin X. Free-electron Brewster-transition radiation. SCIENCE ADVANCES 2023; 9:eadh8098. [PMID: 37566659 PMCID: PMC10421060 DOI: 10.1126/sciadv.adh8098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 07/12/2023] [Indexed: 08/13/2023]
Abstract
We reveal a mechanism to enhance particle-matter interactions by exploiting the pseudo-Brewster effect of gain materials, presenting an enhancement of at least four orders of magnitude for light emission. This mechanism is enabled by the emergence of an unprecedented phase diagram that maps all phenomena of free-electron transition radiation into three distinct phases in a gain-thickness parameter space, namely, the conventional, intermediate, and Brewster phases, when an electron penetrates a dielectric slab with a modest gain and a finite thickness. Essentially, our revealed mechanism corresponds to the free-electron transition radiation in the Brewster phase, which also features ultrahigh directionality, always at the Brewster angle, regardless of the electron velocity. Counterintuitively, we find that the intensity of this free-electron Brewster-transition radiation is insensitive to the Fabry-Pérot resonance condition and, thus, the variation of slab thickness, and moreover, a weaker gain could lead to a stronger enhancement for light emission.
Collapse
Affiliation(s)
- Ruoxi Chen
- Interdisciplinary Center for Quantum Information, State Key Laboratory of Extreme Photonics and Instrumentation, ZJU-Hangzhou Global Scientific and Technological Innovation Center, College of Information Science & Electronic Engineering, Zhejiang University, Hangzhou 310027, China
- International Joint Innovation Center, The Electromagnetics Academy at Zhejiang University, Zhejiang University, Haining 314400, China
| | - Jialin Chen
- Interdisciplinary Center for Quantum Information, State Key Laboratory of Extreme Photonics and Instrumentation, ZJU-Hangzhou Global Scientific and Technological Innovation Center, College of Information Science & Electronic Engineering, Zhejiang University, Hangzhou 310027, China
- International Joint Innovation Center, The Electromagnetics Academy at Zhejiang University, Zhejiang University, Haining 314400, China
- Department of Electrical and Computer Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Zheng Gong
- Interdisciplinary Center for Quantum Information, State Key Laboratory of Extreme Photonics and Instrumentation, ZJU-Hangzhou Global Scientific and Technological Innovation Center, College of Information Science & Electronic Engineering, Zhejiang University, Hangzhou 310027, China
- International Joint Innovation Center, The Electromagnetics Academy at Zhejiang University, Zhejiang University, Haining 314400, China
| | - Xinyan Zhang
- Interdisciplinary Center for Quantum Information, State Key Laboratory of Extreme Photonics and Instrumentation, ZJU-Hangzhou Global Scientific and Technological Innovation Center, College of Information Science & Electronic Engineering, Zhejiang University, Hangzhou 310027, China
- International Joint Innovation Center, The Electromagnetics Academy at Zhejiang University, Zhejiang University, Haining 314400, China
| | - Xingjian Zhu
- School of Physics, Zhejiang University, Hangzhou 310027, China
| | - Yi Yang
- Department of Physics, University of Hong Kong, Hong Kong 999077, China
| | - Ido Kaminer
- Department of Electrical and Computer Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Hongsheng Chen
- Interdisciplinary Center for Quantum Information, State Key Laboratory of Extreme Photonics and Instrumentation, ZJU-Hangzhou Global Scientific and Technological Innovation Center, College of Information Science & Electronic Engineering, Zhejiang University, Hangzhou 310027, China
- International Joint Innovation Center, The Electromagnetics Academy at Zhejiang University, Zhejiang University, Haining 314400, China
- Key Laboratory of Advanced Micro/Nano Electronic Devices & Smart Systems of Zhejiang, Jinhua Institute of Zhejiang University, Zhejiang University, Jinhua 321099, China
- Shaoxing Institute of Zhejiang University, Zhejiang University, Shaoxing 312000, China
| | - Baile Zhang
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
- Centre for Disruptive Photonic Technologies, Nanyang Technological University, Singapore 637371, Singapore
| | - Xiao Lin
- Interdisciplinary Center for Quantum Information, State Key Laboratory of Extreme Photonics and Instrumentation, ZJU-Hangzhou Global Scientific and Technological Innovation Center, College of Information Science & Electronic Engineering, Zhejiang University, Hangzhou 310027, China
- International Joint Innovation Center, The Electromagnetics Academy at Zhejiang University, Zhejiang University, Haining 314400, China
| |
Collapse
|
4
|
Yu R, Huo P, Liu M, Zhu W, Agrawal A, Lu YQ, Xu T. Generation of Perfect Electron Vortex Beam with a Customized Beam Size Independent of Orbital Angular Momentum. NANO LETTERS 2023; 23:2436-2441. [PMID: 36723626 DOI: 10.1021/acs.nanolett.2c03822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The electron vortex beam (EVB)-carrying quantized orbital angular momentum (OAM) plays an essential role in a series of fundamental research. However, the radius of the transverse intensity profile of a doughnut-shaped EVB strongly depends on the topological charge of the OAM, impeding its wide applications in electron microscopy. Inspired by the perfect vortex in optics, herein, we demonstrate a perfect electron vortex beam (PEVB), which completely unlocks the constraint between the beam size and the beam's OAM. We design nanoscale holograms to generate PEVBs carrying different quanta of OAM but exhibiting almost the same beam size. Furthermore, we show that the beam size of the PEVB can be readily controlled by only modifying the design parameters of the hologram. The generation of PEVB with a customized beam size independent of the OAM can promote various in situ applications of free electrons carrying OAM in electron microscopy.
Collapse
Affiliation(s)
- Ruixuan Yu
- National Laboratory of Solid-State Microstructures and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing210093, China
- College of Engineering and Applied Sciences and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing210093, China
| | - Pengcheng Huo
- National Laboratory of Solid-State Microstructures and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing210093, China
- College of Engineering and Applied Sciences and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing210093, China
| | - Mingze Liu
- National Laboratory of Solid-State Microstructures and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing210093, China
- College of Engineering and Applied Sciences and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing210093, China
| | - Wenqi Zhu
- Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland20899, United States
- Maryland NanoCenter, University of Maryland, College Park, Maryland20742, United States
| | - Amit Agrawal
- Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland20899, United States
- Maryland NanoCenter, University of Maryland, College Park, Maryland20742, United States
| | - Yan-Qing Lu
- National Laboratory of Solid-State Microstructures and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing210093, China
- College of Engineering and Applied Sciences and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing210093, China
| | - Ting Xu
- National Laboratory of Solid-State Microstructures and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing210093, China
- College of Engineering and Applied Sciences and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing210093, China
| |
Collapse
|
5
|
Wang Y, Li X, Zhang M, Zhang J, Chen Z, Zheng X, Tian Z, Zhao N, Han X, Zaghib K, Wang Y, Deng Y, Hu W. Highly Active and Durable Single-Atom Tungsten-Doped NiS 0.5 Se 0.5 Nanosheet @ NiS 0.5 Se 0.5 Nanorod Heterostructures for Water Splitting. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2107053. [PMID: 35080286 DOI: 10.1002/adma.202107053] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 01/23/2022] [Indexed: 06/14/2023]
Abstract
Developing robust and highly active non-precious electrocatalysts for the hydrogen/oxygen evolution reaction (HER/OER) is crucial for the industrialization of hydrogen energy. In this study, a highly active and durable single-atom W-doped NiS0.5 Se0.5 nanosheet @ NiS0.5 Se0.5 nanorod heterostructure (W-NiS0.5 Se0.5 ) electrocatalyst is prepared. W-NiS0.5 Se0.5 exhibits excellent catalytic activity for the HER and OER with ultralow overpotentials (39 and 106 mV for the HER and 171 and 239 mV for the OER at 10 and 100 mA cm-2 , respectively) and excellent long-term durability (500 h), outperforming commercial precious-metal catalysts and many other previously reported transition-metal-based compounds (TMCs). The introduction of single-atom W delocalizes the spin state of Ni, which results in an increase in the Ni d-electron density. This causes the optimization of the adsorption/desorption process of H and a significant reduction in the adsorption free energy of the rate-determining step (O* → OOH*), thus accelerating the thermodynamics and kinetics of the HER and OER. This work provides a rational feasible strategy to design single-atom catalysts for water splitting and to develop advanced TMC electrocatalysts by regulating delocalized spin states.
Collapse
Affiliation(s)
- Yang Wang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin, 300350, China
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University, Haikou, 570228, China
| | - Xiaopeng Li
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin, 300350, China
| | - Mengmeng Zhang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin, 300350, China
- School of Materials Science and Engineering, Tiangong University, Tianjin, 300387, China
| | - Jinfeng Zhang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin, 300350, China
| | - Zelin Chen
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University, Haikou, 570228, China
| | - Xuerong Zheng
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin, 300350, China
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University, Haikou, 570228, China
| | - Zhangliu Tian
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Naiqin Zhao
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin, 300350, China
| | - Xiaopeng Han
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin, 300350, China
| | - Karim Zaghib
- Center of Excellence in Transportation Electrification and Energy Storage, Hydro Québec, 1800 Boulevard Lionel-Boulet, Varennes, Québec, J3× 1S1, Canada
| | - Yuesheng Wang
- Center of Excellence in Transportation Electrification and Energy Storage, Hydro Québec, 1800 Boulevard Lionel-Boulet, Varennes, Québec, J3× 1S1, Canada
| | - Yida Deng
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin, 300350, China
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University, Haikou, 570228, China
| | - Wenbin Hu
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin, 300350, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
| |
Collapse
|
6
|
Silenko AJ, Zhang P, Zou L. Relativistic Quantum Dynamics of Twisted Electron Beams in Arbitrary Electric and Magnetic Fields. PHYSICAL REVIEW LETTERS 2018; 121:043202. [PMID: 30095932 DOI: 10.1103/physrevlett.121.043202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 05/24/2018] [Indexed: 06/08/2023]
Abstract
Relativistic quantum dynamics of twisted (vortex) Dirac particles in arbitrary electric and magnetic fields are constructed for the first time. This allows us to change the controversial contemporary situation when the nonrelativistic approximation is used for relativistic twisted electrons. The relativistic Hamiltonian and equations of motion in the Foldy-Wouthuysen representation are derived. A critical experiment for a verification of the results obtained is proposed. The new important effect of a radiative orbital polarization of a twisted electron beam in a magnetic field resulting in a nonzero average projection of the intrinsic orbital angular momentum on the field direction is predicted.
Collapse
Affiliation(s)
- Alexander J Silenko
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Dubna 141980, Russia
- Research Institute for Nuclear Problems, Belarusian State University, Minsk 220030, Belarus
| | - Pengming Zhang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Yuquanlu 19A, Beijing 100049, China
| | - Liping Zou
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
7
|
Yang Y, Thirunavukkarasu G, Babiker M, Yuan J. Orbital-Angular-Momentum Mode Selection by Rotationally Symmetric Superposition of Chiral States with Application to Electron Vortex Beams. PHYSICAL REVIEW LETTERS 2017; 119:094802. [PMID: 28949569 DOI: 10.1103/physrevlett.119.094802] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Indexed: 05/27/2023]
Abstract
A general orbital-angular-momentum (OAM) mode selection principle is put forward involving the rotationally symmetric superposition of chiral states. This principle is not only capable of explaining the operation of vortex generating elements such as spiral zone plate holograms, but more importantly, it enables the systematic and flexible generation of structured OAM waves in general. This is demonstrated both experimentally and theoretically in the context of electron vortex beams using rotationally symmetric binary amplitude chiral sieve masks.
Collapse
Affiliation(s)
- Yuanjie Yang
- Department of Physics, University of York, Heslington, York YO10 5DD, United Kingdom
- School of Astronautics & Aeronautics, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - G Thirunavukkarasu
- Department of Physics, University of York, Heslington, York YO10 5DD, United Kingdom
| | - M Babiker
- Department of Physics, University of York, Heslington, York YO10 5DD, United Kingdom
| | - Jun Yuan
- Department of Physics, University of York, Heslington, York YO10 5DD, United Kingdom
| |
Collapse
|
8
|
Béché A, Juchtmans R, Verbeeck J. Efficient creation of electron vortex beams for high resolution STEM imaging. Ultramicroscopy 2017; 178:12-19. [DOI: 10.1016/j.ultramic.2016.05.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 04/12/2016] [Accepted: 05/07/2016] [Indexed: 11/28/2022]
|
9
|
Greenshields CR, Stamps RL, Franke-Arnold S, Barnett SM. Is the angular momentum of an electron conserved in a uniform magnetic field? PHYSICAL REVIEW LETTERS 2014; 113:240404. [PMID: 25541755 DOI: 10.1103/physrevlett.113.240404] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Indexed: 05/14/2023]
Abstract
We show that an electron moving in a uniform magnetic field possesses a time-varying "diamagnetic" angular momentum. Surprisingly this means that the kinetic angular momentum of the electron may vary with time, despite the rotational symmetry of the system. This apparent violation of angular momentum conservation is resolved by including the angular momentum of the surrounding fields.
Collapse
Affiliation(s)
- Colin R Greenshields
- SUPA School of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Robert L Stamps
- SUPA School of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Sonja Franke-Arnold
- SUPA School of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Stephen M Barnett
- SUPA School of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| |
Collapse
|
10
|
Imaging the dynamics of free-electron Landau states. Nat Commun 2014; 5:4586. [PMID: 25105563 PMCID: PMC4143940 DOI: 10.1038/ncomms5586] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 07/03/2014] [Indexed: 11/27/2022] Open
Abstract
Landau levels and states of electrons in a magnetic field are fundamental quantum entities underlying the quantum Hall and related effects in condensed matter physics. However, the real-space properties and observation of Landau wave functions remain elusive. Here we report the real-space observation of Landau states and the internal rotational dynamics of free electrons. States with different quantum numbers are produced using nanometre-sized electron vortex beams, with a radius chosen to match the waist of the Landau states, in a quasi-uniform magnetic field. Scanning the beams along the propagation direction, we reconstruct the rotational dynamics of the Landau wave functions with angular frequency ~100 GHz. We observe that Landau modes with different azimuthal quantum numbers belong to three classes, which are characterized by rotations with zero, Larmor and cyclotron frequencies, respectively. This is in sharp contrast to the uniform cyclotron rotation of classical electrons, and in perfect agreement with recent theoretical predictions. Landau states are associated with the quantised orbits of charged particles in magnetic fields. By manipulating electron vortex beams in a magnetic field, this study reconstructs the internal quantum dynamics of free-electron Landau states, which differs strongly from the classical cyclotron rotation.
Collapse
|